Nonlinear Differential Equations

Practical 5: Monotone Differential Equations

1. For $k \in \mathbb{N}$ and bounded domain $\Omega \subset \mathbb{R}^n$, $n \in \mathbb{N}$, let

$$(\mathcal{A}u)(\boldsymbol{x}) = \sum_{|\alpha| \le k} (-1)^{\alpha} \partial^{\alpha} a_{\alpha}(\boldsymbol{x}, \delta_{k}u(\boldsymbol{x}))$$

with coefficient functions $a_{\alpha} : \Omega \times \mathbb{R}^{\kappa} \to \mathbb{R}$ satisfying the Carathéodory (B1) and growth (B2) conditions from the lecture for each multi-index $\alpha \in \mathbb{N}_0^n$ with $|\alpha| \le k$. Then, we define the nonlinear form $a : W_0^{k,p}(\Omega) \times W_0^{k,p}(\Omega) \to \mathbb{R}$ and operator $A : W_0^{k,p}(\Omega) \to W^{-k,q}(\Omega)$ as

$$\langle Au, v \rangle \coloneqq a(u, v) \coloneqq \int_{\Omega} \sum_{|\alpha| \le k} a_{\alpha}(\boldsymbol{x}, \delta_{k}u(\boldsymbol{x})) \partial^{\alpha}v \, \mathrm{d}\boldsymbol{x}.$$

(a) Show that the Nemyckii operators

$$\mathcal{N}_{\alpha}: W_0^{k,p}(\Omega) \to L^q(\Omega), \qquad (\mathcal{N}_{\alpha}u)(\boldsymbol{x}) \coloneqq a_{\alpha}(\boldsymbol{x}, \delta_k u(\boldsymbol{x})),$$

are bounded and continuous. Additionally, show that there exists a function $g \in L^q(\Omega)$, which is non-negative almost everywhere, for 1/p + 1/q = 1, and positive constant C > 0 such that

$$a(u,v)| \le C \left(\|g\|_{0,q} + \|u\|_{k,p}^{p/q} \right) \|v\|_{k,p} \qquad \forall u,v \in W_0^{k,p}(\Omega).$$

(Lemma 2.14)

- (b) Show that *A* is bounded and demicontinuous (Lemma 2.15).
- (c) Show that A is monotone if, for all $\xi, \eta \in \mathbb{R}^{\kappa}$ and almost all $x \in \Omega$,

$$\sum_{|\alpha| \le k} \left(a_{\alpha}(\boldsymbol{x}, \boldsymbol{\xi}) - a_{\alpha}(\boldsymbol{x}, \boldsymbol{\eta}) \right) \left(\boldsymbol{\xi}_{\alpha} - \boldsymbol{\eta}_{\alpha} \right) \ge 0, \tag{1.1}$$

(Lemma 2.16)

(d) A is strictly monotone if equality only holds in (1.1) for

$$\sum_{|\beta| \le k} |\xi_{\beta} - \eta_{\beta}| = 0;$$

(Lemma 2.16).

2. Consider the following boundary value problem problem:

$$\begin{split} -\nabla \cdot (\mu(\boldsymbol{x}, \nabla u) \nabla u) + b(\boldsymbol{x}, u) &= f(\boldsymbol{x}) & \text{ in } \Omega \subset \mathbb{R}^2 \\ u &= 0 & \text{ on } \partial \Omega \end{split}$$

where Ω has Lipschitz boundary, $u : \Omega \to \mathbb{R}$ is the unknown function, and $f \in L^2(\Omega)$.

(a) Define, for this problem,

- i. the coefficient functions $a_{\alpha}(\boldsymbol{x}, \xi)$, $\xi \in \mathbb{R}^{\kappa}$, for all multi-indices α , where $|\alpha| \leq 1$, and
- ii. the weak formulation and definition of the weak solution of the boundary value problem.
- (b) Derive conditions for μ and b such that Theorem 2.19 holds; i.e., state conditions such that
 - i. *A* is monotone,
 - ii. *A* is strictly monotone,
 - iii. *A* is coercive, and
 - iv. a_{α} satisfies the growth condition (B2).
- 3. Define the weak formulation, and show that there exists a weak solution, for the following boundary value problem in the bounded Lipschitz domain $\Omega \in \mathbb{R}^n$, $n \in \mathbb{N}$: For $2 \le p < \infty$, $f \in L^q(\Omega)$, $\frac{1}{p} + \frac{1}{q} = 1$, and $t \ge 0$, $t \in \mathbb{R}$

$$-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(\left| \frac{\partial u}{\partial x_{i}} \right|^{p-2} \frac{\partial u}{\partial x_{i}} \right) + tu = f, \qquad \text{in } \Omega,$$
$$u = 0, \qquad \text{on } \partial \Omega.$$

Additionally, state if the weak solution is unique.