
Homework 2

Finite Element Methods 1

Due date: 3rd December 2024

Submit a PDF/scan of the answers to the following questions before the deadline via
the Study Group Roster (Záznamnı́k učitele) in SIS, or hand-in directly at the practical class
on 3rd December 2024.

1. (2 points) Consider finite elements (T, PT ,ΣT ), where

T is a rectangle,
PT = Q3(T ),

ΣT = {p(z) : z ∈ M3(T )}.

For T = [0, 1]2, and the points from the principal lattice M3(T ) numbered as per Fig-
ure 1b, write basis functions of the finite element (T, PT ,ΣT ). It is sufficient to de-
rive functions for only four basis functions, as the remaining twelve can be obtained
by circular permutations of the indices. Let Th be a triangulation of a bounded do-
main Ω ⊂ R2 consisting of rectangles and assign the above finite element to each
T ∈ Th. Write the definition of the corresponding finite element space Xh and verify
that Xh ⊂ C(Ω).

2. (2 points) Let the points a1, . . . a9 be the points of the principal lattice M2(T ), see Fig-
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Figure 1: Principal lattices for rectangles
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ure 1a, and define the space

Q′
2(T ) =

{
p ∈ Q2(T ) : 4 p(a9) +

4∑
i=1

p(ai)− 2
8∑

i=5

p(ai) = 0

}
.

Show that any polynomial p ∈ Q′
2(T ) is uniquely determined by the values at the

points a1, . . . , a8 and derive basis functions p′1, . . . , p
′
8 of Q′

2(T ) satisfying p′i(aj) = δij ,
i, j = 1, . . . , 8. Prove that P2(T ) ⊂ Q′

2(T ).

Hint. We can proceed similarly as for the reduced Lagrange cubic n-simplex. It is
sufficient to derive functions for only two basis functions, as the remaining six can be
obtained by circular permutations of the indices.
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Figure 2: Pentahedral prism

3. (2 points) Let T be a pentahedral prism, see Fig-
ure 2, with vertices a1, . . . , a6. The triangu-
lar faces are orthogonal to the x3 axis, and the
quadrilateral faces are parallel to the x3 axis. Let

PT = {p(x1, x2, x3) = γ1 + γ2x1 + γ3x2 + γ4x3

+ γ5x1x3 + γ6x2x3

: γ1, . . . , γ6 ∈ R}.

Show that any function p ∈ PT is uniquely deter-
mined by its values at the vertices a1, . . . , a6 and
that, for any p ∈ PT and face F ⊂ ∂T , the restric-
tion p|F is uniquely determined by its values at
the vertices of the face F .
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