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Nonlinear Differential Equations
Practical 3: Banach & Sobolev Spaces

1. Prove the generalised Hölder’s inequality: For m ∈ N, m ≥ 2, let there exists functions fi,
i = 1, . . . ,m and 0 ≤ p1, . . . , pm ≤ ∞; then,

∥f1 · · · fm∥0,r ≤ ∥f1∥0,p1 · · · ∥fm∥0,pm for
1

r
=

m∑
i=1

1

pi
.

Hint. Use the standard Hölder’s inequality (Lemma 1.12) and induction.

Solution: For r = ∞ then p1 = · · · = pm = ∞ and

∥f1 · · · fm∥0,∞ ≤ ∥f1∥0,∞ · · · ∥f1∥0,∞

follows trivially from properties of the essential supremum.

For 1 ≤ r <∞ we proceed by induction on m.

Base case: We first consider m = 2: We have that 1/r = 1/p1 + 1/p2; hence, r/p1 + r/p2 = 1
and 1 ≤ p1/r + p1/q ≤ ∞. Therefore, from Lemma 1.12,

∥f1f2∥0,r = ∥|f1|r|f2|r∥
1/r
0,1 ≤ ∥|f1|r∥

1/r
0,p1/r

∥|f2|r∥
1/r
0,p2/r

= ∥f1∥0,p1∥f2∥0,p2 . (1.1)

Induction step: We now assume that the theorem holds for all m ≤ k and show it
holds for k + 1. Setting 1/p =

∑k
i=1

1/pi = 1/r − 1/pk+1 we have that 1/r = 1/p + 1/pk+1,
with 1 ≤ p, q ≤ 1; hence, by (1.1)

∥f1 · · · fkfk+1∥0,r ≤ ∥f1 · · · fk∥0,p∥fk+1∥0,pk+1
. (1.2)

If p <∞ we can apply the induction hypothesis to get that

∥f1 · · · fk∥0,p ≤ ∥f1∥0,p1 · · · ∥fk∥0,pk (1.3)

as 1/p =
∑k

i=1
1/pi; or trivially for p = ∞. Combining (1.2) and (1.3) completes the

proof.

2. Let Ω ⊂ R2 be a measurable domain with Lipschitz boundary and α ∈ Nn0 be a multi-index;
then, prove that the seminorm

|v|1,2,Ω =

∑
|α|=1

∥∂αv∥20,2,Ω

1/2

is a norm on the space H1
0 (Ω).
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Solution: As | · |1,2,Ω is a seminorm the only property of a norm we need to show is
that

|v|1,2,Ω = 0 ⇐⇒ v = 0.

We first note we can re-write the seminorm as

|v|1,2,Ω =

(
n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2
0,2,Ω

)1/2

⇐= If v = 0 then ∂v/∂xi = 0, i = 1, . . . , n; hence,∥∥∥∥ ∂v∂xi
∥∥∥∥
0,2,Ω

= 0, i = 1, . . . , n =⇒ |v|1,2,Ω = 0.

=⇒ If |v|1,2,Ω = 0 then

n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2
0,2,Ω

= 0 =⇒
∥∥∥∥ ∂v∂xi

∥∥∥∥
0,2,Ω

= 0, i = 1, . . . , n.

By the fact that ∥·∥0,2,Ω is a norm, we have that

∂v

∂xi
= 0, i = 1, . . . , n =⇒ v = c

were c ∈ R is a constant. Additionally, as v ∈ H1
0 (Ω) then v = 0 on the boundary

∂Ω. It can then be shown that this is only valid for v = c = 0.

3. Let F : C2([0, L]) → C([0, L]) be defined by

F (φ) =
d2φ

ds2
+ λ sinφ

for fixed λ ∈ R; cf. Example 1.1. Derive the Fréchet derivative in φ and Gâteaux derivative
in φ in the direction ψ of F .

Hint. Consider F (φ+ψ)−F (φ) and F (φ+ tψ)−F (φ), respectively, for φ,ψ ∈ C2([0, L]) with
small ∥φ∥2,∞ and ∥ψ∥2,∞.

Solution: We start with the Fréchet derivative.

F (φ+ ψ)− F (φ) =
d2(φ+ ψ)

ds2
− d2φ

ds2
+ λ(sin(φ+ ψ)− sinφ).

By Taylor’s expansion of sin around φ:

sin(φ+ ψ) = sin(φ) + cos(φ)(φ+ ψ − φ) + o(ψ)

Therefore,

F (φ+ ψ)− F (φ) =
d2ψ

ds2
+ λ cos(φ)ψ + o(ψ) = F ′

F (φ)ψ
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where F ′
F (φ) ∈ L(C2([0, L]), C([0, L])) defined as

F ′
F (φ) : ψ 7→ d2ψ

ds2
+ λ cos(φ)ψ

is the Fréchet derivative.

Similarly, we have that

F (φ+ tψ)− F (φ) =
d2(φ+ tψ)

ds2
− d2φ

ds2
+ λ(sin(φ+ tψ)− sinφ)

= t
d2ψ

ds2
+ tλ cos(φ)ψ + o(tψ)

= tF ′
G(φ,ψ) + oψ(t)

where oψ(t) = o(t) is dependent on ψ and F ′
F (φ) ∈ C([0, L]) defined as

F ′
G(φ,ψ) =

d2ψ

ds2
+ λ cos(φ)ψ

is the Gâteaux derivative in φ in the direction ψ

4. Let Ω ⊂ Rn be a measurable domain with Lipschitz boundary and X = H1
0 (Ω); then,

define F : X → X ′ be defined such that for u, v ∈ X

⟨F (u), v⟩ =
∫
Ω
µ(|∇u|)∇u · ∇v dx,

where µ(t) ∈ C([0,∞)) is the Carreau law defined by

µ(t) := µinf + (µ0 − µinf)
(
1 + (λt)2

)n−1
2

for constants µinf , µ0, n, λ ∈ R. Compute

⟨F ′
G(u,w), v⟩

where F ′
G(u,w) is the Gâteaux derivative of F in u in the direction w.

Hint. Use
⟨F ′

G(u,w), v⟩ = lim
t→0

⟨F (u+ tw)− F (u), v⟩
t

.

Solution: Note that above definition of µ is potentially problematic - we proceed as if we can
make some assumptions on µ and ignore its actual definition.

⟨F ′
G(u,w), v⟩ = lim

t→0

⟨F (u+ tw)− F (u), v⟩
t

= lim
t→0

1

t

(∫
Ω
µ(|∇u+ t∇w|)∇(u+ tw) · ∇v dx−

∫
Ω
µ(|∇u|)∇u · ∇v dx

)
= lim

t→0

1

t

∫
Ω
(µ(|∇u+ t∇w|)− µ(|∇u|))∇u · ∇v dx

+ lim
t→0

∫
Ω
µ(|∇u+ t∇w|)∇w · ∇v dx
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⟨F ′
G(u,w), v⟩ =

∫
Ω
lim
t→0

µ(|∇u+ t∇w|)− µ(|∇u|)
t

∇u · ∇v dx+

∫
Ω
µ(|∇u|)∇w · ∇v dx

=

∫
Ω

(
d

dt
µ(|∇u+ t∇w|)

∣∣∣∣
t=0

)
∇u · ∇v dx+

∫
Ω
µ(|∇u|)∇w · ∇v dx

Then, assuming that the derivative of µ(t), with respect to the argument, exists and is
defined by µ′(t); then,

d

dt
µ(|∇u+ t∇w|)

= µ′(|∇u+ t∇w|) d
dt

(
n∑
i=1

(
∂

∂xi
(u+ tw)

)2
)1/2

= µ′(|∇u+ t∇w|)1
2

(
n∑
i=1

(
∂

∂xi
(u+ tw)

)2
)−1/2 n∑

i=1

d

dt

(
∂

∂xi
(u+ tw)

)2

= µ′(|∇u+ t∇w|)

(
n∑
i=1

(
∂

∂xi
(u+ tw)

)2
)−1/2 n∑

i=1

(
∂

∂xi
(u+ tw)

)
∂w

∂xi
.

Hence,
d

dt
µ(|∇u+ t∇w|)

∣∣∣∣
t=0

= µ′(|∇u|)|∇u|−1 (∇u · ∇w) .

Combining the above results we get that

⟨F ′
G(u,w), v⟩ =

∫
Ω
µ′(|∇u|)|∇u|−1 (∇u · ∇w)∇u · ∇v dx+

∫
Ω
µ(|∇u|)∇w · ∇v dx.
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