Numerical Solution of ODEs

Exercise Class

21st November 2024

Dynamical Systems

Consider Van der Pol's oscillator:

$$x_1' = f_1(x) = x_2 \tag{1}$$

$$x_2' = f_2(x) = -x_1 + 2ax_2 - x_1^2 x_2 \tag{2}$$

with initial conditions $x_0 \in \mathbb{R}^2$ at time $t_0 = 0$. In order to solve this we require a *stiff* solver such as ode23s or ode45s.

Steady State

This problem has a steady state at $x^* = (0,0)^\top \in \mathbb{R}^2$, but is it A-stable? In order to determine this we need to compute the eigenvalues of the Jacobian matrix

$$A = \begin{pmatrix} \frac{\partial f_1}{\partial x_2}(\boldsymbol{x}^*) & \frac{\partial f_1}{\partial x_2}(\boldsymbol{x}^*) \\ \frac{\partial f_2}{\partial x_2}(\boldsymbol{x}^*) & \frac{\partial f_2}{\partial x_2}(\boldsymbol{x}^*) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 - 2x_1^* x_2^* & 2a - (x_1^*)^2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 2a \end{pmatrix}.$$

From the characteristic polynomial we can compute that the spectrum of A is

$$\sigma(A) = \left\{ a + \sqrt{a^2 + 1}, a - \sqrt{a^2 + 1} \right\}.$$

The steady state is A-stable if $\max_{\lambda \in \sigma(A)} \operatorname{Re}(\lambda) < 0$. So we evaluate for different values of a:

- |a| < 1: Here $\sigma(A) = \{a + bi, a bi\}$, for some $b \in \mathbb{R}$; therefore, $\max_{\lambda \in \sigma(A)} \operatorname{Re}(\lambda) = a$. Hence, we have that x^* is A-stable if a < 0 and x^* is unstable if a > 0.
- |a| > 1: Here $\sigma(A) = \{a + b, a b\}$, for some $b \in [0, |a|]$; therefore, $\max_{\lambda \in \sigma(A)} \operatorname{Re}(\lambda) = a + b$. Hence, we have that x^* is A-stable if a < 0 and x^* is unstable if a > 0.

Linearisation

We can generate the linearised version of Van der Pol's oscillator using Taylor's expansion around x^* :

$$m{x}' = f(m{x}) = f(m{x}^*) + A(m{x} - m{x}^*) + \underbrace{g(m{x} - m{x}^*)}_{\mbox{Higher-order terms}} \ .$$

This gives the linearised form as

$$\begin{aligned} x_1' &= x_2, \\ x_2' &= -x_1 + 2ax_2. \end{aligned}$$

Exercises

- 1. Consider Van der Pol's oscillator given by (1)–(2).
 - (a) Plot the result of solving forwards to T_f and backwards to T_b for the following situations using ode23s:

i. $x_0 = (1, 1)^{\top}, a = -0.1, T_f = 20, T_b = -1.8$ ii. $x_0 = (0, 0)^{\top}, a = -0.1, T_f = 20, T_b = -1.5$ iii. $x_0 = (1, 1)^{\top}, a = 1.1, T_f = 20, T_b = -1.5$ iv. $x_0 = (-1, 6)^{\top}, a = 1.1, T_f = 20, T_b = -0.4$

- (b) For Van der Pol's oscillator study the steady state numerically (see vdpol_steady) for a = -1.1, 0.5, 1.1.
- (c) Solve Van der Pol's oscillator with a = -0.1 with initial condition $x_0 = (1, 1)^{\top}$ in the time interval [0, 120] using the following numerical methods and time step size τ :
 - i. Euler (eul.m) with $\tau = 0.4$
 - ii. Euler (eul.m) with $\tau = 0.05$
 - iii. Implicit Euler (ieuler.m) with $\tau = 0.4$
- 2. Consider the initial value problem

$$x'_{1} = (a - b)x_{1} - cx_{2} + x_{1}(x_{3} + d(1 - x_{3}^{2}))$$

$$x'_{2} = cx_{1} + (a - b)x_{2} + x_{2}(x_{3} + d(1 - x_{3}^{2}))$$

$$x'_{3} = ax_{3} - (x_{1}^{2} + x_{2}^{2} + x_{3}^{2})$$

with initial conditions $x_0 \in \mathbb{R}^3$ at time $t_0 = 0$. This problem has two steady states,

$$\begin{pmatrix} 0\\0\\0 \end{pmatrix} \quad \text{and} \quad x^* = \begin{pmatrix} 0\\0\\a \end{pmatrix}.$$

(a) Compute the Jacobian $A \in \mathbb{R}^{3 \times 3}$ at x^* and check if this steady state is A-stable for:

i. a = 1.0, b = 3, c = 0.25, d = 0.2ii. a = 1.95, b = 3, c = 0.25, d = 0.2iii. a = 2.02, b = 3, c = 0.25, d = 0.2

Remark 1. Attempt to deduce the eigenvalues analytically if possible, and then verify by numerically calculating the eigenvalues using the MATLAB eig function.

(b) Plot and estimate the ω -limit for the same parameters *Hint*. Solve upto time T = 2000.