Homework 3

Finite Element Methods 1

Due date: 17th December 2024

Submit a PDF/scan of the answers to the following questions before the deadline via the *Study Group Roster* (*Záznamník učitele*) in SIS, or hand-in directly at the practical class on the 17th December 2024

1. (1 point) Consider a triangulation \mathcal{T}_h of $\Omega \subset \mathbb{R}^2$ consisting of simplices T with diameter h_T , and define by ϱ_T the diameter of the largest inscribed ball in T. Show that the condition

$$\frac{h_T}{\rho_T} \le \sigma, \quad \text{for all } T \in \mathcal{T}_h,$$
 (1.1)

where the constant σ is independent of T, is equivalent to the condition that all angles in all $T \in \mathcal{T}_h$ are bounded from below by a positive constant θ_0 independent of T.

- 2. Consider a triangulation \mathcal{T}_h of $\Omega \subset \mathbb{R}^n$ consisting of simplices T with diameter h_T , define by ϱ_T the diameter of the largest inscribed ball in T, and assume that (1.1) holds.
 - (a) (1 point) Show that |T|, for any $T \in \mathcal{T}_h$, satisfies the condition

$$C_1 h_T^n \le |T| \le C_2 h_T^n,$$

where C_1 is a positive constant dependent only on σ and n, and C_2 is a positive constant dependent only on n.

(b) (1 point) Show, for n = 3, that any face F of \mathcal{T}_h satisfies the condition.

$$\frac{h_F}{\varrho_F} \le \sigma.$$

- (c) (1 point) Show that $h_T \leq \sigma h_{\widetilde{T}}$, for n=2,3, for any pair of elements $T,\widetilde{T} \in \mathcal{T}_h$ sharing an edge.
- 3. (2 points) Let \mathcal{T}_h be a triangulation consisting of n-simplices T in \mathbb{R}^n satisfying (1.1) and the assumptions $(\mathcal{T}_h 1)$ – $(\mathcal{T}_h 5)$. Prove that the number of elements of \mathcal{T}_h sharing a vertex is bounded by a constant depending on σ and n.

1