Numerical Solution of ODEs

Exercise Class

17th October 2024

Explicit One-Step Methods

Euler Implemented by eul.m:

$$
\kappa_1 = f(t, x),
$$

$$
\psi(t + \tau, t, x) = x + \tau \kappa_1.
$$

Runge Implemented by runge.m:

$$
\kappa_1 = f(t, x),
$$

\n
$$
\kappa_2 = f\left(t + \frac{\tau}{2}, x + \frac{\tau}{2}\kappa_1\right),
$$

\n
$$
\psi(t + \tau, t, x) = x + \tau \kappa_2.
$$

Runge-Kutta Implemented by rk_classical.m:

$$
\kappa_1 = f(t, x)
$$

\n
$$
\kappa_2 = f\left(t + \frac{\tau}{2}, x + \frac{\tau}{2}\kappa_1\right),
$$

\n
$$
\kappa_3 = f\left(t + \frac{\tau}{2}, x + \frac{\tau}{2}\kappa_2\right),
$$

\n
$$
\kappa_4 = f\left(t + \tau, x + \tau\kappa_3\right),
$$

\n
$$
\psi(t + \tau, t, x) = x + \tau\left(\frac{1}{6}\kappa_1 + \frac{1}{3}\kappa_2 + \frac{1}{3}\kappa_3 + \frac{1}{6}\kappa_4\right).
$$

Heun

$$
\kappa_1 = f(t, x),
$$

\n
$$
\kappa_2 = f(t + \tau, x + \tau \kappa_1),
$$

\n
$$
\psi(t + \tau, t, x) = x + \frac{\tau}{2}(\kappa_1 + \kappa_2).
$$

Implicit One-Step Methods

Implicit Euler Implemented by ieuler.m:

$$
\kappa_1 = f(t, x + \tau \kappa_1),
$$

$$
\psi(t + \tau, t, x) = x + \tau \kappa_1.
$$

Crank-Nicholson

$$
\kappa_1 = f(t, x),
$$

\n
$$
\kappa_2 = f\left(t + \tau, x + \frac{\tau}{2}\kappa_1 + \frac{\tau}{2}\kappa_2\right),
$$

\n
$$
\psi(t + \tau, t, x) = x + \frac{\tau}{2}(\kappa_1 + \kappa_2).
$$

Fixed Point

Computing κ_1 for the *Implicit Euler* method requires solving a potentially nonlinear equation. One method is via the use of a fixed point iteration: Compute the sequence $\{\kappa_1^{(n)}\}_{n\geq 0}$ with the iteration

$$
\kappa_1^{(n+1)} = f(t + \tau, x + \tau \kappa_1^{(n)}), \qquad n \ge 1,
$$

$$
\kappa_1^{(0)} = f(t, x).
$$

Continue the iteration until

$$
\left\| \kappa_1^{(n+1)} - \kappa_1^{(n)} \right\| \leq \text{TOL},
$$

where TOL is a desired tolerance.

Newton's Method

As an alternative, we can also use Newton's method for solving the implicit equation (see ieuler_newton.m). Defining

$$
\boldsymbol{F}(\kappa_1) = \kappa_1 - f(t + \tau, x + \tau \kappa_1),
$$

we try to find a root of $\mathbf{F}(\kappa_1) = 0$, by defining the sequence $\{\kappa_1^{(n)}\}_{n \geq 0}$ as

$$
\kappa_1^{(n+1)} = \kappa_1^{(n)} - \left(\frac{\partial F}{\partial \kappa_1}(\kappa_1^{(n)})\right)^{-1} F(\kappa_1^{(n)})
$$

where, for $\kappa_1 \in \mathbb{R}^n$ and $\mathbf{F}(\kappa_1) = (F_1(\kappa_1), \ldots, F_n(\kappa_1)),$ we define the *Jacobian* as

$$
\frac{\partial \boldsymbol{F}}{\partial \kappa_1}(\kappa_1) = \begin{pmatrix} \frac{\partial F_1}{\partial \kappa_{1,1}}(\kappa_1) & \dots & \frac{\partial F_1}{\partial \kappa_{1,n}}(\kappa_1) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_n}{\partial \kappa_{1,1}}(\kappa_1) & \dots & \frac{\partial F_n}{\partial \kappa_{1,n}}(\kappa_1) \end{pmatrix}.
$$

Note, that

$$
\frac{\partial \boldsymbol{F}}{\partial \kappa_1}(\kappa_1) = \boldsymbol{I} - \tau f_x(t + \tau, x + \tau \kappa_1),
$$

where f_x is the first derivative of f with respect to the second argument.

Exercises

- 1. Compare the solution obtained by the Euler, Runge, and Runge-Kutta methods with $\tau =$ $1/2$, $1/4$, $1/8$ to the solution obtained with ode23 for the following problems:
	- (a) Logistic equation

$$
x(t)' = (a - bx(t))x(t), \t t \in [0,3],
$$

$$
x(0) = x_0,
$$

with $a = b = 1$ and $x_0 = 2$.

(b) The pendulum problem:

$$
x''(t) = -k \sin(x(t)),
$$

$$
x(t_0) = x_0
$$

with $k = 1$, $t = (0, 6\pi)$, and various initial conditions

$$
x_0 = \begin{pmatrix} -1.5 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \end{pmatrix}, \begin{pmatrix} -\pi \\ 1 \end{pmatrix}.
$$

(c) The harmonic oscillator

$$
x''(t) + bx = c \cos(\omega t),
$$

$$
x(t_0) = x_0
$$

with

- $a = 0, b = 9, c = 10$
- $t = [0, 50]$
- $x_0 = (1, 0)^\top$
- $\omega = 2.5, 2.9, 3.1, 3,$ √ 3
- 2. Implement the Heun method as a MATLAB function, and test with the logistic equation with $\tau = 1/2, 1/4, 1/8$.
- 3. Modify compare.m to compare Euler (eul.m), Implicit Euler using a fixed point iteration (ieuler.m), and Implicit Euler using a Newton iteration (ieuler_newton.m), for solving the ODE

$$
x'(t) = \begin{pmatrix} 998 & 1998 \\ -999 & -1999 \end{pmatrix} x(t), \qquad t \in [0, 0.1], \tag{1}
$$

$$
x(0) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \tag{2}
$$

(linsystem.m and linsystem_newton.m) with $\tau = 0.002, 0.0021, 0.0019$. Also try with smaller values of τ , such as $\tau = 0.0002$ to try to reduce oscillations in the numerical solution.

Remark. Make sure to print and check the values obtained from the solver, some of these methods will return NaN (Not a Number) values.

4. Implement the Crank-Nicholson method as a MATLAB function using a fixed point iteration, and test for the linear system $(1)-(2)$ $(1)-(2)$ $(1)-(2)$.