Numerical Solution of ODEs

Exercise Class

28th November 2024

Domains of Stability

For the explicit Runge-Kutta methods, we have the following domains of stability:

s = 1 (Euler):	$S=\{\mu\in\mathbb{C}: 1+\mu <1\}$
s = 2 (Runge):	$S = \left\{ \mu \in \mathbb{C} : \left 1 + \mu + \frac{1}{2} \mu^2 \right < 1 \right\}$
s = 3:	$S = \left\{ \mu \in \mathbb{C} : \left 1 + \mu + \frac{1}{2}\mu + \frac{1}{6}\mu^3 \right < 1 \right\}$
s = 4:	$S = \left\{ \mu \in \mathbb{C} : \left 1 + \mu + \frac{1}{2}\mu + \frac{1}{6}\mu^3 + \frac{1}{24}\mu^4 \right < 1 \right\}$

Exercises

1. Given the pendulum with dynamical friction:

$$\begin{aligned} x_1' &= x_2, \\ x_2' &= -k\sin x_1 + \varepsilon x_2, \end{aligned}$$

consider the linearised version around the steady state (0,0):

$$x' = Ax, \qquad \qquad A = \begin{pmatrix} 0 & 1 \\ -k & \varepsilon \end{pmatrix}$$

with initial conditions $x_0 \in \mathbb{R}^2$ at time $t_0 = 0$, setting k = 1 and $\varepsilon = -0.7$.

Using MATLAB plot the eigenvalues of the matrix A and determine for $\tau = 0.1, 0.2, 0.4, 1$ whether the fixed point (0, 0) is A-stable for the first, second, third, and fourth order Runge-Kutta methods.

2. Consider the linear ODE

$$x' = Ax, \qquad \qquad A = \begin{pmatrix} -3 & 0 & 0\\ 0 & -3 & 4\\ 0 & -2 & 1 \end{pmatrix}$$

Determine whether the steady state (0,0) is *A*-stable and estimate (by plotting $\tau\lambda$ against the domain of stability) values of the step size τ which will result in an A-stable fixed point for the first, second, third, and fourth order Runge-Kutta methods.