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Nonlinear Differential Equations
Practical 9: Brouwer Fixed Point

1. Prove Theorem 3.6 from the lecture:

Theorem 3.6. Let X be a finite-dimensional normed linear space K ⊂ X a closed, convex, and
bounded subset, and f : K → K a continuous mapping. Then, there exists a fixed point of f in K;
i.e., ∃x ∈ K such that

x = f(x).

Hint. Define

x =

n∑
i=1

αixi,

where x1, . . . , xn form a basis for X (dimX = n), and α = {αi}ni ∈ Rn. Then, define a linear,
continuous operator T : X → Rn as T (x) = α (which has a continuous inverse T−1). Defining
K1 = T (K) and g(α) = T ◦ f ◦ T−1α, show that T is a homeomorphism and g has a fixed point,
and hence, that f has a fixed point.

Solution: Using the definition of T from the hint, let K1 = T (K). We need to show
that K1 is convex, bounded, and maps K1 to itself. We want to show that K1 is a
convex, closed, and bounded subset of Rn. In order to do that, we first show T is a
homeomorphism:

T and T−1 continuous by definition

T is surjective: T : K → K1, so clearly true to definition

T is injective: Assume there exists x, y ∈ K, where

x =

n∑
i=1

αixi, y =

n∑
i=1

βixi

with α,β ∈ Rn. If T (x) = T (y); then,

α = β

=⇒ αi = βi, i = 1, . . . , n

=⇒ x =

n∑
i=1

αixi =

n∑
i=1

βixi = y.

Therefore, T (x) = T (y) =⇒ x = y.

Now, as T is a homeomorphism then T is a closed map and, hence, it maps the closed
set K to the closed set K1. Furthermore, we can sow K1 is convex. For all α,β ∈ K1,
there exists a x, y ∈ K, such that α = T (x) and α = T (y). As K is convex, for λ ∈ [0, 1],

λx+ (1− λ)y ∈ K =⇒ T (λx+ (1− λ)y) ∈ K1.
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As

x =

n∑
i=1

αixi, y =

n∑
i=1

βixi;

then,

λx+ (1− λ)y =

n∑
i=1

(λαi + (1− λ)βi)xi

=⇒ T (λx+ (1− λ)y) = (λαi + (1− λ)βi)
n
i=1

= λα+ (1− λ)β.

Hence, λα+ (1− λ)β ∈ K1 and K1 is convex.

We now have a continuous function g(α) = T ◦ f ◦ T−1(α) (T , T−1, and f are all
continuous) which we can show maps from K1 to K1:

∀α ∈ K1 ∃x ∈ K such that T−1(α) = x,

∀x ∈ K ∃y ∈ K such that f(x) = y,

∀y ∈ K ∃β ∈ K1 such that T (y) = β,

=⇒ ∀α ∈ K1 ∃β ∈ K1 such that g(α) = T ◦ f ◦ T−1(α) = β.

Therefore, for all α ∈ K1, g(α) ∈ K1; i.e., g : K1 → K1.

So, g : K1 → K1 is a continuous functional on a closed, convex, bounded set K1 ⊂ Rn;
hence, by Theorem 3.5 there exists a fixed point α such that

g(α) = α;

hence, there exists a x ∈ K such that

x = T−1(α) =⇒ α = T (x).

Then, as T is bijective we have that

g(α) = α

T ◦ f ◦ T−1(α) = T (x)

T ◦ f(x) = T (x)

f(x) = x.

Therefore, x is a fixed point of f .

2. Let the conditions of Theorem 2.11/Corollary 3.8 be met; i.e., A : X → X ′ monotone,
coercive, and hemicontinuous on a real separable reflexive Banach space X .

(a) Show that if A is strictly monotone that the inverse A−1 exists and is strictly monotone,
demicontinuous, and bounded.

Hint. For demicontinuous, let vn = A−1fn, fn → f . Show sequence {vn} is bounded; hence,
there exists a subsequence vn′ ⇀ v, and show v = A−1f . Then, show holds for whole sequence
(see Proposition 1.8).
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Solution: In the proof we showed that for a strictly monotone operator Au = f
has a unique solution for all f ∈ X ′; i.e., A is injective and surjective (bijective).
This implies that A−1 : X ′ → X exists.
Then, let Au1 = f1, Au2 = f2, with f1 ̸= f2 =⇒ u1 ̸= u2, we have that

⟨f1 − f2, A
−1f1 −A−1f2⟩ = ⟨Au1 −Au2, u1 − u2⟩ > 0;

by the fact that A is strictly monotone; hence A−1 is strictly monotone.
Boundedness of A−1 follows from coercivity!
Let vn = A−1fn, fn → f ; then, {vn} is bounded due to the boundedness of A−1;
hence, exists a subsequence vn′ ⇀ v. Additionally,

⟨f −Aw, v − w⟩ = lim
n→∞

fn′ −Aw, vn′ − w ≥ 0

for all w ∈ X . As A hemicontinuous it follows that Av = f =⇒ v = A−1f .
So vn′ ⇀ A−1f and by Proposition 1.8 A−1fn ⇀ A−1f ; hence demicontinuity is
proven.

(b) If A is uniformly monotone, show that A−1 is continuous.

Solution: As A is uniformly monotone, there exists a a : R → R which is strictly
increasing with a(0) = 0 such that

a(∥u− v∥)∥u− v∥ ≤ ⟨Au−Av, u− v⟩ ≤ ∥Au−Av∥∥u− v∥;

hence,
a(∥u− v∥) ≤ ∥Au−Av∥.

Then, we have with Au = fn, Av = f that

a(∥A−1fn −A−1f∥) ≤ ∥fn − f∥.

Hence, if fn → tof ; then

a(∥A−1fn −A−1f∥) → 0 =⇒ ∥A−1fn −A−1f∥ → 0,

due to properties of a; therefore, A−1fn → A−1f

(c) If A is strongly monotone, show that A−1 is Lipschitz continuous.

Solution: If A is strongly monotone; then, from the above with a(∥u − v∥) =
M∥u− v∥ we have with Au = f1, Av = f2 that

M∥u− v∥ ≤ ∥Au−Av∥ =⇒ ∥A−1f1 −A−1f2∥ ≤ 1

M
∥f1 − f2∥ ∀f1, f2 ∈ X ′.

Hence, A−1 Lipschitz continuous with constant 1/M .

3. Let A : X → X ′ be a bounded operator on a real, separable, reflexive, and infinite-
dimensional Banach space X and f ∈ X ′. Let {v1, v2, . . . } be the basis of X and there
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exists a R > 0 and n0 ∈ N such that for all n ≥ n0

⟨Aun − f, vk⟩ = 0, un ∈ Xn, k = 1, . . . , n, (3.1)

where Xn = span{v1, . . . , vn} has a solution un with ∥un∥ ≤ R.

(a) If A satisfies (M), show that there exists a subsequence {un′} of {un} with un′ ⇀ u
such that u ∈ X is a solution of Au = f .

Hint. Consider the limit as n → ∞ of (3.1) and show the left hand side of (M) is satisfied.

Solution: From the Galerkin approximation we have that ⟨Aun − f, v⟩ → 0 for all
v ∈ span{v1, v2, . . . }. As A is bounded the sequence {Aun} is bounded; therefore,
Aun ⇀ f in X ′. As {un} is bounded in a reflexive Banach space there exists a
subsequence un′ ⇀ u, and from definition of the Galerkin approximation

⟨Aun′ , un′⟩ = ⟨f, un′⟩ → ⟨f, u⟩.

Hence, we have that

un′ ⇀ u, Aun′ ⇀ f, lim sup
n→∞

⟨Aun′ , un′⟩ ≤ ⟨f, u⟩ =⇒ Au = f

by (M).

(b) If A satisfies (S)0 and is demicontinuous, show that there exists a subsequence {un′}
of {un} with un′ → u such that u ∈ X is a solution of Au = f .

Hint. Show left hand side of (S)0 is satisfied.

Solution: In part (a) we found that

un′ ⇀ u, Aun′ ⇀ f, lim
n→∞

⟨Aun′ , un′⟩ = ⟨f, u⟩;

hence, by (S)0, un′ → u. As A is demicontinuous, this implies that Aun′ ⇀ Au;
hence, Au = f .
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