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CHAPTER 1

Introduction

We initially look at a brief motivation behind studying nonlinear differential equations as
well as some basic results from functional analysis and analysis of partial differential equa-
tions.

1.1 Motivation
The studying of the analysis and numerical solution of nonlinear differential equations is
important as nonlinear equations appear in modelling of even fairly trivial problems. The
following example from Böhmer (2010), which models a fairly simple problem, illustrates
the importance of nonlinear differential equations.

Example 1.1 (Bending rod with perpendicular load (Böhmer, 2010, Example 1.1)). Consider
a vertical rod of length L which is clamped at the bottom and free to move at the top, with
a load P applied perpendicular at the free end; see Figure 1.1(a). For a small P the displace-
ment, x, of the end of the rod is proportional to P ; i.e., it exhibits a linear relationship

x = cP, (1.1)

where c is some constant depending on the material properties of the rod. However, a simple
experiment with a vertical rod will demonstrate that the displacement behaves non-linearly
with respect to P for large P , and may even break under certain loads. As such, it is neces-
sary to derive a nonlinear model to incorporate these effects. We can argue that the (local)
strain energy of the rod U at a point with arc length s from the bottom of the rod can be
obtained analogously to the kinetic energy of a moving body, see Böhmer (2010, Example

P = 0

(a) Initial state (P = 0)

s

P > 0

φ(s)

(b) Bending under load (P > 0)

Figure 1.1: Bending rod with perpendicular load
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NONLINEAR DIFFERENTIAL EQUATIONS

1.1); i.e.,

U(s) =
α

2

(
d2φ

ds2
(s)

)2

,

where φ(s) is the angle between the vertical and the tangent to the point s, see Figure 1.1(b),
and α is the bending stiffness of the material. We can then calculate the total energy of the
deformed rod UB by simply integrating over the length of the rod L:

UB =
α

2

∫ L

0

(
d2φ

ds2

)2

ds, φ ∈ C1([0, L]). (1.2)

Additionally, the potential energy due to moving the top of the rod is given by −Px(L),
where x(s) is the displacement at s. By simple trigonometry

dx

ds
= sinφ(s),

and, hence, with the fact that x(0) = 0 we have that

x(L) =

∫ L

0
sinφ(s) ds. (1.3)

We can compute the total potential energy as simply the sum of (1.2) and (1.3)

V (ϕ) =
α

2

∫ L

0

(
d2φ

ds2

)2

ds− P
∫ L

0
sinφ(s) ds. (1.4)

One of the fundamental principals of mechanics states that an equilibrium of a system is
characterised by a minimum of its potential; i.e., for every small ψ

V (φ+ ψ) ≥ V (φ).

We claim the minimum (1.4) is characterised by the nonlinear boundary value problem

d2φ

ds2
+ λ cosφ = 0, λ :=

P

α
(1.5)

with boundary conditions

φ(0) =
dφ

ds
(L) = 0. (1.6)

See Böhmer (2010, Example 1.1) for a demonstration that the solution of the boundary value
problem (1.5)–(1.6) is equivalent to the minimisation of V in (1.4). We can show for small
φ that the linear and nonlinear models are related. We note that for small angles φ that
sinφ ≈ ϕ and cosφ ≈ 1; therefore,

d2φ

ds2
+ λ cosφ ≈ d2φ

ds2
+ λ = 0 =⇒ φ ≈ −λs

2

2
+ µs+ ν

where µ and ν are constants. From the boundary conditions (1.6) we can find that ν = 0 and
µ = Lλ. Then,

x(L) =

∫ L

0
sinφds ≈

∫ L

0
φds = λ

(
−s

3

6
+ L

s2

2

)∣∣∣∣L
0

= P
L3

3α
;

hence, setting c = L3/3α recovers the linear model equation (1.1).
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INTRODUCTION

1.2 Nonlinear (partial) differential equations
We now consider a general initial definition, and classification, of nonlinear differential
equations. To this end, we first define some necessary notation.

We denote by Ω ⊂ Rn a bounded measurable domain with Lipschitz continuous bound-
ary. Let n ∈ N and define a multi-index α = (α1, . . . , αn) ∈ Nn

0 with length

|α| =
n∑

j=1

αj .

It is possible to show that for k ∈ N0 there exists

κ =
(n+ k)!

n!k!
(1.7)

multi-indices of length |α| ≤ k. Then, for a function u(x) : Ω→ R, we define

∂αu :=
∂|α|

∂xα1
1 . . . ∂xαn

n
, (1.8)

δku := (∂αu)|α|≤k =

(
u,

∂u

∂x1
, . . . ,

∂u

∂xn
,
∂2u

∂x21
,

∂2u

∂x1∂x2
, . . . ,

∂kn

∂xkn

)
, (1.9)

δ̂ku := (∂αu)|α|=k =

(
∂ku

∂xk1
, . . . ,

∂ku

∂xkn

)
. (1.10)

Note, that for simplicity we assume that order of differentiation does not matter for mixed
derivatives; e.g., ∂2u

∂x1∂x2
≡ ∂2u

∂x2∂x1
. Therefore, we only include the mixed derivative once in

δku and δ̂ku. Note that in general we consider so called weak derivatives, see Section 1.4.

Definition 1.1. We can write a general nonlinear differential equation of order k ∈ N as

F (x, δku(x)) = 0, for x ∈ Ω, (1.11)

where F : Ω× Rκ → R is a function defined over Ω.

We can now classify differential equations in multiple ways according to the type of non-
linearity of the differential equation.

Definition 1.2. A differential equation of order k is said to be

• linear if it is linear in the unknown function u and all its derivatives or order less than
or equal to k with coefficients depending only on the independent variables (x ∈ Ω),

• semilinear if it is linear in derivatives of order k with coefficients dependent on inde-
pendent variables only but nonlinear in other terms,

• quasilinear if it is linear in derivatives of order k with coefficients depending on inde-
pendent variables and derivatives of order less than k, or

• (fully) nonlinear if it is nonlinear in derivatives of order k or has coefficients depending
on independent variables and derivatives of order k.

3



NONLINEAR DIFFERENTIAL EQUATIONS

In this course we focus mainly on semilinear and quasilinear differential equations.

Definition 1.3 (Divergence form). We can write linear, semilinear, and quasilinear differential
equations of order 2k in divergence form∑

|α|≤k

(−1)|α|∂αaα(x, δku(x)) = f(x), for x ∈ Ω (1.12)

where k ∈ N, α is an n-dimensional multi-index, aα = aα(x, ξ), |α| ≤ k is a function of n+ κ
variables over x ∈ Ω and ξ ∈ Rκ, and f is a function defined over Ω.

Remark. In general we focus in this course on differential equations of a single real-valued
unknown function u : Ω → R; however, the above definitions can be extended to systems
of differential equations (i.e., u(x) = (u1(x), . . . , um(x)), m ∈ N) and/or complex valued
functions.

Suppose all coefficients aα in (1.12) have continuous derivatives of order |α|, i.e., aα ∈
C |α|(Ω×Rκ), and f ∈ C0(Ω). Then, u(x) over Ω is the classical solution of (1.12) if u ∈ C2k(Ω)
satisfies (1.12).

For second and fourth order partial differential equations we define some common no-
tations. Consider a scalar valued function u : Ω → R, a vector-valued function v : Ω → Rn,
and a matrix-valued function σ : Ω→ Rn×n. Then, we define the following operators:

• gradient operator:

∇u :=


∂u

∂x1
...
∂u

∂xn

 ∇v :=


∂v1
∂x1

. . .
∂v1
∂xn

...
. . .

...
∂vn
∂x1

. . .
∂vn
∂xn


• divergence operator:

∇ · v :=
n∑

i=1

∂vi
∂xi

∇ · σ :=



n∑
i=1

∂σ1i
∂xi
...

n∑
i=1

∂σni
∂xi


• Laplacian operator: ∆ψ ≡ ∇ · (∇ψ) for a function ψ

• biharmonic operator: ∆2ψ ≡ ∆(∆ψ) for a function ψ

• Hessian operator: ∇2u ≡ ∇(∇u)

Exercise 1.1. Classify the following differential equations as linear, semilinear, quasilinear, or
fully nonlinear, and justify why.

4



INTRODUCTION

1. Poisson equation: For an unknown function u : Ω→ R and known function f : Ω→ R

−∇u = f ∈ Ω

with suitable boundary conditions.

2. Chladny sound figures: Assume a thin flexible square plate fixed at its centre, and uni-
formly distribute tiny particles (e.g., sand) on the plate. Above the plate a sound
wave source, with variable frequency λ is fixed. Pressure from the sound waves in-
duces a load on the plates surfaces, and in the case of resonance vibration of the plate
with unmoved nodal lines is induced. The sand collects along these nodal lines. Let
Ω = [O,L]2 be the plate and u(x) : Ω → R be the maximal derivation of vibration of
the plate from the fixed horizontal position at each point; then, u satisfies the following
(strongly simplified) model, cf. (Böhmer, 2010, Example 1.4):

∇u+ λ sinu = 0 in Ω,

∂u

∂n
= 0 on ∂Ω.

3. von Kármán equations: Consider a plate P under compression (Ω ⊂ R2). It is defined
by the Airy stress function w(x) : Ω → R of P at x and the derivation or deflection
u(x) : Ω → R of the plate P from the trivial horizontal state. This can be modelled by
the von Kármán equations

D∆2u− [u,w] = f,

∆2w +
1

2
[u, u] = 0,

where D is a constant, f : Ω→ R is a known function, and

[u, v] :=
∂2u

∂x21

∂2v

∂x22
− 2

∂2u

∂x1∂x2

∂2v

∂x1∂x2
+
∂2u

∂x22

∂2v

∂x21
.

Note, that this is a system of two equations with two unknown functions.

4. Non-Newtonian fluid: Non-Newtonian fluids do not follow Newton’s law of viscosity;
i.e., they have variable viscosity dependent on stress. In particular, the viscosity of
non-Newtonian fluids can change when subject to force; e.g. ketchup becomes runnier
when shaken, a suspension of corn starch in water (liquid in normal state) thickens
under force such as from low frequency sound waves. One, simple, steady-state model
is given by the system

−∇ · {µ(x, |e(u)|)e(u)}+∇p = f

∇ · u = 0,

where f : Rn → Rn is a known function, µ : Ω × R → R is a known (potentially
nonlinear) function, u : Ω → Rn is the unknown velocity vector of the fluid, p : Ω → R
is the unknown pressure of the fluid, e(u) is the symmetric strain tensor defined by

eij(u) :=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, . . . , n,

and | · | denotes the Frobenius norm.
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5. (Steady-state) Navier-Stokes: The steady-state version of the Navier-Stokes equations is
given by

−ν∆u+ u · ∇u+∇p = f

∇ · u = 0,

where ν : Rn → R and f : Rn → Rn are known functions, u : Ω→ Rn is the unknown
velocity vector of the fluid, and p : Ω→ R is the unknown pressure of the fluid.

6. Monge-Ampère
det(∇2u)− f(x, u,∇u) = 0,

where u : Ω → R is the unknown function, f : Ω × R × Rn → R is a known function,
and det( · ) is the determinant of the matrix.

1.3 Fundamental results
In order to perform analysis of the proceeding nonlinear differential equations some basic
results are required.

Definition 1.4. Let X and Y be normed linear spaces.

1. A subset K ⊂ X is called (sequentially) compact in X if it is closed and every sequence
{un} ⊂ K has a convergent subsequence in K.

Equivalently: A subset K ∈ X is compact if for every open covering a finite subcover
can be found.

2. A subset K ⊂ X is called precompact (or relatively compact) if its closure is compact in
X .

3. A general nonlinear operator A : X → Y is a compact operator if the image of the
bounded subset K ⊂ D(A) of the domain D(A) of A under A is a precompact subset
of Y ; i.e., A(K) is compact.

Equivalently: A : X → Y is compact onD(A) if for any bounded sequence {un} ⊂ D(A)
the sequence {Aun} contains a convergent subsequence in Y .

Remark. If A : X → Y is compact and linear then it is continuous.

We denote by L(X,Y ) the set of continuous linear operators from X to Y and C0(X,Y )
the set of compact linear operators.

Let X be a normed vector space; then, the set of all linear and continuous functionals on
X form the dual space X ′, where for ℓ ∈ X ′

ℓ : x 7→ ⟨ℓ, x⟩ := ℓ(x).

The dual space is continuous and we define the space of all continuous linear functions over
X ′ as the normed bidual space as X ′′ = (X ′)′. We note that

⟨ · , x⟩ ∈ X ′′ for every x ∈ X;

i.e., it is possible to identify X with a subset of X ′′, and in some cases with X ′′ itself.

6
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The norm for the dual space X ′ is defined as

∥ℓ∥X′ := sup
x∈X,∥x∥X ̸=0

|⟨ℓ, x⟩|
∥x∥X

where ∥ · ∥X is the norm on X . Additionally, we note that

∥ℓ∥X′ ≥ |⟨ℓ, x⟩|
∥x∥X

∀ℓ ∈ X ′, v ∈ X =⇒ |⟨ℓ, x⟩| ≤ ∥ℓ∥X′∥v∥X ∀ℓ ∈ X ′, v ∈ X

(1.13)
as the case when ∥v∥ = 0 follows trivially.

Definition 1.5. The Banach space X is called reflexive if the canonical map J : X → X ′′

defined by
⟨Jx, ℓ⟩ = ⟨l, x⟩ for all ℓ ∈ X ′, x ∈ X,

is surjective.

Remark. In a reflexive Banach space the canonical map J is linear, isomorphic, and an iso-
metric isomorphism. Additionally, we have that

X reflexive =⇒ dual X ′ reflexive
X ′ reflexive and complete =⇒ X reflexive

In a reflexive Banach space X identifies with X ′′; hence, we use the notation X ′′ = X for
a reflexive Banach space X .

Definition 1.6. Let X be a normed linear space; then, the sequence {un} ⊂ X converges
weakly (w-converges) to u ∈ X if for every ℓ ∈ X ′ it holds that ⟨ℓ, un⟩ → ⟨ℓ, u⟩. We denote
weak convergence as un ⇀ u. The sequence {ℓn} ⊂ X ′ w∗-converges to ℓ ∈ X ′ if for every

x ∈ X it holds that ⟨ℓn, x⟩ → ⟨l, x⟩. We denote this as ℓn
w⋆

−−⇀ ℓ. If X is reflexive then w- and
w∗-convergence coincide, and hence we use ℓn ⇀ ℓ for w∗-convergence.

Using the concept of weak convergence we can also talk about weakly closed and weakly
compact sets analogously to closed and compact sets using weak convergence rather than
strong convergence.

Theorem 1.7. Compact linear operators have the following properties:

1. LetX , Y , and Z be Banach spaces, L1 ∈ L(X,Y ), and L2 ∈ L(Y,Z); then, L2 ◦L1 is compact
if either L1 or L2 is compact.

2. A compact L1 ∈ L(X,Y ) maps every weakly convergent sequence into a strongly convergent
sequence.

Proposition 1.8. Let X be a Banach space.

1. The sequence {un} ⊂ X converges weakly to the point u ∈ X if the sequence {un} is bounded
and limn→∞⟨ℓ, un⟩ = ⟨ℓ, u⟩ for each continuous linear functional ℓ of some dense subset M of
X ′.

7
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2. If the sequence {un} weakly converges to u; then,

∥u∥ ≤ lim inf
n→∞

∥un∥.

3. A convex, closed subset K ⊂ X is weakly closed; i.e.,

{un} ⊂ K,un ⇀ u =⇒ u ∈ K

4. In a reflexive Banach space every closed ball is weakly compact; i.e., each sequence of ele-
ments from this ball contains a weakly convergent subsequence with a limit in this ball (Every
bounded sequence contains a weakly convergent subsequence).

5. Let {un} be a bounded sequence in a reflexive Banach space X and let all weakly convergent
subsequences have u as their (weak) limit; then, the whole sequence converges to u.

6. Let K be a convex, bounded, and closed subset in a reflexive Banach space X ; then, this set is
weakly compact.

7. Let K be a non-empty, closed, and convex set in a Hilbert space H with norm ∥ · ∥ and ( · , · ).
Then, for every x ∈ H there exists a u ∈ K such that

∥x− u∥ = min
v∈K
∥x− v∥.

This element can be characterised as

u ∈ K, (x− u, v − u) ≤ 0, for all v ∈ K.

If K is a closed linear subspace of H then u can be characterised by

u ∈ K, (x− u, v − u) = 0, for all v ∈ K.

8. Let K be a convex closed subset of X . Then, for every x ̸∈ K there exists a functional ℓ ∈ X ′

such that
⟨ℓ, x⟩ > sup

y∈K
⟨ℓ, y⟩.

9. Uniform boundedness principal: Let G ⊂ L(X,Y ) where Y is a normed linear space; then,
the following are equivalent:

(a) sup{∥A∥ : A ∈ G} < +∞,

(b) sup{∥Ax∥ : A ∈ G} < +∞ for every x ∈ X .

For the Banach spaces X and Y , and L ∈ L(X,Y ) the dual operator Ld ∈ L(Y ′, X ′) is
uniquely determined for every ℓ ∈ Y ′, ℓ ∈ Y ′ 7→ Ldℓ ∈ X ′, by

⟨ℓ, Lx⟩Y ′×Y = ⟨Ldℓ, x⟩X′×X for all x ∈ X.

Ld is unique, linear, and continuous. Furthermore, for L,L1 ∈ L(X,Y ), L2 ∈ L(Y, Z), α ∈ C,

∥Ld∥ = ∥L∥, (L2 ◦ L1)
d = Ld

1 ◦ Ld
2, (αL)d = αLd,

and for reflexive Banach spaces Ldd = L.

8



INTRODUCTION

Remark. In general we drop the subscript on ⟨ · , · ⟩ unless we need to emphasise the differ-
ence.

Lemma 1.9. An operator L ∈ L(X,Y ) is compact if and only if the dual operator Ld ∈ L(Y ′, X ′)
is compact.

In the following we consider X as a Hilbert space and denote the dual as X∗ = X ′.

Theorem 1.10 (Riesz representation theorem). Let X be a Hilbert space and ℓ ∈ X ′ = X∗; then,
there exists a unique xℓ ∈ X such that

⟨ℓ, x⟩ = ℓ(x) = (x, xℓ), for all x ∈ X

and
∥xℓ∥X = ∥ℓ∥X′

where ( · , · ) denotes the inner product in the Hilbert space.

Corollary 1.11 (Riesz-isomorphism). There exists a unique (Riesz-)isomorphism JX ∈ L(X,X∗)
such that

JXxℓ = ℓ, J−1
X ℓ = xℓ, ∥Jx∥ = ∥J−1

x ∥ = 1.

Additionally, X∗ = X ′ is a Hilbert space with inner product and norm

(x′, y′)X∗ = (J−1
X x′, J−1

X y′)X and ∥x′∥X∗ = ∥J−1
X x′∥X ,

respectively, for all x′, y′ ∈ X∗. X and (X∗)∗ = X ′′ can be identified by xℓ = J−1
X ℓ.

For two Hilbert spacesX and Y with inner products ( · , · )X and ( · , · )Y , respectively, let
L ∈ L(X,Y ); then, we can define the adjoint operator L∗ ∈ L(Y,X) for each y ∈ Y such that

(y, Lx)Y = (L∗y, x)X for all x ∈ X.

The dual and adjoint operators are related:

L∗ = (JX)−1LdJY ∈ L(Y,X).

Only if X and Y are identified with X ′ and Y ′, respectively, do we get that L∗ ≡ Ld. Addi-
tionally, L ∈ L(X,X) is a self-adjoint operator if L = L∗ and an orthogonal operator if L = L2

and L = L∗.

1.4 Sobolev spaces
Given a measurable domain D ⊂ Rn, n ∈ N, we define for 1 ≤ p ≤ ∞ the standard Lebesgue
spaces

Lp(D) = {v : D → R : ∥v∥0,p,D <∞},

where

∥v∥0,p,D :=

(∫
D
|v(x)|p dx

)1/p

, 1 ≤ p <∞, (1.14)

∥v∥0,∞,D := ess sup
x∈D

|v(x)|. (1.15)

9
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For p = 2 we additionally have the inner product

(u, v)D :=

∫
D
uv dx

and we often drop the p from the norm subscript; i.e., ∥ · ∥0,D ≡ ∥ · ∥0,2,D. When D = Ω we
omit the domain from the subscript of the norm and inner product; i.e., ∥v∥0,p, ∥v∥0,∞, and
(u, v).

Lemma 1.12 (Hölder’s Inequality). Let 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1; then,

∥fg∥0,1,D ≤ ∥f∥0,p,D∥g∥0,q,D

for all f ∈ Lp(D) and g ∈ Lq(D).

We useCk(D) to denote the usual space of k-times differentiable functions, andC∞
0 (D) =

{v ∈ C∞(D) : supp v ⊂ D} to denote the space of infinitely smooth functions with compact
support in D. The definition of the partial derivatives in ∂αu from Section 1.2 are well-
defined for functions u ∈ C∞

0 (D)
Additionally, we consider Ck,1(D) and Ck,µ(D) to denote the space of k-times differen-

tiable functions u where all derivatives ∂αu of order |α| ≤ k are Lipschitz continuous or Hölder
continuous with constant 0 < µ < 1, respectively; i.e.,

|∂αu(x)− ∂αu(y)| ≤ L|x− y|, for u ∈ Ck,1(D),
|∂αu(x)− ∂αu(y)| ≤ CH |x− y|µ, for u ∈ Ck,µ(D),

for all x,y ∈ D, with constants L > 0 and CH > 0.
For Sobolev spaces it is necessary to generalise the concept of derivation to weak deriva-

tives.

Definition 1.13. For a function u ∈ Lp(D), 1 ≤ p ≤ ∞, we call a function v ∈ Lp(D) the α
weak derivative of u if and only if

(w, v)D = (−1)|α|(∂αw, u)D for all w ∈ C∞
0 (D).

In general we use the notation ∂αu to denote this weak derivative.

We can then define the Sobolev space W k,p(D), k ∈ N0, 1 ≤ p ≤ ∞, as the set of all
functions in Lp(D) with weak derivatives up to order k:

W k,p(D) := {u ∈ Lp(D) : ∂αu ∈ Lp(D) ∀α ∈ Nn
0 , |α| ≤ k}.

A Sobolev space W k,p(D), k ∈ N0, 1 ≤ p ≤ ∞ is a Banach space with norm

∥u∥k,p,D :=

∑
|α|≤k

∥∂αu∥p0,p,D

1/p

(1.16)

and seminorm

|u|k,p,D :=

∑
|α|=k

∥∂αu∥p0,p,D

1/p

. (1.17)

10
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In the special case when p = 2 we define the space Hk(D) ≡ W k,2(D) which is a Hilbert
space with inner product

(u, v)k,D :=
∑
|α|≤k

(∂αu, ∂αv)D

and again drop the p from the subscript of the norms and seminorms; i.e., ∥ · ∥k,D ≡ ∥ · ∥k,2,D
and | · |k,D ≡ | · |k,2,D. Additionally, when D = Ω we omit the domain from the subscript of
the norms, seminorms, and inner products.

We define the spaces W k,p
0 (D) and Hk

0 (D) as the closure of C∞
0 (D) with respect to the

norms ∥ · ∥k,p,D and ∥ · ∥k,D, respectively; i.e.

W k,p
0 (D) := C∞

0 (D)∥ · ∥k,p,D , Hk
0 (D) := C∞

0 (D)∥ · ∥k,D .

For a bounded domain D the seminorm | · |k,p,D is a norm for the space W k,p
0 (D) and is

equivalent to the norm ∥ · ∥k,p,D on W k,p
0 (D). In particular, for the Poincaré constant CP (D),

|u|k,p,D ≤ ∥u∥k,p,D ≤ CP |u|k,p,D, for all u ∈W k,p
0 (D).

A similar result holds for Hk
0 (D) when p = 2.

Remark. Note that Lp(D) ≡W 0,p(D).
For W k,p

0 (D) we define the dual space as W−k,q(D) ≡ (W k,p
0 (D))′, where 1/p + 1/q = 1,

and define the norm as

∥u∥−k,q,D := sup
v∈Wk,p

0 (D)normv ̸=0

⟨u, v⟩
∥v∥k,p,D

.

For p = 2 we define H−k(D) ≡ (Hk(D))′.
For normed vector spaces X ⊂ Y we define the inclusion or embedding

ι : X → Y, x 7→ x.

We denote this embedding as X ↪→ Y . If the mapping is continuous we say that X is
continuous embedded into Y and there exists a positive constant C > 0 such that

∥x∥Y ≤ C∥x∥X , for all x ∈ X.

Additionally, if the mapping is also compact (ι ∈ C0(X,Y )) then we say X is compactly em-
bedded into Y and each bounded sequence {xn} in X has a convergent subsequence in Y .

Theorem 1.14 (Sobolev embeddings). Let Ω ⊂ Rn be a bounded Lipschitz domain, j ∈ N0, k ∈ N,
0 ≤ j ≤ k, 1 ≤ p, q <∞, 0 < µ < 1 and define

d :=
1

p
− k − j

n
.

Then, the following embeddings hold.

1. If d ≤ 1/q and j ≤ k then
W k,p(Ω) ↪→W j,q(Ω)

is continuous. If d < 1/q and j < k then this embedding is compact.

11
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2. If d < 0 then
W k,p(Ω) ↪→ Cj(Ω)

is compact. Additionally, for d+ α/n < 0 or d < 0

W k,p(Ω) ↪→ Cj,µ(Ω) ↪→ Cj(Ω).

3. If d < 0 then
W k,p(Rn) ↪→ Cj(Rn)

is continuous, and if d ≤ 1/q and j < k then

W k,p(Rn) ↪→W j,q(Rn)

is continuous.

4. For 0 ≤ p ≤ ∞ the embeddings

C0,µ(Ω) ↪→ Lp(Ω) and C0,1(Ω) ↪→ Lp(Ω)

are continuous.

5. If j < k the embeddings

Ck,µ(Ω) ↪→ Ck(Ω) ↪→ Cj(Ω) and Ck,1(Ω) ↪→ Ck(Ω) ↪→ Cj(Ω)

are compact.

Corollary 1.15. Let Ω ⊂ Rn be a bounded Lipschitz domain, k ∈ N, and 1 ≤ p, q < ∞. Then, the
following embeddings are all continuous:

1. If kp < n and 1 ≤ q ≤ np/(n−kp), then

W k,p(Ω) ↪→ Lq(Ω).

2. If kp = n and 1 ≤ q <∞, then
W k,p(Ω) ↪→ Lq(Ω).

3. If kp > n, then
W k,p(Ω) ↪→ C0(Ω).

4. If 0 ≤ k and 1 ≤ p ≤ q ≤ ∞, then

W k,p(Ω) ↪→W k,q(Ω).

Theorem 1.16 (Sobolev-Stein extension theorem). Let Ω ⊂ Rn have Lipschitz boundary, let
k ∈ N0 and 1 ≤ p ≤ ∞. Then, there exists a bounded operator E : W k,p(Ω) → W k,p(Rn) and a
constant C > 0, independent of v such that Ev|Ω = v and

∥Ev∥k,p,Rn ≤ C∥v∥k,p,Ω for all v ∈W k,p(Ω).

12
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1.5 Derivatives in Banach spaces
On Banach spaces we define two types of differentiation.

Definition 1.17. Let X and Y be Banach spaces, F : D ⊂ X → Y , and U := U(x0) ⊂ D be an
open neighbourhood of x0 ∈ U .

1. F is called Fréchet differentiable in x0 if there exists a LF ∈ L(X,Y ), depending on x0
but not h, such that

F (x0 + h)− F (x0) = LFh+ o(h), for h→ 0, x0 + h ∈ U . (1.18)

Additionally, F ′
F (x0) := F ′(x0) := LF is called the Fréchet derivative of F in x0.

2. F is called Gâteaux differentiable in x0 if for every h, such that ∥h∥ = 1, there exists a
F ′
G(x0, h) ∈ Y such that

F (x0 + th)− F (x0) = tF ′
G(x0, h) + o(t), for t→ 0, x0 + th ∈ U ; (1.19)

where o(t) depends on h. If (1.19) is valid only for fixed h then F is called Gâteaux dif-
ferentiable in x0 in the direction h. Furthermore, F ′

G(x0, h) is called the Gâteaux derivative
of F in x0 in the direction of h.

As a consequence of (1.19) we have that

F ′
G(x0, h) = lim

t→0

F (x0 + th)− F (x0)
t

=
d

dt
F (x0 + th)

∣∣∣∣
t=0

. (1.20)

In some cases there exists a LG ∈ L(X,Y ) such that for all ∥h∥ = 1 L′
G(x0, h) = LG.

Theorem 1.18. The following properties and relationships hold for the Fréchet and Gâteaux deriva-
tives.

1. The Fréchet and Gâteaux derivatives are uniquely determined.

2. If F is Fréchet differentiable in x0 ∈ U(x0) ⊂ D it is continuous in x0, Gâteaux differentiable,
and F ′

G(x0, h) = LFh.

3. Let F be Gâteaux differentiable in x0 and LG = LG(x0) = F ′
G(x0, h) ∈ L(X,Y ) exist such

that

F (x0 + th)− F (x0) = tF ′
G(x0)h+ oh(t) and oh(t) = o(t)C(h) with ∥C(h)∥ ≤ C

for ∥h∥ = 1. Then, F is Fréchet differentiable in x0 and for all h with ∥h∥ = 1 we have that
F ′
G(x0, h) = F ′

G(x0)h = LGh = LFh; hence, LF = F ′
G(x0).

4. Let F be Gâteaux differentiable in a neighbourhood U(x0) of x0 and

F (x+ th)− F (x) = tF ′
G(x0)h+ oh(t)

such that LG(x) = F ′
G(x) ∈ L(X,Y ) is continuous with respect to x for all x ∈ U(x0). Then,

F is Fréchet differentiable in U(x0) and LF (x) = LG(x).

13
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Theorem 1.19 (Mean value theorem). Let F : D ⊂ X → Y and a, b ∈ D be given with ab =
{a+ t(b− a) : 0 ≤ t ≤ 1} ⊂ D such that F is Fréchet differentiable on ab and

∥F ′(a+ t(b− a))∥ ≤ g′(t), 0 ≤ t ≤ 1,

where g′ and f ′(t) = F ′(a+t(b−a))(b−a) are integrable on [0, 1]. Then, the following relationships
hold:

F (b)− F (a) =
∫ 1

0
F ′(a+ t(b− a)) dt(b− a), (1.21)

∥F (b)− F (a)∥ ≤ (g(1)− g(0))∥b− a∥, (1.22)
∥F (b)− F (a)∥ ≤ ∥b− a∥ sup

x∈ab
∥F ′(x)∥, (1.23)

∥F (b)− F (a)− F ′(x0)(b− a)∥ ≤ ∥b− a∥ sup
x∈ab
∥F ′(x)− F ′(x0)∥. (1.24)

Remark. Modification to Gâteaux derivatives in the direction b− a follow trivially.

For Cartesian product spaces X =
∏n

i=1Xi and Y =
∏m

j=1 Yj , n,m ∈ N of Banach spaces
Xi, i = 1, . . . , n and Yj , j = 1, . . . ,m, respectively, we can define partial Fréchet and Gâteaux
derivatives by splitting the variables into components. Let

F := (F1(x), . . . , Fm(x)) : D ⊂ X → Y,

with x = (xi, . . . , xn). For Banach spaces Xi, i = 1, . . . , n and Yj , j = 1, . . . ,m, and norms
∥x∥X = maxni=1 {∥xi∥Xi} and ∥y∥Y = maxni=1 {∥yi∥Yi} the respective spaces X and Y are
also Banach spaces.

Definition 1.20. Choose x0 ∈ U(x0) ⊂ D, where U(x0) is a neighbourhood of x0. Assume
there exists an Li ∈ L(Xi, Y ) and L(j)

i ∈ L(Xi, Yj) such that for all small hi ∈ Xi

F (x0 + hi)− F (x0)− Lihi = o(hi),

Fj(x0 + hi)− Fj(x0)− L(j)
i hi = o(hi).

(1.25)

Then, F and its components Fj are called partially (Fréchet) differentiable in x0 with respect to
xi, and ∂F/∂xi(x0) := ∂xiF (x0) := Li and L(j)

i are called its partial derivatives.

Remark. By replacing hi with thi and t→ 0 we obtain partial Gâteaux differentiability.

Remark. For Xi = R, i = 1, . . . , n, Yj = R, j = 1, . . . ,m, and hi = tei, where ei is the i-th unit
vector and small t ∈ R, we recover classical partial derivatives.

14



CHAPTER 2

Monotone Differential Equations

We want to study the existence of weak solutions to nonlinear partial differential equations.
We focus on differential equations where the coefficients can be defined as of monotone type.

2.1 Monotone operators
We first need to define what is meant by a monotone, and continuous, operator. In general,
we consider an operator defined on a reflexive Banach space (or Hilbert space).

Definition 2.1. Let X be a Banach space and A : X → X ′ be a (nonlinear) operator; then, we
call A

monotone if for all u, v ∈ X
⟨Au−Av, u− v⟩ ≥ 0,

strictly monotone if for all u, v ∈ X , where u ̸= v,

⟨Au−Av, u− v⟩ > 0,

uniformly monotone if there exists a continuous and strictly increasing function a : R+ →
R+ with a(0) = 0 and limt→+∞ a(t) = +∞ such that for all u, v ∈ X

⟨Au−Av, u− v⟩ ≥ a(∥u− v∥)∥u− v∥,

strongly monotone if there exists a positive constant M such that for all u, v ∈ X

⟨Au−Av, u− v⟩ ≥M∥u− v∥2,

(nonlinear coercive) if

lim
∥u∥→+∞

⟨Au, u⟩
∥u∥

= +∞,

weakly coercive if
lim

∥u∥→+∞
∥Au∥ = +∞,

Lipschitz continuous if there exists a positive constant L such that for all u, v ∈ X

∥Au−Av∥ ≤ L∥u− v∥,

15
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continuous if for a sequence {un} ⊂ X

un → u ∈ X =⇒ Aun → Au,

hemicontinuous if the function t 7→ ⟨A(u+ tv), w⟩ is continuous on the interval [0, 1] for all
u, v, w ∈ X , or equivalently, if the existence of a sequence {tn} ⊂ R, tn → 0 implies that
A(u+ tnv)⇀ Au for all u, v ∈ X ,

strongly continuous if for a sequence {un} ⊂ X

un ⇀ u ∈ X =⇒ Aun → Au,

weakly continuous if for a sequence {un} ⊂ X

un ⇀ u ∈ X =⇒ Aun ⇀ Au,

demicontinuous if for a sequence {un} ⊂ X

un → u ∈ X =⇒ Aun ⇀ Au,

bounded if A maps bounded sets to bounded sets,

stable if there exists a continuous and strictly increasing function a : R+ → R+ with a(0) = 0
and limt→+∞ a(t) = +∞ such that for all u, v ∈ X

∥Au−Av∥ ≥ a(∥u− v∥).

Lemma 2.2. Let X be a Banach space, and A : X → X ′ be a nonlinear operator; then, the following
hold:

A strongly monotone =⇒ A uniformly monotone
A uniformly monotone =⇒ A strictly monotone
A strictly monotone =⇒ A monotone

A uniformly monotone =⇒ A (nonlinear) coercive
A uniformly monotone =⇒ A stable
A Lipschitz continuous =⇒ A continuous
A strongly continuous =⇒ A continuous
A strongly continuous =⇒ A weakly continuous
A weakly continuous =⇒ A demicontinuous

A continuous =⇒ A demicontinuous
A demicontinuous =⇒ A hemicontinuous

Exercise 2.1. Prove the statements in Lemma 2.2.

Lemma 2.3. Let X be a reflexive Banach space and A : X → X ′ a monotone operator; then,

A hemicontinuous ⇐⇒ A demicontinuous
A linear =⇒ A continuous
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Consider a nonlinear form a( · , · ) : X ×X → R, which is nonlinear in the first argument
and linear in the second argument, such that there exists a function C : X → R such that

|a(u, v)| ≤ C(u)∥v∥ for all u, v ∈ X. (2.1)

In general this form will be the weak formulation of a partial differential equation; cf. Sec-
tion 2.3.2.

Proposition 2.4. If (2.1) holds for a nonlinear form a( · , · ) there exists a (usually nonlinear) oper-
ator A : X → X ′ such that for u ∈ X

⟨Au, v⟩ := a(u, v) for all v ∈ X, (2.2)

on a reflexive Banach space X . Then, for any f ∈ X ′ the following are equivalent:

1. determine u0 ∈ X such that Au0 = f ∈ X ′,

2. determine u0 ∈ X such that a(u0, v) = ⟨f, v⟩ for all v ∈ X ′,

3. determine u0 ∈ X such that ⟨Au0, v⟩ = ⟨f, v⟩ for all v ∈ X ′

This proposition can be useful, as we can show that finding the solution of a weak formu-
lation of a partial differential equation a(u, v) = (f, v) for all v ∈ X is equivalent to finding
the solution of an operator equation Au = f , where A has various monotone and continuity
properties.

2.2 Strongly monotone & Lipschitz continuous
We first consider the existence, and uniqueness, of a solution of Au = f for a strongly mono-
tone and Lipschitz continuous operator A : X → X ′ on a Hilbert space X .

In order to prove the existence of this solution we need results from fixed point theory.

Definition 2.5. Let (X,D) be a metric space, with metric d( · , · ), and mapping T : X → X ;
then x ∈ X is called a fixed point of T if T (x) = x.

Remark. We note that in general we will consider a Hilbert space, which is a metric space
with metric d(u, v) = ∥u− v∥.

Theorem 2.6 (Banach fixed point theorem/Contraction mapping theorem). Let (X, d) be a
complete metric space, M ⊂ X be a non-empty closed subset, and T : M → M be strongly
contractive; i.e., there exists a constant k ∈ (0, 1) such that

d(T (x), T (y)) ≤ kd(x, y) for all x, y ∈M.

Then,

a) T has a unique fixed point x ∈M ,

b) the fixed point iteration
xm+1 = T (xm), m ≥ 0,

converges to x, as m→∞, for any starting value x0 ∈M ,
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c) the following error bounds holds:

d(x, xm) ≤ km

1− k
d(x0, x1),

d(x, xm) ≤ k

1− k
d(xm, xm−1).

Proof. We prove in three steps.

1. Show convergence of iteration: By recursion

d(xm, xm+1) = d(T (xm−1), T (xm)) ≤ kd(xm−1, xm) ≤ kmd(x0, x1).

Then, by the triangle inequality, for m ≥ 1:

d(xm, xm+n) ≤ d(xm, xm+1) + d(xm+1, d+ x+ 2) + · · ·+ d(xn+m−1, xn+m)

≤ kmd(x0, x1) + km+1d(x0, x1) + · · ·+ km+n−1d(x0, x1)

= kmd(x0, x1)
n−1∑
j=0

kj

≤ km

1− k
d(x0, x1).

Then, for n,m → ∞, n ≤ m, we have that d(xn, xm) → 0; hence, the sequence {xm} is
a Cauchy sequence with a limit x ∈ X . As M is closed and {xm} ⊂M ; then, x ∈M .

2. Show that x is a fixed point of T : As T is contractive then it is continuous; therefore,

x = lim
m→∞

xm+1 = lim
m→∞

T (xm) = T (x).

3. Show the fixed point is unique: Suppose that x1 ̸= x2 are two fixed points in M ; then,

d(x1, x2) = d(T (x1), T (x2)) ≤ kd(x1, x2),

but as k < 1 and d(x1, x2) ̸= 0 we have a contradiction; therefore, the fixed point must
be unique.

We can now show the existence of a unique solution of the operator equation Au = f for
a strongly monotone and Lipschitz continuous operator A using this theorem.

Lemma 2.7. Let X be a Hilbert space, A : X → X ′ be strongly monotone and Lipschitz continuous,
f ∈ X ′, and JX be the Riesz-representation from Corollary 1.11 on X ; then, there exists a positive
constant ε such that the mapping T : X → X defined as

T (u) = u− εJ−1
X (Au− f)

is strongly contractive; i.e.,
∥T (x)− T (y)∥ ≤ k∥x− y∥

where k2 = 1+ ε2L2 = 2εM < 1, with M and L being the constants from strong monotonicity and
Lipschitz continuity, respectively.
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Exercise 2.2. Prove Lemma 2.7.

Theorem 2.8 (Zarantonello). Let X be a Hilbert space, and A : X → X ′ be a strongly monotone
and Lipschitz continuous operator; then, for each f ∈ X ′ the equation Au = f ∈ X ′ has a unique
solution, depending continuously on f . More precisely, for Au1 = f1 and Au2 = f2,

∥u1 − u2∥ ≤M−1∥f1 − f2∥,

where M is the constant from the strong monotonicity of A.

Proof. From Lemma 2.7 there exists a constant ε > 0 such that

T (u) = u− εJ−1
X (Au− f)

is strongly contractive. Then, by Theorem 2.6,

T has a unique fixed point u ⇐⇒ u = u− εJ−1
X (Au− f)

⇐⇒ Au− f = 0

⇐⇒ Au = f.

Hence, Au = f has a unique solution u ∈ X . Now, let Au1 = f1 and Au2 = f2; then, by the
fact that A is strongly monotone and (1.13)

M∥u1 − u2∥2 ≤ ⟨Au1 −Au2, u1 − u2⟩ ≤ ∥Au1 −Au2∥∥u1 − u2∥ = ∥f1 − f2∥∥u1 − u2∥.

Therefore,
∥u1 − u2∥ ≤M−1∥f1 − f2∥,

which completes the proof.

Corollary 2.9. Let X be a Hilbert space, A : X → X ′ be a strongly monotone and Lipschitz
continuous operator, and f ∈ X ′; then, there exists a positive constant ε such that the sequence
{um} ⊂ X defined by

um+1 = um − εJ−1
X (Aum − f),

where JX is the Riesz-representation from Corollary 1.11 on X , converges to the unique solution
u ∈ X of Au = f from Theorem 2.8 for any starting value x0 ∈ X . Additionally,

∥u− um∥ ≤
km

1− k
∥u0 − u1∥

where k2 = 1 + ε2L2 − 2εM < 1, with M and L being the constants from strong monotonicity and
Lipschitz continuity, respectively.

Proof. Follows directly from Lemma 2.7, Theorem 2.8, and Theorem 2.6.

Exercise 2.3. Compute the optimal value of ε such that the iteration

um+1 = um − εJ−1
X (Aum − f)

converges fastest to the unique solution of Au = f and compute the contraction constant k.
Note that from Corollary 2.9 and Theorem 2.6 the error is given by

∥u− um∥ ≤
km

1− k
∥x0 − x1∥;

hence, the fastest convergence rate is obtained when k is close to zero.
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Corollary 2.10. Let X be a Hilbert space, A : X → X ′ be a strongly monotone and Lipschitz
continuous operator, and f ∈ X ′; then, there exists a positive constant ε such that if

⟨JXum+1, v⟩ = ⟨JXum, v⟩ − ε(⟨Aum, v⟩ − ⟨f, v⟩), for all v ∈ X,

the sequence {um} ⊂ X converges to the unique solution u ∈ X of Au = f from Theorem 2.8 for
any starting value x0 ∈ X .

Proof. Follows directly from Theorem 2.8 and Corollary 2.9 and the equivalence of solutions
from Proposition 2.4.

Example 2.1 (Weak solution of strongly monotone & Lipschitz continuous quasilinear PDE).
Consider the boundary value problem in a bounded Lipschitz domain Ω ⊂ Rn, n ∈ N,

−∇ · (µ(x, |∇u|)∇u) = f in Ω,

u = 0 on ∂Ω,

where µ ∈ C(Ω × [0,∞)) and there exists positive constants α1 ≥ α2 > 0 such that, for
t ≥ s ≥ 0 and x ∈ Ω

α2(t− s) ≤ µ(x, t)t− µ(x, s)s ≤ α1(t− s).

From Liu and Barrett (1994, Lemma 2.1) we can show that for all vector valued functions
σ, τ : Ω→ Rn that

|µ(x, |τ |)τ − µ(x, |σ|)σ| ≤ α1|τ − σ|, (2.3)

α2|τ − σ|2 ≤ (µ(x, |τ |)τ − µ(x, |σ|)σ) · (τ − σ) . (2.4)

We can define the weak formulation of this partial differential equation by multiplying by a
test function and integrating by parts: Find u ∈ X = H1

0 (Ω) such that

⟨Au, v⟩ :=
∫
Ω
µ(x, |∇u|)∇u · ∇v dx︸ ︷︷ ︸

a(u,v)

=

∫
Ω
fv dx =: ⟨F, v⟩ for all v ∈ H1

0 (Ω). (2.5)

We can show that A is strongly monotone, as by (2.4)

⟨Au−Av, u− v⟩ =
∫
Ω
(µ(x, |∇u|)∇u− µ(x, |∇v|)∇v) · ∇ (u− v) dx

≥
∫
Ω
α2|∇(u− v)|2 dx

= α2∥u− v∥21,2 for all u, v ∈ H1
0 (Ω),

and Lipschitz continuous, as by (2.3)

|⟨Au−Av,w⟩| ≤
∫
Ω
|µ(x, |∇u|)∇u− µ(x, |∇v|)∇v||∇ (u− v)|dx

≤
∫
Ω
α1|∇(u− v)||∇w| dx

≤ α1∥u− v∥1,2∥w∥1,2 for all u, v, w ∈ H1
0 (Ω),
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and

∥Au−Av∥−1,2 = sup
w∈H1

0 (Ω)

|⟨Au−Av,w⟩|
∥w∥1,2

≤ sup
w∈H1

0 (Ω)

α1∥u− v∥1,2∥w∥1,2
∥w∥1,2

= α1∥u− v∥1,2.

Then, by Theorem 2.8 the weak formulation (2.5) has a unique solution u ∈ H1
0 (Ω). We note

that (2.1) follows similarly to the proof of Lipschitz continuity and, hence, Proposition 2.4
holds.

2.3 Quasilinear elliptic PDEs of order 2k
We want to consider the existence of weak solutions to quasilinear elliptic partial differential
in divergence form (1.12). To this end, we need the following result for the operator equation
Au = f .

Theorem 2.11 (Minty-Browder). Let A : X → X ′ be a monotone, coercive, and hemicontinuous
operator on a real reflexive Banach space X . Then, for each f ∈ X ′ the equation Au = f has at least
one solution (A is surjective) and the set of all solutions is bounded, convex, and closed. Additionally,
if A is strictly monotone then the solution is unique, the inverse A−1 exists and

A uniformly monotone =⇒ A−1 continuous

A strongly monotone =⇒ A−1 Lipschitz continuous

Remark. This theorem is occasionally stated as requiring A demicontinuous instead of hemi-
continuous; however, by Lemma 2.3 these are equivalent as A is monotone.

Proof. The proof of this theorem will be shown later; cf., Section 3.3

2.3.1 Nemyckii operator

In order to apply Theorem 2.11 to differential equations we require certain properties of
the coefficient functions in the divergence form (1.12). To this end, we define the following
operator and some required properties on that operator.

Definition 2.12. Let Ω ⊂ Rn, n ∈ N be non-empty and measurable, f : Ω× Rm → R, m ∈ N;
then, for a function u : Ω → R, u(x) = (u1(x), . . . , um(x)) we define a Nemyckii operator N
as

(Nu)(x) = f(x, u1(x), . . . , um(x));

i.e., replace all variables uj in f(x, u1, . . . , um) by uj(x).

We need two conditions for the Nemyckii operators:

(A1) Carathéodory condition: Let Ω ∈ Rn be non-empty and measurable, f : Ω × Rm → R
be a given function, m ∈ N, and the following hold:

x 7→ f(x,u) measurable on Ω for all u ∈ Rm,

u 7→ f(x,u) continuous on Rm almost everywhere for x ∈ Ω.

(A2) Growth condition: For all (x,u) ∈ Ω× Rm

|f(x,u)| ≤ g(x) + b
m∑
i=1

|ui|
pi/q,

where b ≥ 0, 1 ≤ pi, q <∞, and g ∈ Lq(Ω) is non-negative almost everywhere.
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Theorem 2.13. Let Ω ⊂ Rn, k ∈ N be non-empty and measurable, and the assumptions (A1) and
(A2) hold for f : Ω× Rm → R, m ∈ N; then, the related Nemyckii operator

N :
m∏
i=1

Lpi(Ω)→ Lq(Ω)

is continuous and bounded such that

∥Nu∥0,q ≤ C

(
∥g∥0,q +

j∑
i=1

∥uj∥
pi/q
0,pi

)
for all u ∈

m∏
i=1

Lpi(Ω),

where C is a positive constant.

Proof. We consider the case when m = 1 (and set u1 = u, p1 = p); the general case follows
analogously.

1. Measurable: Since u ∈ Lp(Ω) x 7→ u(x) measurable on Ω and by (A1) x 7→ f(x, u)
measurable on Ω.

2. N bounded: Let 1 ≤ p, q <∞; then, using the Minkowski inequality and (A2)

∥Nu∥0,q =
(∫

Ω
|f(x, u)|q dx

)1/q

≤
(∫

Ω
|g(x) + b|u|p/q|q dx

)1/q

≤ C

(
∥g(x)∥0,q + b

(∫
Ω

(
|u|p/q

)q
dx

)1/q
)

≤ C
(
∥g(x)∥0,q + b∥u∥p/q0,p

)
<∞;

hence, N is a bounded operator from Lp(Ω)→ Lq(Ω).

3. N continuous: Suppose there exists a sequence {un} ⊂ Lp(Ω) such that un → u ∈
Lp(Ω). Then, there exists a subsequence {unk

} and v ∈ Lp(Ω) such that

unk
(x)→ u(x) almost everywhere for x ∈ Ω,

|unk
| < v(x) for all nk and almost everywhere for x ∈ Ω.

Then, by (A2) and the Minkowski inequality

∥Nunk
−Nu∥q0,q =

∫
Ω
|f(x, unk

(x))− f(x, u(x))|q dx

≤ C
(∫

Ω
|f(x, unk

(x))|+
∫
Ω
|f(x, u(x))|q dx

)
≤ C

∫
Ω
(|g|q + |v|q + |u|q) dx.

By (A1)

u 7→ f(x, u) continuous almost everywhere for x ∈ Ω

22



MONOTONE DIFFERENTIAL EQUATIONS

=⇒ f(x, unk
)→ f(x, u) as unk

→ u

=⇒ f(x, unk
)− f(x, u)→ 0

=⇒ ∥Nunk
−Nu∥0,q → 0

=⇒ Nunk
→ Nu in Lq(Ω).

As sequences are bounded and all subsequences converge, then, Nun → Nu; hence,
N is continuous.

2.3.2 Weak formulation

We can now study the weak solution of a general quasilinear partial differential equation
under certain assumptions on the coefficients, which are Nemyckii operators, using Minty-
Browder.

We define for a quasilinear PDE of order 2k the formal differential operator

(Au)(x) =
∑
|α|≤k

(−1)α∂αaα(x, δku(x)) (2.6)

with coefficient functions aα : Ω×Rκ → R, for each multi-index α ∈ Nn
0 with |α| ≤ k, where

κ is defined by (1.7), and consider the boundary value problem

Au = f in Ω, (2.7)

∂iu

∂ni
= 0 on ∂Ω, i = 1, . . . , k − 1 ⇐⇒ ∂βu|∂Ω = 0 for all β, |β| ≤ k − 1. (2.8)

where n is the outward unit normal vector to ∂Ω, on a bounded domain Ω ⊂ Ωn with
Lipschitz continuous boundary. By multiplying by a test function and repeated applications
of the Green’s formulae we get that for u, v ∈ X =W k,p

0 (Ω)∫
Ω
v(Au) dx =

∫
Ω

∑
|α|≤k

v(−1)α∂αaα(x, δku(x)) dx

=

∫
Ω

∑
|α|≤k

aα(x, δku(x))∂
αv dx =: a(u, v). (2.9)

Then, we can define the weak formulation of the partial differential equation (2.7)–(2.8): find
u ∈W k,p

0 (Ω), 1 < p <∞, such that

⟨Au, v⟩ := a(u, v) =

∫
Ω
fv dx =: ⟨F, v⟩ (2.10)

for all v ∈W k,p
0 (Ω), where we assume f ∈ Lq(Ω), 1/p + 1/q = 1. u is called the weak solution.

2.3.3 Existence of solution

Note that the above definition (2.10) of the operator A : W k,p
0 (Ω) → W−k,q(Ω) assumes

that (2.1) holds and, hence, Proposition 2.4 can be applied. Then, finding the weak solution
u ∈ W k,p

0 (Ω) of (2.10) is equivalent to finding the solution of the operator equation Au = F ,
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which can be shown by Minty-Browder (Theorem 2.11). Note, that for this to work we
require that F ∈W−k,q(Ω) = X ′, which can be shown trivially:

|⟨F, v⟩| ≤
∫
Ω
|fv| dx ≤ ∥f∥0,q∥v∥0,p ≤ ∥f∥0,q∥v∥k,p

As v ∈W k,p
0 (Ω) and f ∈ Lq(Ω); then,

∥F∥−k,q = sup
v∈Wk,p

0 (Ω)

|⟨F, v⟩|
∥v∥k,p

<∞,

which implies that F ∈W−k,q(Ω).
Therefore, in order to prove the existence of a weak solution we need to show that (2.1)

holds and prove the conditions of Minty-Browder. We note, trivially, that the space X =

W k,p
0 (Ω), 1 < p < ∞ is a reflexive Banach space. In order to prove the rest of the conditions

we need to define additional assumptions on the coefficients aα such that A is monotone,
coercive, and hemicontinuous.

To this end, we first define Nemyckii operators for the coefficients aα as

Nα :W k,p
0 (Ω)→ Lq(Ω), (Nαu)(x) := aα(x, δku(x)), (2.11)

and define modified versions of the Carathéodory (A1) and growth conditions (A2) for Nα:

(B1) Carathéodory condition For all α, |α| ≤ k, aα : Ω×Rκ → R has the following properties:

x 7→ aα(x, ξ) measurable on Ω for all ξ ∈ Rκ,

ξ 7→ aα(x, ξ) continuous on Rκ almost everywhere for x ∈ Ω.

(B2) Growth condition For 1 < p <∞, and all α, |α| ≤ k

|aα(x, ξ)| ≤ C

g(x) + ∑
|β|≤k

|ξβ|p−1

 ,

where β ∈ Nn
0 is a multi-index, g ∈ Lq(Ω) is non-negative almost everywhere, 1/p +

1/q = 1, C > 0 is a positive constant, and ξ = (ξβ)|β|≤k ∈ Rκ, ξβ ∈ R, |β| ≤ k.

We are now are able to prove that (2.1) holds; hence, Proposition 2.4 holds and (2.10) is
valid.

Lemma 2.14. Let (B1) and (B2) hold for allNα, |α| ≤ k, defined by (2.11); then,Nα is well-defined,
bounded, and continuous. Additionally,

|a(u, v)| ≤ C
(
∥g∥0,q + ∥u∥

p/q
k,p

)
∥v∥k,p ∀u, v ∈W k,p

0 (Ω),

where g ∈ Lq(Ω) is non-negative almost everywhere, 1/p+ 1/q = 1, and C > 0 is a positive constant,
for the nonlinear form a( · , · ) from (2.9); hence, (2.1) holds.

We can define statements which prove that the operator A is monotone, coercive, and
hemicontinuous.
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Lemma 2.15. Let (B1) and (B2) hold for all Nα, |α| ≤ k, defined by (2.11); then, the operator
A :W k,p

0 (Ω)→W−k,q(Ω), defined in the weak formulation (2.10), is bounded and demicontinuous.

Lemma 2.16. If for the coefficients aα, |α| ≤ k, defined in (2.6),∑
|α|≤k

(aα(x, ξ)− aα(x, η)) (ξα − ηα) ≥ 0,

for all ξ, η ∈ Rκ and almost everywhere for x ∈ Ω; then, the operator A : W k,p
0 (Ω) → W−k,q(Ω),

defined in the weak formulation (2.10), monotone. Additionally, if equality of the above condition
only holds for ∑

|β|≤k

|ξβ − ηβ| = 0;

then, A is strictly monotone.

Corollary 2.17. Let (B1) and (B2) hold for allNα, |α| ≤ k, defined by (2.11) and the condition from
Lemma 2.16 hold. Then, the operator A : W k,p

0 (Ω) → W−k,q(Ω), defined in the weak formulation
(2.10), is hemicontinuous.

Proof. By Lemma 2.15 and Lemma 2.16 the operator A is demicontinuous and monotone.
Then, by Lemma 2.3, A is hemicontinuous.

Lemma 2.18. If there exists a positive constant C > 0 and a function k ∈ L1(Ω) such that for the
coefficients aα, |α| ≤ k, defined in (2.6),∑

|α|≤k

aα(x, ξ)ξα ≥ C
∑
|α|=k

|ξα|p − h(x),

for all ξ ∈ Rκ and almost everywhere for x ∈ Ω, where 1 < p < ∞. Then, the operator A :

W k,p
0 (Ω)→W−k,q(Ω), defined in the weak formulation (2.10), is (nonlinear) coercive.

Exercise 2.4. Prove Lemmas 2.14–2.18.

We can now combine these results.

Theorem 2.19. Let the coefficients functions aα : Ω×Rκ → R, |α| ≤ k, k ∈ N, where κ defined by
(1.7), from (2.6) satisfy the following conditions for 1 < p <∞:

(B1) Carathéodory condition: For all α, |α| ≤ k,

x 7→ aα(x, ξ) measurable on Ω for all ξ ∈ Rκ,

ξ 7→ aα(x, ξ) continuous on Rκ almost everywhere for x ∈ Ω.

(B2) Growth condition: For all α, |α| ≤ k,

|aα(x, ξ)| ≤ C

g(x) + ∑
|β|≤k

|ξβ|p−1

 ,

where β ∈ Nn
0 is a multi-index, g ∈ Lq(Ω) is non-negative almost everywhere, 1/p+ 1/q = 1,

C > 0 is a positive constant, and ξ = (ξβ)|β|≤k ∈ Rκ, ξβ ∈ R, |β| ≤ k.
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(C1) Monotonicity: For all ξ, η ∈ Rκ∑
|α|≤k

(aα(x, ξ)− aα(x, η)) (ξα − ηα) ≥ 0,

almost everywhere for x ∈ Ω.

(C2) (Nonlinear) coercivity: There exists a positive constant C > 0 and a function h ∈ L1(Ω)
such that ∑

|α|≤k

aα(x, ξ)ξα ≥ C
∑
|α|=k

|ξα|p − h(x),

for all ξ ∈ Rκ and almost everywhere for x ∈ Ω.

Then, for any f ∈ Lq(Ω), 1/p + 1/q = 1, there exists at least one weak solution u ∈ W k,p
0 (Ω) to the

weak formulation (2.10). Additionally, let aα : Ω× Rκ → R satisfy the following condition:

(D1) Strict Monotonicity: For all ξ, η ∈ Rκ, where∑
|β|≤k

|ξβ − ηβ| > 0,

it holds that ∑
|α|≤k

(aα(x, ξ)− aα(x, η)) (ξα − ηα) > 0,

almost everywhere for x ∈ Ω.

Then, the solution u ∈W k,p
0 (Ω) is unique.

Proof. From Lemmas Lemma 2.15, Lemma 2.16, and Lemma 2.18 we can show the con-
ditions of Theorem 2.11 are met; therefore, we can show that the equation Au = F , for
A : W k,p

0 (Ω) → W−k,q(Ω) and F ∈ W−k,q(Ω) defined by (2.10), has a solution u ∈ W k,p
0 (Ω).

Then, by Lemma 2.14 and Proposition 2.4 this is the weak solution of (2.10). Additionally,
if (D1) holds the operator A is strictly monotone due to Lemma 2.16; therefore, by Theo-
rem 2.11 the solution in unique.

Exercise 2.5. Consider the following boundary value problem problem:

−∇ · (µ(x,∇u)∇u) + b(x, u) = f(x) in Ω ⊂ R2

u = 0 on ∂Ω

where Ω has Lipschitz boundary, u : Ω → R is the unknown function, and f ∈ L2(Ω).
Define, for this problem, the coefficient functions aα(x, ξ), ξ ∈ Rκ, for all multi-indices α,
where |α| ≤ 1, and the weak formulation of the boundary value problem. Additionally,
derive conditions for µ and b such that Theorem 2.19 holds; i.e., state conditions such that

1. A is monotone,

2. A is strictly monotone,

3. A is coercive, and
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4. aα satisfies the growth condition (B2).

Exercise 2.6. Define the weak formulation, and use Theorem 2.19 to show that there exists a
weak solution, for the following boundary value problem in the bounded Lipschitz domain
Ω ⊂ Rn, n ∈ N: For 2 ≤ p <∞, f ∈ Lq(Ω), 1/p + 1/q = 1, and t ≥ 0, t ∈ R

−
n∑

i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣p−2 ∂u

∂xi

)
+ tu = f, in Ω,

u = 0, on ∂Ω.

Additionally, state if the weak solution is unique.

We define two more results on the operator A defined by (2.10) which will be used in
Section 2.5.

Lemma 2.20. Let the coefficients functions aα : Ω × Rκ → R, |α| ≤ k, k ∈ N, where κ defined
by (1.7), from (2.6) satisfy (B1) and (B2) hold, and additionally only depend on derivatives of up
to order k − 1; i.e., aα(x, δku) can be defined instead as aα(x, δk−1u). Then, there exists a unique
A : X → X ′ such that

⟨Au, v⟩ = a(u, v)

which is strongly continuous.

Corollary 2.21. Lemma 2.20 is valid if the condition (B2) is replaced by the following condition. For
all α, |α| ≤ k,

|aα(x, ξ)| ≤ C

g(x) + ∑
|β|≤k

|ξβ|
pα/qα

 ,

where β ∈ Nn
0 is a multi-index, g ∈ Lqα(Ω) is non-negative almost everywhere, C > 0 is a positive

constant, and 1 < pα, qα <∞ selected such that 1/pα + 1/qα = 1 and

1

p
− k − |α|

n
<

1

pα
.

2.4 Quasilinear systems
We briefly consider the generalisation of the above case to systems of quasilinear partial dif-
ferential equations. To this end, we consider the Banach space

X = [W k,p(Ω)]m =W k,p(Ω,Rm),

which is reflexive for 1 < p < ∞, where m ∈ N, m ≥ 2, is the number of equations and
unknowns in the nonlinear system of partial differential equations. We define a function
u ∈ X in the space as u = (u1, . . . , un), ui ∈W k,p(Ω), 1 ≤ i ≤ m. We furthermore extend the
definition of the Sobolev space to [W k,p(Ω)]m via the norm and seminorm

∥u∥k,p,Ω :=

 m∑
i=1

∑
|α|≤k

∥∂αui∥p0,p,Ω

1/2

(2.12)
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|u|k,p,Ω :=

 m∑
i=1

∑
|α|=k

∥∂αui∥p0,p,Ω

1/2

. (2.13)

We furthermore extend the notation for partial derivatives (1.8)–(1.9) to u : Ω→ Rm as

∂αu = (∂αui)
m
i=1 = (∂αu1, . . . , ∂

αum),

δku = (∂αu)m|α|≤k = (δku1 · · · δkum) =



u1 . . . um
∂u1
∂x1

. . .
∂um
∂x1

...
. . .

...
∂ku1
∂xkn

. . .
∂kum
∂xkn


where ∂αu : Ω → Rm and δku : Ω → Rκ×m. Note that a row of δku contains ∂αui, i =
1, . . . ,m, for a fixed multi-index α.

Remark. Note that (2.12)–(2.13) is only one choice of possible norm for this space. In general,
the norms on this space are defined by defining the standard Lp-norm, cf. (1.14)–(1.15), using
any valid norm on Rm instead of the absolute value | · | of the function and then define the
norm and seminorm by (1.16) and (1.17), respectively. For example, for 1 ≤ p < ∞, (2.12)–
(2.13) are obtained by

∥v∥0,p,D :=

(∫
D
|v(x)|pp dx

)1/p

,

where | · |p is the vector p-norm on Rm. Due to equivalence of norms on Rm we get equiva-
lence of norms in [W k,p(Ω)]m.

We can now define a general systems of quasilinear elliptic partial differential equations
on a bounded Lipschitz domain Ω ⊂ Rm, n ∈ N, in divergence form as∑

|α|≤k

(−1)|α|∂αaiα(x, δku)

m

i=1

= f , in Ω, (2.14)

u = 0, on ∂Ω, (2.15)

where f ∈ [Lq(Ω)]m and aα(x, ξ) = (aiα(x, ξ))
m
i=1 : Ω× Rκ×m → Rm.

We look for the weak solution u ∈ [W k,p
0 (Ω)]m such that

a(u,v) :=

∫
Ω

∑
|α|≤k

(aα(x, δku), ∂
αv) dx =

∫
Ω
(f ,v) dx (2.16)

for all v ∈ [W k,p
0 (Ω)]m, where ( · , · ) is the Euclidean inner product on Rm. Again, we want

the coefficient functions aα to be Nemyckii operators satisfying Carathéodory and growth
conditions; therefore, we define generalisations of the Nemyckii operator and these condi-
tions.

Definition 2.22. Let Ω ⊂ Rn, n ∈ N be non-empty and measurable, aα : Ω × Rκ×m → Rm,
m ∈ N; then, we define the Nemyckii operator Nα : [W k,p

0 (Ω)]m → [Lq(Ω)]m as

(N αu)(x) = aα(x, δku(x)).
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Then, we define the following conditions.

(E1) Carathéodory condition: For all α, |α| ≤ k, aα : Ω × Rκ×m → Rm has the following
properties:

x 7→ aα(x, ξ) measurable on Ω for all ξ ∈ Rκ×m,

ξ 7→ aα(x, ξ) continuous on Rκ×m almost everywhere for x ∈ Ω.

(E2) Growth condition: For all α, |α| ≤ k,

|aα(x, ξ)| ≤ C

g(x) + ∑
|β|≤k

|ξβ|p−1

 ,

where β ∈ Nn
0 is a multi-index, g ∈ Lq(Ω) is non-negative almost everywhere, 1/p +

1/q = 1, C > 0 is a positive constant, and ξ = (ξβ)|β|≤k ∈ Rκ×m, ξβ ∈ Rm, |β| ≤ k (i.e.,
ξβ is a row of the matrix ξ).

Theorem 2.23. Let Ω ⊂ Rn, k ∈ N be non-empty and measurable, and the assumptions (E1) and
(E2) hold for |α| ≤ k, aα : Ω× Rκ×m → Rm; then,

N α : [W k,p(Ω)]m → [Lq(Ω)]m

is continuous and bounded such that

∥N αu∥0,q ≤ C

∥g∥0,q + ∑
|α|≤k

∥∂αu∥p−1
0,pi

 for all [W k,p(Ω)]m,

where C is a positive constant.

We can now define a result for the existence of the weak solution (2.16).

Theorem 2.24. Let the coefficients functions aα : Ω × Rκ×m → Rm, |α| ≤ k, k ∈ N, where κ
defined by (1.7), from (2.14) satisfy the following conditions for 1 < p <∞:

(E1) Carathéodory condition: For all α, |α| ≤ k,

x 7→ aα(x, ξ) measurable on Ω for all ξ ∈ Rκ×m,

ξ 7→ aα(x, ξ) continuous on Rκ×m almost everywhere for x ∈ Ω.

(E2) Growth condition: For all α, |α| ≤ k,

|aα(x, ξ)| ≤ C

g(x) + ∑
|β|≤k

|ξβ|p−1

 ,

where β ∈ Nn
0 is a multi-index, g ∈ Lq(Ω) is non-negative almost everywhere, 1/p+ 1/q = 1,

C > 0 is a positive constant, and ξ = (ξβ)|β|≤k ∈ Rκ×m, ξβ ∈ Rm, |β| ≤ k (i.e., ξβ is a row
of the matrix ξ).
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(F1) Monotonicity: For all matrices ξ, η ∈ Rκ×m, with rows ξα, ηα ∈ Rm, α ≤ k,∑
|α|≤k

(aα(x, ξ)− aα(x, η), ξα − ηα) ≥ 0,

almost everywhere for x ∈ Ω.

(F2) (Nonlinear) coercivity: There exists a positive constant C > 0 and a function h ∈ L1(Ω)
such that ∑

|α|≤k

(aα(x, ξ), ξα) ≥ C
∑
|α|=k

|ξα|p − h(x),

for all matrices ξ ∈ Rκ×m, with rows ξα ∈ Rm, α ≤ k, and almost everywhere for x ∈ Ω.

Then, for any f ∈ [Lq(Ω)]m, 1/p+1/q = 1, there exists exactly one bounded operatorA : [W k,p
0 (Ω)]m →

[W−k,q(Ω)]m such that

a(u,v) := ⟨Au,v⟩ for all u,v ∈ [W k,p
0 (Ω)]m

and

find u ∈ [W k,p
0 (Ω)]m : a(u,v) =

∫
Ω
(f ,v) =: ⟨F,v⟩ ∀v ∈ [W k,p

0 (Ω)]m

⇐⇒ find u ∈ [W k,p
0 (Ω)]m : Au = F.

(2.17)

The operator A is monotone, coercive, and hemicontinuous, and the (2.17) has a solution u ∈
[W k,p

0 (Ω)]m. Additionally, let aα : Ω× Rκ×m → Rm satisfy the following condition:

(G1) Strict Monotonicity: For all ξ, η ∈ Rκ×m, where∑
|β|≤k

|ξβ − ηβ| > 0,

it holds that ∑
|α|≤k

(aα(x, ξ)− aα(x, η), ξα − ηα) > 0,

almost everywhere for x ∈ Ω.

Then, the solution u ∈ [W k,p
0 (Ω)]m is unique.

2.5 Pseudomonotone operators
We now aim to consider more general quasilinear partial differential equations which con-
tains lower order terms which do not satisfy the monotonicity conditions. In general, we
consider quasilinear PDEs which can be written as an operator equation of the form

A1u+A2u = f, u ∈ X (2.18)

where A1 +A2 is pseudomonotone, cf. Definition 2.28, and coercive on a real reflexive Banach
space. In general, we will have that
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1. A1 : X → X ′ is monotone and hemicontinuous (corresponding to the high order terms
of the PDE), and

2. A2 : X → X ′ is strongly continuous (corresponding to the lower order terms of the
PDE).

In order to define pseudomonotone operators, we first need to define five related conditions
for an operator A.

Definition 2.25. Let X be a real reflexive Banach space and {un} ⊂ X be a sequence; then,
we say that the nonlinear operator A : X → X ′ satisfies the conditions (M), (S)+, (S), (S)0,
and (S)1 if and only if the following hold.

(M) un ⇀ u, Aun ⇀ b, lim sup
n→∞

⟨Aun, un⟩ ≤ ⟨b, u⟩ =⇒ Au = b

(S)+ un ⇀ u, lim sup
n→∞

⟨Aun −Au, un − u⟩ ≤ 0 =⇒ un → u

(S) un ⇀ u, lim
n→∞

⟨Aun −Au, un − u⟩ = 0 =⇒ un → u

(S)0 un ⇀ u, Aun ⇀ b, lim
n→∞

⟨Aun, un⟩ = ⟨b, u⟩ =⇒ un → u

(S)1 un ⇀ u, Aun → b =⇒ un → u

Additionally,
(S)+ =⇒ (S) =⇒ (S)0 =⇒ (S)1.

We can define several properties of operators satisfying the conditions.

Lemma 2.26. Let X be a real reflexive Banach space, and A : X → X ′ be a nonlinear operator; then,
the following hold:

A monotone and hemicontinuous =⇒ A satisfies (M),

A uniformly monotone =⇒ A satisfies (S)+.

Lemma 2.27. Let X be a real reflexive Banach space, and A,B : X → X ′ be nonlinear operators;
then, the following hold:

A satisfies (S)+ and B strongly continuous =⇒ A+B satisfies (S)+,
A satisfies (S) and B strongly continuous =⇒ A+B satisfies (S),
A satisfies (M) and B strongly continuous =⇒ A+B satisfies (M).

Exercise 2.7. Prove Lemma 2.26 and Lemma 2.27.

We can now define a pseudomonotone operator.

Definition 2.28. Let X be a real reflexive Banach space, {un} ⊂ X be a sequence, and A :
X → X ′ be a nonlinear operator. Then,

• A is called pseudomonotone if and only if

un ⇀ u, lim sup
n→∞

⟨Aun, un−u⟩ ≤ 0 =⇒ ⟨Au, u−w⟩ ≤ lim inf
n→∞

⟨Aun, un−w⟩ ∀w ∈ X,
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• A satisfies the condition (P) if and only if

un ⇀ u =⇒ lim sup
n→∞

⟨Aun, un − u⟩ ≥ 0.

We can define several relationships and properties of pseudomonotone operators.

Lemma 2.29. Let X be a real reflexive Banach space, and A,B : X → X ′ be nonlinear operators;
then, the following hold:

A monotone and hemicontinuous =⇒ A pseudomonotone,
A strongly continuous =⇒ A pseudomonotone,

A demicontinuous and satisfies (S)+ =⇒ A pseudomonotone,
A continuous & dimX <∞ =⇒ A pseudomonotone,

A pseudomonotone & B pseudomonotone =⇒ A+B pseudomonotone,
A monotone and hemicontinuous & B strongly continuous =⇒ A+B pseudomonotone,

A monotone & B strongly continuous =⇒ A+B satisfies (P).

Exercise 2.8. Prove Lemma 2.29, except

A continuous & dimX <∞ =⇒ A pseudomonotone.

Note that the last two statements follows trivially from the previous statements.

Lemma 2.30 (Properties of pseudomonotone). , Let X be a real reflexive Banach space, and
A,B : X → X ′ be nonlinear operators; then, the following hold:

A pseudomonotone =⇒ A satisfies (P) and (M),

A pseudomonotone and locally bounded =⇒ A demicontinuous,
A pseudomonotone & B monotone and hemicontinuous =⇒ A+B pseudomonotone,

A pseudomonotone & B strongly continuous =⇒ A+B pseudomonotone.

Exercise 2.9. Prove the first statement from Lemma 2.30; i.e.,

A pseudomonotone =⇒ A satisfies (P) and (M).

Note that the last two statements from Lemma 2.30 follows trivially from Lemma 2.29.

We now state a result for the existence of a solution to an operator equation, which we
can then apply to (2.18).

Theorem 2.31 (Brézis). Assume that the nonlinear operator A : X → X ′ is pseudomonotone,
bounded, and coercive on a real, separable, reflexive Banach space; then, the equation

Au = f,

has a solution u ∈ X for every f ∈ X ′.

Proof. The proof of this theorem will be shown later; cf., Section 3.3
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To apply this result to a quasilinear partial differential equation we shall consider a prac-
tical example, which can be extended to more general results.

Example 2.2 (Pseudomonotone operator for quasilinear PDE (Zeidler, 1989b, Section 27.4)).
Consider the boundary value problem on a bounded Lipschitz domain Ω ⊂ Rn, n ∈ N,

−
n∑

i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣p−2 ∂u

∂xi

)
+ g(u) = f in Ω, (2.19)

u = 0, on ∂Ω, (2.20)

where f ∈ Lq(Ω) and g satisfies the following conditions:

(H1) Coerciveness: g : R→ R continuous and

inf
u∈R

g(u)u > −∞;

(H2) Growth condition: For all u ∈ R

|g(u)| ≤ C(1 + |u|r−1)

where 1 < p, q, r <∞, 1/p + 1/q = 1, and 1/p− 1/n < 1/r.

We seek u ∈ X =W 1,p
0 (Ω) such that

a1(u, v) + a2(u, v) = ⟨F, v⟩, for all v ∈ X, (2.21)

where

a1(u.v) =

∫
Ω

n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2 ∂u

∂xi

∂v

∂xi
dx,

a2(u, v) =

∫
Ω
g(u)v dx,

⟨F, v⟩ =
∫
Ω
fv dx.

By Proposition 2.4, Exercise 2.6, and Lemmas 2.14–2.18 we know that there exists a unique
monotone, coercive, bounded, and hemicontinuous operator A1 : X → X ′ such that

a1(u, v) = ⟨Au1, v⟩ for all u, v ∈ X.

By Lemma 2.20 (for r = p) and Corollary 2.21 (otherwise) there exists a strongly continuous
A2 : X → X ′ such that

a2(u, v) = ⟨Au2, v⟩ for all u, v ∈ X.

it can be shown that F ∈ X ′; therefore, (2.21) is equivalent to the operator equation

A1u+A2u = F u ∈ X. (2.22)
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Set A = A1 + A2; then, by Lemma 2.29 A is pseudomonotone. Additionally, A1 is bounded
and A2 is strongly continuous (which implies bounded); therefore, A is bounded. From (H1)

⟨A2, u, u⟩ =
∫
Ω
g(u)udx ≥ C for all u ∈ X;

hence, A = A1 + A2 is coercive as A1 is coercive. We can then apply Theorem 2.31 to show
that (2.22) has a solution u ∈ X ; which is the weak solution of (2.21).

Remark. We can easily generalise the above to the boundary value problem

−
n∑

i=1

∂

∂xi
(ai(x,∇u)) + g(u) = f in Ω,

u = 0, on ∂Ω,

providing that the functions ai, i = 1, . . . , n meet the conditions (B1)–(B2) and (C1)–(C2).

2.6 Semimonotone operators
In order to extend the results from the previous section to partial differential equations under
certain conditions we consider so-called semimonotone operators.

Definition 2.32. Let X be a real, separable, reflexive Banach space and B : X ×X :→ X ′ be
a map such that

Au = B(u, u) for all u ∈ X.

The operator A : X → X ′ is called semimonotone if and only if the following hold.

a) For all u, v ∈ X
⟨B(u, u)−B(u, v), u− v⟩ ≥ 0.

b) For each u ∈ X , the operator v 7→ B(u, v) is hemicontinuous and bounded from X to
X ′, and, for each v ∈ X , the operator u 7→ B(u, v) is hemicontinuous and bounded
from X to X ′.

c) If un ⇀ u in X and

lim
n→∞

⟨B(un, un)−B(un, u), un − u⟩ = 0;

then, B(un, v)−B(u, v) in X ′ for all v ∈ X ,

d) Let v ∈ X , un ⇀ u in X , and B(un, v)⇀ w in X ′ as n→∞; then,

lim
n→∞

⟨B(un, v), un⟩ = ⟨w, u⟩.

e) A is bounded.

Lemma 2.33. Let A : X → X ′ be a semimonotone operator on a real, separable, reflexive Banach
space X ; then, A is pseudomonotone.

Proof. See Leray and Lions (1965).
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Exercise 2.10. Let A : X → X ′ be a semimonotone operator on a real, separable, reflexive
Banach space X , and B : X ×X → X ′ the associated map. Assume that un ⇀ u, B(un, u)⇀
w and

lim sup
n→∞

⟨B(un, un), un − u⟩ ≤ 0.

Show that
lim
n→∞

⟨B(un, un)−B(un, u), un − u⟩ = 0;

i.e, show that Definition 2.32 (c) is satisfied. Hence, show that

⟨B(u, u), u− w⟩ ≤ lim inf
n→∞

⟨B(un, un), un − u⟩ for all w ∈ X;

i.e., A is a pseudo-monotone operator.

As we can show that a semimonotone operator is also a pseudomonotone we use Theo-
rem 2.31 to show the existence of a solution to the operator equation Au = f and, further-
more, a solution to the weak formulation (2.10) for quasilinear partial differential equations
can be shown under certain assumptions.

Theorem 2.34 (Leray-Lions). Let X be a real, separable, reflexive Banach space and A : X → X ′

be a semimonotone and coercive operator; then,

Au = f

has a solution u ∈ X for every f ∈ X ′.

Proof. By Lemma 2.33 A is pseudomonotone. Then, as A is also bounded (by definition of
semimonotone) and coercive there exists a solution to Au = f by Theorem 2.31.

Theorem 2.35. Let the coefficients functions aα : Ω × Rκ → R, |α| ≤ k, k ∈ N, where κ defined
by (1.7), from (2.6) satisfy, for 1 < p <∞, the Carathéodory condition (B1), growth condition (B2),
and coercivity condition (C2) from Theorem 2.19, as well as the following conditions:

(I1) The highest order terms are strictly monotone with respect to the highest order derivatives;
i.e., ∑

|α|=k

(
aα(x, η, ξ)− aα(x, η, ξ̂)

)
(ξα − ξ̂α) > 0,

for all η ∈ Rκ̃, ξ, ξ̂ ∈ Rκ̃−κ, where

κ̃ =
(n+ k − 1)!

n!(k − 1)!

is the number of multi-indices of length |α| ≤ k − 1.

(I2) The highest order terms are coercive with respect to the highest order derivatives; i.e.,

lim
|ξ|→∞

sup
η∈D

∑
|α|=k

aα(x, η, ξ)

|ξ|+ |ξ|p−1
==∞,

for almost all x ∈ Ω and bounded sets D ⊂ Rκ̃.
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Then, for any f ∈ Lq(Ω), 1/p + 1/q = 1, there exists at least one weak solution u ∈ W k,p
0 (Ω) to the

weak formulation (2.10).

Proof. It can be shown that the operator A :W k,p
0 (Ω)→W−k,q(Ω), Au = B(u, u), where

⟨B(w, u), v⟩ =
∫
Ω

∑
|α|=k

aα(x, δk−1w(x), δ̂ku(x))∂
αv dx+

∫
Ω

∑
|α|≤k−1

aα(x, δkw(x))∂
αv dx

(2.23)
is semimonotone, coercive, and bounded (Leray and Lions, 1965). Then, by Lemma 2.33 and
Theorem 2.34 a solution to Au = F , where

⟨F, v⟩ :=
∫
Ω
fv dx,

exists for every f ∈ Lq(Ω); hence, a solution u ∈ W k,p
0 (Ω) to the weak formulation (2.10)

exists.

Exercise 2.11. Let A : W k,p
0 (Ω) → W−k,q(Ω), Au = B(u, u), where B is defined in (2.23).

Show that B satisfies Definition 2.32 (a)–(b), and that A is bounded and coercive.

2.7 Locally coercive operators
The finally generalisation we consider in this chapter considers operators of the form

A : X → X+

where {X,X+} are so-called dual pairs of Banach spaces.

Definition 2.36. Let X and X+ be Banach spaces over a field K = R,C. Then, {X,X+} is
called a dual pair if and only if the following holds:

a) There exists a bilinear bounded map ⟨ · , · ⟩X : X+ ×X → K.

b) If ⟨v, u⟩X = for all u ∈ X ; then, v = 0.

c) If ⟨v, u⟩X = for all v ∈ X+; then, u = 0.

Example 2.3 (Examples of dual pairs). The following examples demonstrate that the standard
dual of a Banach space forms a dual pair, but dual pairs are not necessary duals.

a) Let X be a Banach space and X ′ its dual. Then, {X,X ′} is a dual pair if we use the
usual dual operator

⟨v, u⟩X = v(u) for all v ∈ X ′, u ∈ X.

b) Let X = C(Ω), Ω ⊂ Rn, n ∈ N, bounded domain and set

⟨v, u⟩X =

∫
Ω
vudx for all u, v ∈ X; (2.24)

then, {X,X} is a dual pair.
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c) Let X = W k,2(Ω) and X+ ∈ L2(Ω), with Ω ⊂ Rn, n ∈ N, bounded domain; then,
{X,X+} is a dual pair with respect to (2.24).

We now define a result which gives a solution of an operator equation Au = f for only
some right hand sides f .

Theorem 2.37 (Hess-Kato). Let the following conditions holds:

(J1) Dual pairs: Let {X,X+} and {Y, Y +} be dual pairs whereX,X+, Y, Y + are Banach spaces
with bilinear forms ⟨ · , · ⟩X and ⟨ · , · ⟩Y , respectively, with continuous embeddings

Y ↪→ X, and X+ ↪→ Y +

which are compatible; i.e.,

⟨v, u⟩X = ⟨v, u⟩Y for all v ∈ X+, y ∈ Y.

Moreover, X is reflexive and separable, and Y is reflexive.

(J2) Operator A: A : D(A) ⊂ X → Y + be a given operator and K ⊂ X a bounded, closed,
convex set containing zero and K ∩ Y ⊂ D(A).

(J3) Local coerciveness: There exists a constant α > 0 such that

⟨Av, v⟩Y ≥ α, for all v ∈ Y ∩ ∂K.

(J4) Continuity: For each finite dimensional subspace Y0 of the Banach space Y , the mapping

w 7→ ⟨Aw, v⟩Y ,

is continuous on K ∩ Y0 for all v ∈ Y0.

(J5) Generalised condition (M): Let {un} be a sequence in Y ∩K and let b ∈ X+; then,

un ⇀ u ∈ X, ⟨Aun, v⟩Y → ⟨b, v⟩Y ∀v ∈ Y,
lim sup
n→∞

⟨Aun, un⟩Y ≤ ⟨b, u⟩X =⇒ Au = b.

(J6) Quasi-boundedness: Let {un} be a sequence in Y ∩K; then, for a constant C > 0,

un ⇀ u ∈ X, ⟨Aun, un⟩ ≤ C∥un∥X ∀n ∈ N =⇒ {Aun} ⊂ Y + bounded.

Then, for each b ∈ X+ with ⟨b, v⟩X ≤ α for all v ∈ K ∩ Y ,

Au = b, u ∈ D(A),

has a solution u. Additionally, this solution is unique if

(J7) Local strict monotonicity: There exists a dual pair {Z,Z+} of Banach space Z and Z+

with continuous embedding

X ↪→ Z and Y + ↪→ Z+

such that
⟨Au−Av, u− v⟩Z > 0, for all u, v ∈ D(A) with u ̸= v.
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The solution has continuous dependence on the data if the following holds; i.e., for Au1 = b1 and
Au2 = b2, b1, b2 ∈ X+ it holds that

∥u1 − u2∥Z ≤ C∥b1 − b2∥X+ .

(J8) Local strong monotonicity: (J7) holds and there exists a constant d > 0 such that

⟨Au−Av, u− v⟩Z ≥ d∥u− v∥2Z , for all u, v ∈ D(A).

Remark. Consider Banach space X and Y over a field K with continuous dense embedding
Y ↪→ X (i.e., X = Y ); then, X ′ ↪→ Y ′ is a continuous embedding in the sense that a linear
continuous functional b : X → K is also a linear continuous functional b : Y → K by
restricting b to Y . In this case, we can set X+ = X ′ and Y + = Y which define dual pairs,
and set K to be a closed ball in X .

Corollary 2.38 (Special case for balls). Suppose (J1)–(J6) holds, and let K◦ denote the polar set of
K; i.e.,

K◦ = {b ∈ X+ : ⟨b, v⟩X ≤ 1 ∀v ∈ K}.

Then, αK◦ ⊂ R(A); i.e., Au = b has a solution u for each b ∈ αK◦. In particular, if K is a ball of
radius R > 0, i.e.

K = {v ∈ X : ∥v∥X ≤ R},

and if
⟨b, v⟩X ≤ C∥b∥X+∥v∥X for all b ∈ X+, v ∈ X,

and fixed C > 0; then, {
b ∈ X+ : ∥b∥X+ ≤ 1/cR

}
⊂ K◦,

i.e. Au = b has a solution u for each b ∈ X+ with ∥b∥X+ ≤ α/cR.

Corollary 2.39 (Global coerciveness). Suppose (J1)–(J6) holds for all ballsK inX and suppose the
global coerciveness condition

lim
∥v∥X→∞

⟨Av, v⟩Y
∥v∥X

= +∞, v ∈ Y,

is satisfied. Then, X+ ⊂ R(A); i.e., Au = b has a solution u for each b ∈ X+.

Example 2.4 (Strongly nonlinear semilinear PDE (Zeidler, 1989b, Section 27.8)). Consider the
boundary value problem

−∆u+ g(u) = f in Ω, (2.25)
u = 0, on ∂Ω. (2.26)

Here, we assume no growth condition on g; therefore, we talk about a strong nonlinear prob-
lem, such as g(u) = eu. We assume the following conditions:

(K1) g : R→ R continuous with (g(u)− a)u ≥ 0 for all u ∈ R with fixed a ∈ R.

(K2) Ω bounded domain in Rn with piecewise smooth boundary.
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If g : R→ R is continuous and monotone (i.e., g(u) = eu), then (K1) is satisfied and a = g(0).
We reduce the problem to an operator equation

Au = b, u ∈ D(A) := {u ∈ X : h ∈ L1(Ω)},

where h(x) = (g(u(x)) − a)u(x) and X = W 1,2
0 (Ω). Setting Y = W k,2(Ω) ∩X , k > n/2, and

∥u∥X = ∥u∥k,2. Since k > n/2, Y ↪→ C(Ω) continuously by Sobolev embeddings. Note, that
x 7→ g(u(x)) ∈ L1(Ω).

Let g ∈ L2(Ω); then, we seek u ∈ D(A) such that

a1(u, v) + a2(u, v) = b(v), for all v ∈ Y, (2.27)

where

a1(u, v) =

∫
Ω
∇u · ∇v dx,

a2(u, v) =

∫
Ω
g(u(x))v(x) dx,

b(v) =

∫
Ω
fv dx.

Instead of (2.25) we can consider

−∆u+ (g(u)− a) = f − a in Ω.

For simplicity we assume a = 0.
We aim to apply Theorem 2.37 to a sufficiently large ball K in X . Set X+ = X ′ and

Y + = Y ′. Then we need to show the various requirements of the theorem:

1. |b(v)| ≤ C∥f∥0,2∥v∥X for all v ∈ X ; hence, b ∈ X ′.

2. |a1(u, v)| ≤ C∥u∥X∥v∥Y for all u ∈ X , v ∈ Y ; hence, there exists a unique A1 : X → Y ′

such that
⟨A1u, v⟩Y = a1(u, v), for all u ∈ X, v ∈ Y.

3. By Sobolev embeddings

|a2(u, v)| ≤
∫
Ω
|g(u)| dx∥v∥C(Ω) ≤ C∥v∥Y for all v ∈ Y ; (2.28)

hence, there exists a unique A2 : D(A) ⊂ X → Y ′ such that

⟨A2u, v⟩Y = a2(u, v), for all u ∈ D(A) ⊂ X, v ∈ Y.

4. Define A = A1 +A2; then, (2.27) is equivalent to

Au = b u ∈ D(A).

Note that Y ⊂ C(Ω) ⊂ D(A) ⊂ X .
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5. Global coerciveness of Y : g(u)u ≥ 0; therefore, by Poincaré-Friedrich

⟨Av, v⟩Y = a1(v, v) + a2(v, v) ≥ a1(v, v) ≥ d∥v∥2X for all v ∈ Y.

Hence, for v ∈ Y ,

lim
∥v∥X→∞

⟨Av, v⟩Y
∥v∥X

≥ lim
∥v∥X→∞

d∥v∥X = +∞.

6. Generalised condition (M): Let b ∈ Y ′, {un} ⊂ Y be a sequence such that un ⇀ u in X ,
and

⟨Aun, v⟩Y → b(v) for all v ∈ Y, (2.29)
lim sup
n→∞

⟨Aun, un⟩Y ≤ b(u); (2.30)

then, we need to show that Au = b.

• A1 : X → Y ′ is linear and continuous; therefore, it is also weakly continuous:

⟨A1un, v⟩Y → ⟨A1u, v⟩Y for all v ∈ Y.

• If we can show
⟨A2un, v⟩Y → ⟨A2u, v⟩Y for all v ∈ Y,

and u ∈ D(A); then, by (2.30) we complete this proof. As U ⊂ C(Ω) and

⟨A2u, v⟩ =
∫
Ω
g(u)v dx;

then, by (2.28) it is sufficient to show that g(un(x)) → g(u(x)) in L1(Ω) for a
subsequence of un. This requires additional results (Vitali convergence theorem
and Fatou lemma), hence, we skip this prove here.

7. Quasi-boundedness of A: Let {un} be a sequence in Y with un ⇀ u in X , and suppose
that

⟨Aun, un⟩Y ≤ C∥un∥X for all n ∈ N;

then, we need to show that {Aun} is bounded in Y ′. The boundedness of {un} in X ,
implies that there exists a constant C > 0 such that

lim sup
n→∞

⟨Aun, un⟩Y ≤ C.

Suppose that {Aun} is unbounded in Y ′; then, there exists a subsequence {un} such
that

∥Aun∥Y ′ →∞.

Similarly to step 6 above we can show that

⟨Aun, v⟩Y → ⟨Au, v⟩Y for all v ∈ Y

for the subsequence. By the uniform boundedness principle, Proposition 1.8 (9), the se-
quence {Aun} is bounded; which is a contradiction.

By Corollary 2.39 Au = b has a solution u ∈ D(A) if b ∈ X ′.
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CHAPTER 3

Finite Dimensional Approximation

We want to study the operator equations Au = b and nonlinear partial differential equations
when we have a finite dimensional Banach space Xn ⊂ X . There are two main reasons for
studying finite dimensional spaces:

• The proofs of several of the theorems from Chapter 2 are based on finding the solution
of an operator equation on a sequence of finite dimensional spaces which tend to the
solution on the infinite dimensional space in the limit.

• Numerical approximation of the solution on a finite dimensional space; e.g., by the
finite element method.

3.1 Galerkin approximation
We first need to define the approximation to the operator equation Au = b on a finite dimen-
sional subspace.

Definition 3.1 (Galerkin approximation). Let Xn be a finite dimensional subspace of a sepa-
rable Banach space X . Then, the Galerkin approximation of the operator equation Au = b on
Xn is: Find un ∈ Xn such that

⟨Aun, v⟩ = ⟨b, v⟩ for all v ∈ Xn. (3.1)

This can be understood as
Anun = bn

whereAn : Xn → X ′
n is the restriction ofA toXn andAnun, bn are functionals onX restricted

to Xn.

Let Xn = span{vi, i = 1, . . . , n} be a finite dimensional subspace of a Banach space X .
We can define Pn as the projection fromX toXn (a continuous linear operator) and construct
the dual operator projection P d

n : X ′
n → X ′ by

⟨fn, Pnx⟩X′
n×Xn = ⟨P d

nfn, x⟩X′×X for all fn ∈ X ′
n, x ∈ X;

cf. Section 1.3. Let An = P d
nAPn and bn = P d

nb; then, Anun = bn is the Galerkin approx-
imation to Au = b on Xn. By definition of the Galerkin approximation the following are
equivalent:

• Find un ∈ Xn such that ⟨Aun, v⟩ = ⟨b, v⟩ for all v ∈ Xn.
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• Find un ∈ Xn such that ⟨P d
nAPnun, v⟩ = ⟨P d

nb, v⟩ for all v ∈ Xn.

• Find un ∈ Xn such that Anun = bn.

For the basis vi, i = 1, . . . , n of Xn we construct the dual basis {v′i}, v′i ∈ Xn, i = 1, . . . , n; i.e.,

⟨v′j , vi⟩ = δij for i, j = 1, . . . , n.

We also denote by v′i the continuous linear extension of v′i ∈ X ′
n to X (cf. Hahn-Banach

theorem). We then define

Pnx =

n∑
i=1

⟨v′i, x⟩vi, x ∈ X.

Clear Pn is a projection in the sense that Pnx = x for all x ∈ Xn, and is a linear and continu-
ous operator from X to Xn.

Lemma 3.2. Let Xn ⊂ X be a finite dimensional subspace of a Banach space, A : X → X ′ and
An : Xn → X ′

n with An = P d
nAPn for the projection Pn : X → Xn. If A is (strictly/uniformly/

strongly) monotone, (strongly/weakly/Lipschitz/hemi-/demi-) continuous, or coercive; then, An is
also (strictly/uniformly/strongly) monotone, (strongly/weakly/Lipschitz/hemi-/demi-) continuous, or
coercive, respectively.

Remark. In general, the constants for strongly monotone and Lipschitz continuity will be the
same.

3.2 Iterative Galerkin for strongly monotone
We first consider the Galerkin approximation of the operator equation Au = f for a strongly
monotone and Lipschitz operator on a Hilbert space X and its application to the numerical
approximation of a quasilinear elliptic partial differential equation; cf. Section 2.2. By Theo-
rem 2.8 and Corollary 2.9 we know that there exists a unique u ∈ X such that Au = f for all
f ∈ X ′ and the iteration

um+1 = um − εJ−1
X (Aum − f)

converges to u.
Let Xn ⊂ X be a finite dimensional subspace of X with dimXn < ∞ and approximate

Au = f in Xn.

Theorem 3.3 (Zarantonello). LetA be a strongly monotone and Lipschitz continuous operator, f ∈
X ′, and Xn ⊂ X be a finite dimensional subspace, An = P d

nAPn, fn = P d
nf , where Pn : X → Xn

is the projection; then, Anu = fn has a unique solution un ∈ Xn and the fixed point iteration

u(m+1)
n = u(m)

n − εJ−1
Xn

(Anu
(m)
n − fn) m ≥ 0 (3.2)

converges to un for any initial u(0)n ∈ Xn with contraction factor k = (1 + ε2L2 − 2εM)1/2 if ε is
selected such that k2 ≤ 1, where M and L are the constants from strong monotonicity and Lipschitz
continuity. Furthermore, given the solution u ∈ X to Au = f from Theorem 2.8,

∥u− un∥X ≤
L

M
inf

v∈Xn

∥u− v∥X

where
inf

v∈Xn

∥u− v∥X → 0 as n→∞.
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Proof. By Lemma 3.2 An is strongly monotone and Lipschitz continuous with constants M
and L, respectively. Theorem 2.8 and Corollary 2.9 proves the existence of the solution un ∈
Xn and convergence of the iteration. Furthermore,

⟨Aun, v⟩ = ⟨Anun, v⟩ = ⟨f, v⟩ = ⟨f, v⟩ for all v ∈ Xn,

⟨Au, v⟩ = ⟨f, v⟩ for all v ∈ X ⊃ Xn,

=⇒ ⟨Aun −Au, v⟩ = 0 for all v ∈ Xn.

Therefore, by strongly monotone and Lipschitz continuity, for all z ∈ Xn,

M∥u− un∥2X ≤ ⟨Au−Aun, u− un⟩
≤ ⟨Au−Aun, u− z⟩
≤ ∥Au−Aun∥X′∥u− z∥X
≤ L∥u− un∥X∥u− z∥X .

Hence,

∥u− un∥X ≤
L

M
∥u− z∥X for all z ∈ Xn,

and, as Xn is closed,

∥u− un∥X ≤
L

M
inf

v∈Xn

∥u− v∥X .

Theorem 3.4. Let u ∈ X be the solution from Theorem 2.8 to Au = f on the Banach space X ,
u0n ∈ Xn be an initial guess umn ∈ Xn, m ≥ 1 be the approximation on the finite dimensional
subspace Xn ⊂ X after the m-th iteration of (3.2), and

ε =
M

L2
, k =

(
1− M2

L2

)1/2

;

then,

∥u− u(m)
n ∥X ≤

L

M
inf

v∈Xm

∥u− v∥+ 2L2

M2

(
1− M2

L2

)n/2

∥u(0)n − u(1)n ∥X .

Proof. By the triangle inequality, Theorem 3.3, Theorem 2.8, and the fact that 0 < k < 1,

∥u− u(m)
n ∥X ≤ ∥u− un∥X + ∥un − u(m)

n ∥X

≤ L

M
inf

v∈Xn

∥u− v∥X +
kn

1− k
∥u(0)n − u(1)n ∥X

=
L

M
inf

v∈Xn

∥u− v∥X +
kn(1 + k)

1− k2
∥u(0)n − u(1)n ∥X

≤ L

M
inf

v∈Xn

∥u− v∥X +
2kn

1− k2
∥u(0)n − u(1)n ∥X .

Replacing k with its definition completes the proof.

Remark (Practical Implementation). Choose the basis {v1, . . . , vn} of Xn and define

un =

n∑
i=1

αivi
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for some unknown vector α = (α1, . . . , αn)
⊤ ∈ Rn. Then, we can write the Galerkin approx-

imation (3.1) as

⟨Aun, vi⟩ = ⟨f, vi⟩, i = 1, . . . , n,

=⇒

〈
A

 n∑
j=1

αjvj

 , vi

〉
= ⟨f, vi⟩, i = 1, . . . , n.

This can be written as a (nonlinear) algebraic system

F (α) = ℓ,

where F : Rn → Rn is defined as

F (α) =

〈A
 n∑

j=1

αjvj

 , vi

〉m

i=1

and ℓ = (⟨f, vi⟩)ni=1. We can define the fixed point iteration (3.2) as

(u(m+1)
n , vi)X = (u(m)

n , vi)X − ε⟨Anu
m
n − fn, vi⟩, i = 1, . . . , n.

Let α(m+1), α(m) ∈ Rn be the vectors corresponding to u(m+1)
n , u

(m)
n , respectively; then

n∑
j=1

α
(m+1)
j (vj , vi)X =

n∑
j=1

α
(m)
j (vj , vi)X − ε(Fi(α

(m))− ℓi), i = 1, . . . , n,m ≥ 0.

Define the mass matrix M ∈ Rn×n as Mij = (vj , vi)X ; then we get the following linear
algebraic system for each iteration:

Mα(m+1) = Mα(m) − ε(F (α(m))− ℓ), m ≥ 0.

Remark. M is symmetric positive definite.

Example 3.1 (Iterative Galerkin method for strongly monotone & Lipschitz continuous PDE).
Consider the boundary value problem in a bounded Lipschitz domain Ω ⊂ Rd, d = 2, 3,

−∇ · (µ(x, |∇u|)∇u) = f in Ω,

u = 0 on ∂Ω,

where µ ∈ C(Ω × [0,∞)) and there exists positive constants α1 ≥ α2 > 0 such that, for
t ≥ s ≥ 0 and x ∈ Ω

α2(t− s) ≤ µ(x, t)t− µ(x, s)s ≤ α1(t− s).

This is the Example 2.1; hence, we know there exists a unique weak solution u ∈ X = H1
0 (Ω)

such that

a(u, v) :=

∫
Ω
µ(x, |∇u|)∇u · ∇v dx =

∫
Ω
fv dx =: ⟨F, v⟩ for all v ∈ H1

0 (Ω). (3.3)

We consider the following finite element discretisation:
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Figure 3.1: Example finite element mesh for Ω = (0, 1)2

• Partition Ω into non-overlapping simplices (elements) T such that Ω =
⋃

T∈Th T to cre-
ate the mesh Th. We assume standard finite element assumptions on the mesh (shape
regularity, etc.).

• Denote by hT the diameter of T and set h = maxh∈Th hT .

• On each element approximate by polynomials of total order p ≥ 1 and impose conti-
nuity of the approximation over element intersections (edges/faces).

• Define the finite dimensional space

Xh := {v ∈ H1
0 (Ω) : v|T ∈ Pp(T ), ∀T ∈ Th} ⊂ X = H1

0 (Ω),

where Pp(T ) is the space of polynomials of total order p on T ∈ Th.

We can now define the iterative Galerkin finite element method: Given an initial guess u(0)h ∈
Xh we iterate for m = 1, 2, . . . and find u(m+1)

h ∈ Xh such that

(u
(m+1)
h , vh)X = (u

(m)
h , vh)X =

α2

α2
1

(
a(u

(m)
h , vh)− ⟨F, vh⟩

)
for all vh ∈ Xh, (3.4)

where
(u, v)X =

∫
Ω
∇u · ∇v dx.

By Theorem 3.3 this converges to the solution uh ∈ Xh with contraction factor

k =

(
1− α2

2

α2
1

)1/2

< 1.

Let u ∈ Hs+1(Ω) ∩H1
0 (Ω), s ≥ 1 be the weak solution given by (3.3), u(0)h ∈ Xh be any initial

guess, and u
(m)
h ∈ Xh be the numerical solution after m steps of the iteration (3.4); then, for

m ≥ 1,

∥u− umh ∥ ≤ C
α1

α2
hmin(p,s)∥u∥s+1,2 +

2α2
1

α2
2

(
1− α2

2

α2
1

)n/2

∥u(0)h − u
(1)
h ∥1,2,

where C > 0 is a constant independent of h, α1 and α2. This result follows from Theorem 3.4
and standard finite element results to bound infv∈Xh

∥u− v∥.

45



NONLINEAR DIFFERENTIAL EQUATIONS

hℓ(x)

g(x)

x

B1(0)

Figure 3.2: Definition of g(x) for proof of Brouwer fixed point theorem

3.3 Minty-Browder & Brézis
We can also use the Galerkin approximation to prove both the Minty-Browder (Theorem 2.11)
and Brézis (Theorem 2.31) theorems from Chapter 2. In order to prove Theorem 2.11 we re-
quire the Brouwer fixed point theorem, which we can state as three related theorems.

Theorem 3.5 (Brouwer fixed point theorem (unit ball)). Let B1(0) = {x ∈ Rn : ∥x∥ ≤ 1} (unit
ball) and f : B1(0)→ B1(0) be continuous. Then, f has a fixed point x in B1(0); i.e., f(x) = x.

Proof. f : B1(0) → B1(0) is continuous; then, by Weierstrass approximation theorem there
exists a sequence of polynomials

pℓ : B1(0)→ Rn, ℓ ≥ 1,

such that
sup

x∈B1(0)

|f(x)− pℓ(x)| ≤
1

ℓ
, ℓ ≥ 1.

Then, for x ∈ B1(0),

|pℓ(x)| ≤ |f(x)|+ |pℓ(x)− f(x)| ≤ 1 +
1

ℓ
.

We can then scale pℓ(x) to define hℓ : B1(0)→ B1(0) as

hℓ(x) =

(
1 +

1

ℓ

)−1

pℓ(x),

and we have that

|f(x)− hℓ(x)| ≤ |f(x)− pℓ(x)|+ |pℓ(x)− hℓ(x)| ≤
1

ℓ
+

(
1−

(
1 +

1

ℓ

)−1
)
|pℓ(x)| → 0 (3.5)

as ℓ → ∞. We suppose that hℓ does not have a fixed point; therefore, for any x ∈ B1(0),
hℓ(x) ̸= x. We define g(x) as the intersection of a line starting at the point hℓ(x) and passing
through x with the boundary ∂B1(0); cf. Figure 3.2. We note that g : B1(0) → ∂B1(0) is a
C1 function and g(x) = x for all x ∈ ∂B1(0). The retraction principal, however, states that
there exists no C1-mapping F : B1(0) → ∂B1(0) with F (x) = x for all x ∈ ∂B1(0); hence,
we have a contradiction, meaning that hℓ(x) has a fixed point ξℓ ∈ B1(0) for all ℓ ≥ 1. The
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sequence {ξℓ}ℓ≥1 ⊂ B1(0) is a bounded sequence and, thus, has a convergent subsequence
ξℓ′ → ξ ∈ B1(0). Then, by (3.5)

|f(ξ)− ξ| = lim
ℓ′→∞

|f(ξℓ′)− ξℓ′ | = lim
ℓ′→∞

|f(ξℓ′)− hℓ′(ξℓ′)| = 0.

Hence f(ξ) = ξ, and ξ is a fixed point of f .

Theorem 3.6 (Brouwer fixed point theorem (subset Rn)). Let K ⊂ Rn, n ≥ 1, be a non-empty,
closed, convex, and bounded set, and f : K → K be a continuous mapping. Then, f has a fixed point
x ∈ K.

Proof. We only briefly outline the proof. Let z ∈ intK, K1 = {−z+x, x ∈ K} ≡ −z+K, and
T (x) = −z + x, x ∈ K, T : K → K1. Define

f1(y) = T ◦ f ◦ T−1y, y ∈ K1.

If y ∈ K1 is a fixed point of f1 then x = T−1y is a fixed point of f ; therefore, it is sufficient
to show a fixed point of f1 exists. It is possible to define a continuous mapping h : K1 →
B1(0) and show that h is a homeomorphism (which we skip, as the definition requires more
results). Then, we define g = h ◦ f1 ◦ h−1, where g : B1(0)→ B1(0) is continuous, and there
exists a fixed point w ∈ B1(0) by Theorem 3.5 such that

w = g(w) = (h ◦ f1 ◦ h−1)(w) ⇐⇒ h−1(w) = f(h−1(w)).

Therefore, y = h−1(w) ∈ K is a fixed point of f1 on K1.

Theorem 3.7 (Brouwer fixed point theorem (finite dimensional linear space)). Let X be a
finite dimensional linear space, K ⊂ X a closed, convex, and bounded subset, and f : K → K be a
continuous mapping. Then, f has a fixed point x ∈ K.

Proof. Define

x =

n∑
i=1

αixi,

where x1, . . . , xn are the basis for X , dimX = n, and α = (α1, . . . , αn). Then, defining
T : X → Rn as T (x) = α, it is sufficient to show that T is a homeomorphism such that
Theorem 3.6 can be applied to show g = T ◦ f ◦ T−1 has a fixed point.

Exercise 3.1. Prove Theorem 3.7.

Remark. We note several points about Brouwer fixed point theorem:

1. In the one-dimensional case, let f : [a, b] → [a, b]. Then, defining g(x) = f(x) − x, we
have that

g(a) = f(a)− a ≥ a− a = 0

g(b) = f(b)− b ≤ b− b = 0

=⇒ g(b) ≤ 0 ≤ g(a).

The intermediate value theorem states that there exists a ξ ∈ [a, b] with g(ξ) = 0 ⇐⇒
f(ξ) = ξ. Hence, Brouwer fixed point theorem is equivalent to the intermediate value
theorem.
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y

x

y = x
f(x)

Figure 3.3: Simple proof that fixed point for Brouwer is not unique — fixed points of f(x)
occur when f(x) intersects with y = x

2. The fixed point may not necessarily be unique, cf. Figure 3.3.

3. The fixed point iteration xn+1 = f(xn) may not necessarily converge.

4. The theorem does not hold for infinite dimensional spaces, see Kakutani’s counter-
example.

To prove Minty-Browder we use a corollary of the Brouwer fixed point theorem.

Corollary 3.8. Let BR(0) = {x ∈ Rn : ∥x∥ ≤ R} for fixed R > 0, the functions gi : BR(0) → R,
i = 1, . . . , n be continuous, and

n∑
i=1

gi(x)xi ≥ 0 for all x : ∥x∥ ≤ R,

where x = (x1, . . . , xn) ∈ Rn. Then,

gi(x) = 0, i = 1, . . . , n,

has a solution x ∈ Rn such that ∥x∥ ≤ R.

Proof. Set g(x) = (g1(x), . . . , gn(x)) and suppose that g(x) ̸= 0 for all x ∈ BR(0). Then, define

f(x) =
−Rg(x)
∥g(x)∥

,

and by Theorem 3.6 there exists a fixed point x such that x = f(x) and ∥x∥ = ∥f(x)∥ = R.
Furthermore,

n∑
i=1

gi(x)xi = −
1

R
∥g(x)∥

n∑
i=1

fi(x)x
2
i < 0,

which contradictions the assumption on gi. Therefore, there must exist a x ∈ BR(0) such
that g(x) = 0.

We can now prove Theorem 2.11, but we first recall the theorem along with a result about
the existence and convergence of the Galerkin approximation which we prove at the same
time.
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Theorem 2.11 (Minty-Browder). Let A : X → X ′ be a monotone, coercive, and hemicontinuous
operator on a real reflexive Banach space X . Then, for each f ∈ X ′ the equation Au = f has at least
one solution (A is surjective) and the set of all solutions is bounded, convex, and closed. Additionally,
if A is strictly monotone then the solution is unique, the inverse A−1 exists and

A uniformly monotone =⇒ A−1 continuous

A strongly monotone =⇒ A−1 Lipschitz continuous

Corollary 3.9. Let dimX =∞ andX be separable in Theorem 2.11, andXn = span{v1, . . . , vn} ⊂
X be a finite dimensional subspace; then, the Galerkin equation

⟨Anun, vi⟩ = ⟨f, vi⟩ i = 1, . . . , n (3.6)

has a solution

un =
n∑

i=1

cinvi,

where cin ∈ R, i = 1, . . . , n, and the sequence {un} has a weakly convergent subsequence un′ ⇀ u
in X as n→∞, where u ∈ X is the solution to Au = f from Theorem 2.11.

IfA is strictly monotone then the sequence un ⇀ u and ifA is uniformly monotone then un → u.

Proof of Theorem 2.11 and Corollary 3.9. Note that we only prove for X separable. We start by
proving the existence of the solution to the Galerkin equation (3.6) and that the sequence of
Galerkin approximations converges to the solution of Au = f in X .

1. Set g(u) = ⟨Au− f, u⟩ and gk = ⟨Au− f, vk⟩, k = 1, . . . , n. As A is coercive

g(u)

∥u∥
→ +∞ as∥u∥ → ∞;

therefore, there exists a constant R such that

g(u) > 0 for all ∥u∥ > R. (3.7)

We can write the Galerkin equation (3.6) as

gk(un) = 0, un ∈ Xn, k = 1, . . . , n, (3.8)

where

un =

n∑
k=1

cknvk.

Hence, (3.8) is a nonlinear system of real-valued unknowns c1n, . . . , cnn ∈ R. As A is
demicontinuous (see Lemma 2.3), u 7→ g(x) is a continuous map on X . Then, for all
un ∈ Xn with ∥un∥ = R we have from (3.7)

n∑
i=1

gk(un)ckn =

〈
Aun − f,

n∑
i=1

cknvk

〉
= g(un) > 0;

hence, by Corollary 3.8 we have a solution un to (3.8).
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2. Let un be a solution of (3.8), then g(un) = 0; hence, from (3.7)

∥un∥ ≤ R for all n.

Hence, the sequence {un} is bounded. If u is a solution ofAu = f then g(u) = 0; hence,

∥u∥ ≤ R.

3. As A is monotone it is also locally bounded; i.e., there exists r, δ ∈ R such that

∥v∥ ≤ r =⇒ ∥Av∥ ≤ δ.

A is monotone; then

⟨Aun −Av, un − v⟩ ≥ 0 =⇒ ⟨Aun, v⟩ ≤ ⟨Aun, un⟩ − ⟨Av, un − v⟩.

By the Galerkin approximation (3.1)

⟨Aun, un⟩ = ⟨f, un⟩ for all n;

hence,
|⟨Aun, un⟩| ≤ ∥f∥∥un∥ ≤ R∥f∥ for all n.

By the definition of the norm on the dual space

∥Aun∥ = sup
∥v∥=r

1

r
⟨Aun, v⟩

≤ sup
∥v∥=r

1

r
(⟨Av, v⟩+ ⟨Aun, un⟩ − ⟨Av, un⟩)

≤ sup
∥v∥=r

1

r
(δr +R∥f∥+ δR) .

Hence, the sequence {Aun} is bounded.

4. As X is a reflexive Banach space the bounded sequence {un} has a weakly convergent
subsequence (see Proposition 1.8 (4)) {un}; i.e., un ⇀ u in X as n → ∞. From the
Galerkin approximation

lim
n→∞

⟨Aun, w⟩ = ⟨f, w⟩, for all w ∈
∞⋃
n=1

Xn.

As
⋃∞

n=1Xn is dense in X and {Aun} is bounded in X ′; then, the above holds for all
x ∈ X ; i.e., Aun ⇀ f in X ′ as n→∞. Furthermore,

lim
n→∞

⟨Aun, un⟩ = ⟨f, u⟩.

By the monotonicity of A

⟨Aun, un⟩ − ⟨Av, un⟩ − ⟨Aun −Av, v⟩ = ⟨Aun −Av, un − v⟩ ≥ 0.
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Let n→∞; then,

⟨f, u⟩ − ⟨Av, u⟩ − ⟨f −Av, v⟩ ≥ 0,

=⇒ ⟨f −Av, u− v⟩ ≥ 0 for all v ∈ X.

Let v = u− tw, t > 0; then, ⟨f − A(u− tw), w⟩ ≥ 0. As A is hemicontinuous, let t→ 0;
then,

⟨f −Au,w⟩ ≥ 0 for all w ∈ X =⇒ Au = f.

Note that in general for A hemicontinuous

⟨f −Av, u− v⟩ ≥ 0 for all v ∈ X =⇒ Au = f. (3.9)

So the limit u of the weakly convergent subsequence {un} is a solution of Au = f .

This completes the proof of the existence of the solution to the Galerkin approximations,
the existence of the solution to Au = f and the weak convergence of a subsequence of the
Galerkin approximations to u.

We now proof the properties of the set of all solutions S to Au = f for a fixed f ∈ X ′. We
note that S is non-empty due to step 4 above. Furthermore, we can show that

1. S is bounded by step 2 above.

2. S is convex: Let u1, u2 ∈ S; i.e.,Au1 = f ,Au2 = f . Define u = t1u1+t2u2, 0 ≤ t1, t2 ≤ 1,
t1 + t2 = 1; then,

⟨f −Av, u− v⟩ = t1⟨f −Av, u1 − v⟩+ t2b−Av, u2 − v
= t1⟨Au1 −Av, u1 − v⟩+ t2Au2 −Av, u2 − v
≥ 0

for all v ∈ X ; hence, Au = f by (3.9), which implies u ∈ S.

3. S is closed: Let Avn = f for all n, vn → u; then,

⟨f −Av, u− v⟩ = lim
n→∞

⟨Avn −Av, vn − v⟩ ≥ 0 for all v ∈ X.

By (3.9), Au = f ; hence, u ∈ S and S is closed.

Now assume that A is strictly monotone and Au1 = f , Au2 = f , u1 ̸= u2; then,

⟨Au1 −Au2, u1 − u2⟩ > 0,

⟨f − f, u1 − u2⟩ > 0,

⟨0, u1 − u2⟩ > 0.

This is a contradiction; hence, u1 = u2 must be true and the solution to Au = f is unique.
The rest of the proof is left as an exercise.

We also can prove Theorem 2.31 for existence of solution to Au = f for pseudomonotone
operators. To this end, we first study a result about convergence of the Galerkin approxima-
tions for operators satisfying (M) or (S)0.
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Proposition 3.10. Let A : X → X ′ be a bounded operator satisfying (M) on a real, separable,
reflexive, and infinite dimensional Banach space X , and f ∈ X ′. Let {v1, v2, . . . } be the basis of X
and there exist R > 0 and n0 ∈ N such that for all n ≥ n0

⟨Aun − f, vk⟩ = 0, un ∈ Xn, k = 1, . . . , n,

where Xn = span{v1, . . . , vn}, has a solution un with ∥un∥ ≤ R. Then,

a) there exists a subsequence {un′} with un′ ⇀ u as n → ∞ such that u ∈ X is a solution of
Au = f ,

b) if Au = f has a unique solution u ∈ X then un ⇀ u as n→∞, and

c) if A satisfies (S)0 and is demicontinuous instead of satisfying (M) then un′ → u and un → u
in steps (a) and (b), respectively.

Exercise 3.2. Prove step (a) of Proposition 3.10 and the first part of step (c); i.e., un′ → u.

We can now prove Theorem 2.31, but we first recall the theorem along with a result about
the existence and convergence of the Galerkin approximation which we prove at the same
time.

Theorem 2.31 (Brézis). Assume that the nonlinear operator A : X → X ′ is pseudomonotone,
bounded, and coercive on a real, separable, reflexive Banach space; then, the equation

Au = f,

has a solution u ∈ X for every f ∈ X ′.

Corollary 3.11. For a fixed f ∈ X ′ and each n ∈ N the Galerkin approximation

⟨Aun − f, vk⟩ = 0, un ∈ Xn, k = 1, . . . , n,

where Xn = span{v1, . . . , vn} ⊂ X and A : X → X ′ satisfies Theorem 2.31, has a solution
un ∈ Xn. Additionally, there exist a subsequence {un′} such that un′ ⇀ u, where u ∈ X is a
solution of Au = f .

If A satisfies (S)+, then un′ → u, and if Au = f has a unique solution u ∈ X , then un converges
(weakly or strongly) to u.

Proof of Theorem 2.31 and Corollary 3.11. By Lemma 2.30 A is demicontinuous and satisfies
(M). By identical proof to the steps 1–2 of the proof of Theorem 2.11/Corollary 3.9 the
Galerkin approximation has a solution un such that ∥un∥ ≤ R for all n and fixed R > 0.
Hence, the conditions of Proposition 3.10 are met, which completes the proof.

Example 3.2 (Galerkin method for the p-Laplacian). Consider the boundary value problem,
in the bounded Lipschitz domain Ω ∈ Rn, n ∈ N,

−∇ · (|∇u|p−2∇u) = f in Ω

u = 0 on ∂Ω,
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where p ∈ (1,∞), f ∈ Lq(Ω), 1/p+ 1/q = 1. This is similar to Exercise 2.6 and, hence similarly,
there exists a unique weak solution u ∈W k,p

0 (Ω) such that

⟨Au, v⟩ = a(u, v) :=

∫
Ω
|∇u|p−2∇u · ∇v dx =

∫
Ω
fv dx =: ⟨F, v⟩

for all v ∈ W k,p
0 (Ω). As per Example 3.1 we consider a finite element method (Galerkin

approximation) by partitioning Ω into non-overlapping simplices (elements) T such that
Ω =

⋃
T∈Th T to create the mesh Th, with standard assumptions on the mesh from the theory

of finite element methods (e.g., shape regularity). Defining the finite element space

Xh := {v ∈ C (Ω) : v|T ∈ P1(T ) ∀T ∈ Th} ⊂W k,p
0 (Ω) =: X

(i.e., space of continuous piecewise linear functions) we can define the finite element approx-
imation: find uh ∈ Xh such that

a(uh, vh) = ⟨F, vh⟩ for all vh ∈ Xh. (3.10)

Define the basis of Xh as {ϕi}Ni=1, N = dimXh, (e.g., the hat functions at each interior vertex
of the mesh) and

uh =

N∑
j=1

αjϕj , αj ∈ R, j = 1, . . . , N ;

then (3.10) is equivalent to

a

 N∑
j=1

αjϕj , ϕi

 = ⟨F, ϕj⟩ i = 1, . . . , N,

=⇒
N∑
j=1

αj

∫
Ω

∣∣∣∣∣
N∑
k=1

αkϕk

∣∣∣∣∣
p−2

∇ϕj · ∇ϕi dx =

∫
Ω
fϕj i = 1, . . . , N.

hence, we need to solve a nonlinear system of algebraic equations for the unknown α =
(α1, . . . , αN ) ∈ RN using nonlinear solvers or linearization of the PDE; cf. Chapter 4. Note
that as h→ 0, N →∞ and uh ⇀ u (as A is strictly monotone). See Barrett and Liu (1993) for
more details of the method, including error analysis.

3.4 Potential operator
We want to study another finite dimensional approximation. To this end, we first study
potential operators, which are required for the approximation, and provide further useful
information for certain problems.

Definition 3.12. LetX be a Banach space; then, the operatorA : X → X ′ is a potential operator
if there exists a functional F ∈ X ′ such that at each x ∈ X there exists a Gâteaux derivative
F ′
G such that

⟨Ax, y⟩ = F ′
G(x, y) = lim

t→0

F (x+ ty)− F (x)
t

for all x, y ∈ X . The functional F is called the potential of A. We also denote the Gâteaux
derivative by F ′ : X → X ′, where A = F ′; i.e., ⟨F ′x, y⟩ = F ′

G(x, y).
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In order to show properties of potential operators we require an additional definition of
continuity.

Definition 3.13. Let X be a Banach space and A : X → X ′; then, A is radially continuous if
the function

φu,v(t) := ⟨A(u+ tv), v⟩

is continuous on [0, 1] for all u, v ∈ X .

Lemma 3.14. If A : X → X ′ is a monotone operator on a Banach space X ; then, the following are
equivalent:

• A is hemicontinuous,

• A is demicontinuous,

• A is radially continuous,

• ⟨f −Av, u− v⟩ ≥ 0 for all v ∈ X =⇒ Au = f , f ∈ X ′,

• A satisfies (M).

We now state various properties about a potential operator A : X → X ′ on a real Banach
space X , and the solution of Au = f , f ∈ X ′.

Lemma 3.15. If A : X ∈ X ′ is a radially continuous potential operator with potential F ; then, for
any x ∈ X ,

F (x) = F (0) +

∫ 1

0
⟨Atx, x⟩ dt.

Proof. Choose x ∈ X and define φ(t) = F (tx) for t ∈ [0, 1]; then,

φ′(t) = lim
s→0

1

s
(F (tx+ sx)− F (tx)) = ⟨Atx, x⟩.

As A is radially continuous then ⟨Atx, x⟩ continuous on [0, 1]; hence,

F (x)− F (0) = φ(1)− φ(0) =
∫ 1

0
φ′(t) dt =

∫ 1

0
⟨Atx, x⟩dt.

Theorem 3.16. Let X be a real Banach space and F a smooth functional (there exists a Gâteaux
derivative derivative F ′ at each point x ∈ X). Then, the potential operator A = F ′ is monotone if
and only if,

F (y) ≥ F (x) + ⟨Ax, y − x⟩,

for any x, y ∈ X .

Lemma 3.17. Let A : X → X ′ be a potential operator with potential F . Then, for u ∈ X to be a
solution of Au = f , f ∈ X ′ it is sufficient for

F (u)− ⟨f, u⟩ = min
v∈X

(F (v)− ⟨f, v⟩), f ∈ X ′

to be fulfilled. If A is monotone; then this condition is necessary.
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Proof. Let the functional g(v) = F (v) − ⟨f, v⟩, v ∈ X achieve its minimum at u ∈ X and for
every v ∈ X we have the Gâteaux derivative g′(v) which satisfies

⟨g′(v), h⟩ = ⟨F ′(v), h⟩ − ⟨f, h⟩ ⇐⇒ g′(v) = F ′(v)− f.

Then, g′(u) = 0 (as its a minimum), and, therefore, for any h ∈ X

0 = ⟨F ′(v), h⟩ − ⟨f, h⟩ = ⟨Au− f, h⟩;

hence, Au = f .
Suppose that A is monotone and Au = f . Then, for any v ∈ X , by Theorem 3.16,

F (v) ≥ F (u) + ⟨Au, v − u⟩;

hence,
(F (v)− ⟨f, v⟩)− (F (u)− ⟨f, u⟩) = F (v)− F (u)− ⟨Au, v − u⟩ ≥ 0.

Therefore, u ∈ X gives the minimum of F (v)− ⟨f, v⟩.

Lemma 3.18. Every monotone potential operator is demicontinuous.

Lemma 3.19. Let A : X → X ′ be a monotone potential operator; then, u ∈ X ′ is a solution to
Au = f , f ∈ X ′, if and only if∫ 1

0
⟨Atu, u⟩ dt− ⟨f, u⟩ = min

v∈X

(∫ 1

0
⟨Atv, v⟩ dt− ⟨f, v⟩

)
.

Theorem 3.20. Let A : X → X ′ be a monotone, coercive, potential operator. Then Au = f has a
solution for every right-hand side f ∈ X ′. If A is strictly monotone then the solution is unique.

Proof. This follows from Lemma 3.18 and Minty-Browder (Theorem 2.11) on a Banach space
X .

Corollary 3.21. The potential

F (x) =

∫ 1

0
⟨Atx, x⟩dt, x ∈ X,

of a monotone, coercive, potential operator A : X → X ′ is bounded from below.

Proof. By Theorem 3.20 there exists a solution u ∈ X to Au = 0; then, by Lemma 3.17
F (u) ≤ F (v), for all v ∈ X .

Definition 3.22. Let F be a non-trivial functional on a reflexive Banach space X ; then,

F ∗(x∗) = sup
x∈X

(⟨x∗, x⟩ − F (x)), x ∈ X ′,

is called the dual functional (or associated, adjoint) to F .

Lemma 3.23. Let A : X → X ′ and let there exist the inverse A−1 : X ′ → X ; then,

A monotone potential operator ⇐⇒ A−1 monotone potential operator.
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Theorem 3.24. Let A : X → X ′ be a strictly monotone, coercive, potential operator on a reflexive
Banach space X . Then, there exists an inverse A−1 : X ′ → X which is a strictly monotone potential
operator. The functional

F (x) =

∫ 1

0
⟨Atx, x⟩dt, x ∈ X,

is the potential of A and, for any x ∈ X and x∗ ∈ X ′,

F ∗(x∗) = F ∗(0) +
∫ 1

0
⟨x∗, A−1tx∗⟩ dt,

F ∗(0) = −F (A−10),

F (x) + F ∗(x∗)− ⟨x∗, x⟩ ≥ 0,

F (x) + F ∗(x∗)− ⟨Ax, x⟩ = 0,

where F ∗ is the potential of A−1.

Corollary 3.25. Let A : X → X ′ be a strictly monotone, coercive, potential operator with potential
F . For any f ∈ X ′ there exists a unique solution u ∈ X of Au = f which minimises the potential of
the problem G = F − f and

G(u) ≡ F (u)− ⟨f, u⟩ = min
v∈X

(∫ 1

0
⟨Atv, v⟩ dt = ⟨f, v⟩

)
= −

∫ 1

0
⟨f,A−1tf⟩dt+

∫ 1

0
⟨AtA−10, A−10⟩ dt.

3.5 Ritz method
We now look at another finite dimensional approximation of an operator A : X → X ′ on a
real reflexive Banach space X .

Definition 3.26. Let A : X → X ′ be a potential operator with potential F , and {hi}i≥1 be a
dense set in X ; then un ∈ Xn is called the n-th Ritz approximation of Au = f , f ∈ X ′, if it
holds that

F (un)− ⟨f, un⟩ = min
v∈Xn

(F (v)− ⟨f, v⟩),

where Xn = span{hi, i = 1, . . . , n}.

From the theory of linear operator equations it is known that the Galerkin and Ritz ap-
proximation for symmetric non-negative operators given the same approximation under cer-
tain conditions. Can we show a similar result for nonlinear operator?

Theorem 3.27. Let A : X ∈ X ′ be a monotone potential operator with potential F . Then, un ∈ Xn

is the Ritz approximation of Au = f , f ∈ X ′, if and only if un is the Galerkin approximation in Xn;
i.e, Anun = fn, n ∈ N, where fn is the projection of f onto Xn.

Proof. Let un be the Ritz approximation. Then, for any t ∈ R and h ∈ Xn, set v = un+ th and
by the definition of the Ritz approximation (minimisation)

F (un + th)− F (un) ≥ t⟨f, h⟩;
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hence, for any h ∈ Xn,

0 = lim
t→0

1

t
(F (un + th)− F (un))− ⟨f, h⟩ = ⟨Aun − f, h⟩.

This implies that ⟨Aun, h⟩ = ⟨f, h⟩ for all h ∈ Xn, which is the Galerkin approximation.
Let un ∈ Xn be the Galerkin approximation. Then, as A is monotone by Theorem 3.16

F (y) ≥ F (x) + ⟨Ax, y − x⟩ for all x, y ∈ X;

hence, for any v ∈ Xn, setting y = v and x = un,

(F (v)− ⟨f, v⟩)− (F (un)− ⟨f, un⟩) ≥ ⟨Aun − f, v − un⟩ = 0;

=⇒ F (un)− ⟨f, un⟩ ≤ F (v)− ⟨f, v⟩ ∀v ∈ Xn.

So, un ∈ Xn minimises F (v)− ⟨f, v⟩ and, hence, is the Ritz approximation.

Theorem 3.28. Let A : X → X ′ be a strictly monotone, coercive, potential operator which satisfies
(S). Then, Au = f has a unique solution for every right hand side f ∈ X ′ to which the sequence
{un} of Ritz approximations converges.

3.6 Variational problems & quasilinear PDEs
We now look at why the potential operator and the Ritz approximation are useful. Consider
the variational problem

min
u∈X

F (u), F (u) :=

∫
Ω
L(x, δku(x)) dx,

where

X := {u ∈ C2k(Ω) : ∂αu = 0 on ∂Ω ∀α, |α| ≤ k − 1},
L : Ω× Rκ → R;

see, for example, Example 1.1.
We can show that for u ∈ X to be a solution it is necessary for u to satisfy the Euler

equation: ∑
|α|

(−1)|α|∂αLα(x, δku(x)) = 0 in Ω,

∂αu = 0 on ∂Ω for all α, |α| ≤ k − 1,

where Lα : Ω × Rκ → R is the derivative of L with respect to ∂αu. This is the divergence
form of a quasilinear PDE.

Example 3.3 (Variational problem as second-order quasilinear PDE). Consider, for Ω ∈ RN ,
p ≥ 2, the variational problem

min
u

∫
Ω

(
p−1

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣p + g(u)− f(x)

)
dx, such that u = 0 on ∂Ω. (3.11)
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Let u ∈ C2(Ω) be the solution of (3.11); then, define the boundary value problem

−
N∑
i=1

∂

∂xi

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2 ∂u

∂xi
+ g′(u) = f in Ω, (3.12)

u = 0, on ∂Ω. (3.13)

Let

F1(u) =

∫
Ω
p−1

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣p dx, F2(u) =

∫
Ω
g(u) dx,

X =W k,p
0 (Ω), f ∈ Lq(Ω), 1/p + 1/q = 1. We know that there exists a b ∈ X ′ such that

⟨b, u⟩ =
∫
Ω
fudx for all u ∈ X.

We can write (3.11) as
min
u∈X

(F (u)− ⟨b, u⟩),

where F = F1 + F2. We have that

⟨F ′u, h⟩ :=
∫
Ω

(
N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2 ∂u

∂xi

∂h

∂xi
+ g′(u)h

)
dx;

hence, (3.12)–(3.13) corresponds to the weak formulation

⟨F ′u, h⟩ = ⟨b, h⟩ for all h ∈ X,

with Ritz approximation

⟨F ′un, vi⟩ = ⟨b, vi⟩, i = 1, . . . , n,

for un ∈ Xn = span{v1, . . . , vn}, where v1, v2, . . . form a basis ofX . Assuming that g ∈ C1(R)
satisfies, for all u ∈ R,

g(u) ≥ −C1u− C2,

|g(u)| ≤ C3(1 + |u|p),
|g′(u)| ≤ C4(1 + |u|p−1),

where C1, C2, C3, and C4 are constants. Then, a solution u ∈ X to (3.11) exists and satisfies
(3.12)–(3.13).

We look at the general variational problem,

min
u

(∫
Ω
L(x, δku(x)) dx−

∫
Ω
fudx

)
∂αu = 0 on ∂Ω, ∀α, |α| ≤ k − 1,

which can be considered as the boundary value problem∑
|α|

(−1)|α|∂αaα(x, δku(x)) = f(x) in Ω, (3.14)
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∂αu = 0 on ∂Ω for all α, |α| ≤ k − 1, (3.15)

with aα = Lα for all α, |α| ≤ k.
This is identical to the problems studied in Chapter 2; so when are the problems we

studied in that chapter variational problems? We assume that for a smooth L that Lαβ = Lβα

for all multi-indices α, β, where Lαβ is the derivative of L with respect to ∂αu and then ∂βu.
Therefore, it follows that

∂aα(x, ξ)

∂ξβ
=
∂aβ(x, ξ)

∂ξα
for all |α|, |β| ≤ k. (3.16)

So, if aα ∈ C1(()Ω×Rκ) and (3.16) holds, then there exists a functional L : Ω×Rκ → R such
that aα = Lα, for all α, |α| ≤ k on Ω×Rκ if Ω is a simply connected domain in Rκ. Therefore,
(3.14)–(3.15) is a variational problem if (3.16) holds.

In order to consider in a similar way to Example 3.3 we assume that we can write

L(x, ξ) = L(1)(x, ξ) + L(2)(x, ξ)

where the following assumptions hold for all (x, ξ) ∈ Ω× Rκ:

(L1) Ω is a bounded region on Rn, n ≥ 1, 1 < p < ∞, 1/p + 1/q = 1, k ≥ 1, X = W k,p
0 (Ω)

and f ∈ Lq(Ω).

(L2) Growth condition: L ∈ C (Ω× Rκ) and

|L(x, ξ)| ≤ C1

|a1(x)|+ ∑
|α|≤k

|ξα|p
 ,

where C1 > 0 constant and a1 ∈ L1(Ω). Additionally, this should hold for L(1) and
L(2).

(L3) Coerciveness condition:

L(x, ξ) ≥ C2

∑
|α|≤k

|ξα|p − C3ξ0 − a2(x),

where C2, C3 > 0 constant and a2 ∈ L1(Ω).

(L4) Convexity: ξ 7→ L(1)(x, ξ) convex on Rκ for all x ∈ Ω.

(L5) Degenerate perturbation: L(2) depends only on x and partial derivatives of order less
than or equal to k − 1.

(L6) Growth condition:

|Lα(x, ξ)| ≤ C4

|b(x)|+ ∑
|α|≤k

|ξα|p−1

 ,

where C4 > 0 constant and b ∈ Lq(Ω).
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(L7) Uniform monotonicity condition:∑
|α|≤k

(
L(1)
α (x, ξ)− L(1)

α (x, η)
)
(ξα − ηα) ≥ C5

∑
|α|=k

|ξα − ηα|p,

for all ξ, η ∈ Rκ, x ∈ Ω, with constant C5 > 0.

We note these are similar to the assumptions from Chapter 2.

Lemma 3.29. We note that (L4) can be simplified according to the properties of L(1).

1. If L(1) ∈ C1(Ω× Rκ) then (L4) is equivalent to∑
|α|≤k

(
L(1)
α (x, ξ)− L(1)

α (x, η)
)
(ξα − ηα) ≥ 0,

for all ξ, η ∈ Rκ, x ∈ Ω; i.e., the same as the monotonicity condition (C1) from Chapter 2.

2. If L(1) ∈ C2(Ω× Rκ) then (L4) is equivalent to∑
|α|≤k

∑
|β|≤k

L
(1)
αβ(x, ξ)ηαηβ ≥ 0,

for all ξ, η ∈ Rκ, x ∈ Ω; i.e., the eigenvalues of the symmetric Hessian matrix (L
(1)
αβ) are

non-negative for all (x, ξ) ∈ Ω× Rκ.

We can define

Fj(u) =

∫
Ω
L(j)(x, δku(x)) dx, F = F1 + F2, ⟨b, u⟩ =

∫
Ω
fudx,

and consider the generalised variational problem

min
u∈X

(F (u)− ⟨b, u⟩) (3.17)

which can be considered as the solution of the boundary value problem

⟨F ′(u), h⟩ = ⟨b, h⟩ for all h ∈ X, (3.18)

where

⟨F ′(u), h⟩ =
∫
Ω

∑
|α|≤k

Lα(x, δku(x))∂
αhdx.

Theorem 3.30. If (L1)–(L5) hold; then, the variational problem (3.17) has a solution u ∈ X . Addi-
tionally, if (L6) holds, then the continuous derivatives F ′

1, F ′
2, and F ′ exist and u ∈ X satisfies (3.18).

Furthermore, F ′
1 is monotone amd F ′

2 is strongly continuous. If L(2) ≡ 0; then, (3.17) and (3.18) are
equivalent.
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Corollary 3.31. If (L1)–(L7) hold and L(2) ≡ 0; then, (3.17) and (3.18) has a unique solution u ∈ X
and the sequence {un} obtained by the Ritz approximation

⟨F ′(un), vi⟩ = ⟨b, vi⟩, i = 1, . . . , n,

for un ∈ Xn = span{v1, . . . , vn}, with v1, v2, . . . forming a basis ofX , converges strongly to u ∈ X .
Furthermore, F ′ is uniformly monotone in the sense that there exists a constant C > 0 such that

⟨F ′(u)− F ′(v), u− v⟩ ≥ C∥u− v∥p

for all u, v ∈ X .

Remark. We note that the definition of uniformly monotone in Corollary 3.31 is the same as
in Definition 2.1 with a(∥u− v∥) = C∥u− v∥p−1, as p > 1.
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CHAPTER 4

Linearisation & Iterative Methods

In order to find a solution, or a Galerkin approximation of the solution, to a nonlinear par-
tial differential equation it is necessary to consider linearised versions of the the problem,
and then use iterative methods to converge the nonlinear solution; see, for example, the
Section 3.2.

4.1 Kačanov method
We first look at a classical linearisation technique by means of an example.

Example 4.1 (Kačanov method for conservation law (Zeidler, 1989a, Section 25.13)). Consider
the conservation law equation

−∇(µ(|∇u|2)∇u) = f in Ω,

u = g on ΓD,

−µ(|∇u|2) ∂u
∂n

= h on ΓN ,

where ∂Ω = ΓD ∪ ΓN . On the 1950s engineers started using the following iteration method:
Given an initial guess u(0), such that u(0) = g on ΓD, solve for m = 0, 1, . . .

−∇(µ(|∇u(m)|2)∇u(m+1)) = f in Ω,

u = g on ΓD,

−µ(|∇u(m)|2)∂u
(m+1)

∂n
= h on ΓN .

This is called a Kačanov iteration. This is a linear partial differential equation in the unknown
u(m). We note that this has a simple physical interpretation which justifies the linearisation:
if u represents temperature; then

j = −µ(|∇u|2)∇u

is the current density vector of the heat flow and µ is the heat conductivity of the mate-
rial. Hence, the unknown approximation u(m+1) is determined by the heat conductivity
µ(|∇u(m)|2) corresponding to the known approximation u(m). This method corresponds to a
variational problem

min
u

(∫
Ω
(β(|∇u|)− fu) dx+

∫
ΓN

huds

)
, u = g on ΓD,
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and the iteration method corresponds to the quadratic variational problem for u(m+1)

min
u(m+1)

(∫
Ω

(
1

2
µ(|∇u(m)|2)|∇u(m+1)| − fu(m+1)

)
dx+

∫
ΓN

huds

)
, u(m+1) = g on ΓD.

Set X = {u ∈W 1,2(Ω) : u = g on ΓD}; then, these can be written as

min
u∈X

(F (u)− b(u)) , (4.1)

min
u(m+1)∈X

(
a(u(m);u(m+1), u(m+1))− b(u(m+1))

)
, (4.2)

respectively, where

b(u) =

∫
Ω
fudx−

∫
ΓN

huds,

β(s) =
1

2

∫ s2

0
µ(t) dt,

F (u) =

∫
Ω
β(|∇u|) dx,

a(u; v, w) =

∫
Ω
µ(|∇u|2)∇v · ∇w dx.

We note that a is (bi)linear in the final two arguments. We assume that Ω is a bounded region
in Rn such that∂Ω = ΓD∪ΓN , ΓD ̸= ∅, f ∈

[
W 1,2(()Ω)

]′, g ∈ [W 1/2,2(ΓD)
]′

, h ∈
[
W 1/2,2(ΓN )

]′
(e.g., f ∈ L2(Ω), g ∈ W 1,2(Ω), h ∈ L2(ΓN )), µ : R+ → R+ is C1, and there exists positive
constants a, c, d such that

a ≤ µ(s) ≤ c, µ′(s) ≥ 0, β′′(s) = µ′(s2)s2 + µ(s2) ≥ d, for all s ≥ 0.

Then, (4.1) has a unique solution; cf., Zeidler (1989a, Section 25.13). If u(0) ∈ X is given, then
for m = 0, 1, . . . (4.2) has a unique solution u(m+1) and the Kačanov iteration converges:

u(m) → u ∈W 1,2(Ω) as n→∞.

Let ΓN = ∅ and g = 0 for simplicity; then, we can define the weak formulation of the method
and iteration:

Find u ∈ X such that ⟨Au, v⟩ = ⟨b, v⟩ for all v ∈ X,
Find u(m+1) ∈ X such that ⟨L[u(m)]u(m+1), v⟩ = ⟨b, v⟩ for all v ∈ X,

where A : X → X ′ and L[u] : X → X ′ are defined by

⟨Au, v⟩ = a(u;u, v),

⟨L[u]u, v⟩ = a(u;u, v),

for all u, u, v ∈ X . Note that L[u] is a linearisation of A at u such that L[u]u = Au. Similarly
we can compute the Galerkin approximations on a finite dimensional subspace Xn ⊂ X :

Find un ∈ X such that ⟨Aun, v⟩ = ⟨b, v⟩ for all v ∈ Xn,

Find u(m+1)
n ∈ X such that ⟨L[u(m)

n ]u(m+1)
n , v⟩ = ⟨b, v⟩ for all v ∈ Xn.

Prove that un converges to u and u(m)
n converges to u(m) follow from standard nonlinear and

linear results.
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4.2 Newton method
Let X and Y be two Banach spaces. Given an open subset Ω ⊂ X and a nonlinear operator
A : Ω→ Y we consider the nonlinear operator equationAu = 0 for some unknown solutions
u ∈ Ω. Let A′ be the Fréchet derivative of A in Ω (or a suitable subset of Ω); then, the classical
Newton method is given by the following: For an initial guess u(0) ∈ X the we define the
iteration

u(m+1) = u(m) + δ(m), m ≥ 0, (4.3)

where the update δ(m) is given as the solution of the linear equation

A′(u(m))δ(m) = −Au(m), m ≥ 0.

For this to be well-defined A′(u(m)) must be invertible for all m ≥ 0 and {u(m)}m≥0 ⊂ Ω.
Let Br(x) := {z ∈ X : ∥x − z∥X < r} be the open ball in X with centre x and radius r.

Then, we state a restricted convergence result for the Newton method.

Theorem 4.1 (Kantorovich). Let Ω0 ⊂ Ω be an open convex subset,A be Fréchet differentiable with

∥A′(x)−A′(y)∥ ≤ L∥x− y∥ x, y ∈ Ω0.

Assume that u(0) ∈ Ω0 is such that

1.
[
A′(u(0))

]−1 exists and there exists constants β, η such that∥∥∥∥[A′(u(0))
]−1
∥∥∥∥ ≤ β,∥∥∥∥[A′(u(0))

]−1
(Au(0))

∥∥∥∥ ≤ η,
h = BLη ≤ 1

2

2. Br(u
(0)) ⊂ Ω0 where

r =

(
1−
√
1− 2h

h

)
η.

Then, the Newton iterates u(m) defined by (4.3) is well-defined, u(m) ∈ Br(u
(0)) form ≥ 0, and (4.3)

converges to u∗ ∈ Br(u(0)) such that Au∗ = 0. Furthermore,

∥u∗ − un∥ ≤
η

h

(
(1 +

√
1− 2h)2

m

2m

)
, m ≥ 0.

Providing A′(u) is invertible on a suitable subset of Ω we can define the Newton transform
by

u 7→ N(u) = −
[
A′(u)

]−1
(Au)

.
To improve the reliability of the method when the initial guess u(0) is far-away from the

root u∗ of Au∗ = 0 we can introduce a damping parameter εm ∈ (0, 1] that may be adjusted
adaptively at each iteration step to give the damped Newton iteration:

u(m+1) = u(m) + εmN(u(m)), m ≥ 0. (4.4)
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The trick is to find εm at each step of the iteration such that ∥A(u(m) + εmN(u(m))∥ is suffi-
ciently smaller than ∥Au(m)∥. We can guarantee this if A ∈ C1(X), as then we have that

A(u(m) + εmN(u(m))) ≈ (1− εm)Au(m) + o(εm)

for sufficiently small εm. Determining the step size εm is called the damping process. We
consider a simple strategy for this process.

Algorithm 4.1 (Incremental damping). For parameters 0 < I < 1, 0 < α < 1, 0 < M < 1, and
0 < ε0 ≤ 1 we define the damped Newton method with incremental damping as follows:

Start the Newton iteration with initial guess u(0) ∈ Ω
for m = 0, 1, . . . do

Compute u(m+1) based on the damped Newton iteration (4.4)
while ∥Au(m+1)∥ > ∥Au(m)∥ do

εm ← αεm
if εm < M then

εm ←M
break

end if
Compute u(m+1) based on the damped Newton iteration (4.4)

end while
εm+1 ← min(1, εm + I)

end for

Remark. The parameters in this algorithm have the following meaning:

α : Value to multiply the damping parameter by to decrease the damping
M : The minimum value for the damping parameter
I : The amount to increase the damping parameter by at each iteration

Remark. In the algorithm we set εm to the minimum of 1 and the computed value. This en-
sures that εm is chosen as 1 wherever possible — giving the standard (un-damped) Newton
method (4.3). This ensures optimal convergence close to a simple root.

Remark. In the above algorithm we have iterated for m = 0, 1, . . . . In practice, we can use
the fact that Au(m) ≈ 0 when u(m) is close to a root and instead use a stopping condition

∥Au(m)∥ < TOL,

where TOL is a desired tolerance. Additionally, a maximum number of iterations is often
specified in case of no convergence.

We note other methods for adaptively setting εm exist; see, for example, Amrein and
Wihler (2014, Algorithm 2.1) and Amrein and Wihler (2015, Algorithm 2.4).

Example 4.2 (Newton method for singularly perturbed PDE (Amrein and Wihler, 2015)). We
consider a singularly perturbed semilinear elliptic PDE: Find u : Ω→ R which satisfies

−ε∆u = f(u) in Ω

u = 0 on ∂Ω
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where Ω ⊂ Rd is an open bounded Lipschitz domain, ϵ > 0 (potentially ϵ ≪ 1) is a fixed
parameter. and f : R → R is a continuously differentiable function. We suppose that there
exists a (non-unique) solution u ∈ X := H1

0 (Ω) and define Aϵ : X → X ′ as

⟨Aϵu, v⟩ :=
∫
Ω
(ε∇u · ∇v) dx for all v ∈ X.

We can write the problem as a nonlinear operator equation in X ′: Find u ∈ X such that
Aεu = 0. We note that the Fréchet/Gâteaux derivative (there are the same) of Aε at u ∈ X is
defined by

⟨A′
ε(u)w, v⟩ :=

∫
Ω
(ε∇w · ∇v − f ′(u)wv) dx for v, w ∈ X.

It is possible to show thatAεu is a well-defined linear and bounded map fromX toX ′; cf.
Amrein and Wihler (2015). Hence, given an initial guess u(0) ∈ X we an define the damped
Newton method

A′
ε(u

(m))u(m+1) = A′
ε(u

(m))u(m) − εmAεu
(m)

in X ′. Equivalently,

aε(u
(m);u(m+1), u(m)) = aε(u

(m);u(m), u(m))− εmℓε(u(m); v) (4.5)

for all v ∈ X , where for fixed u ∈ X

aε(u;w, v) =

∫
Ω
(ε∇w · ∇v − f ′(u)wv) dx

ℓε(u; v) =

∫
Ω
(ε∇u · ∇v − f(u)v) dx

are bilinear and linear forms on X ×X and X , respectively.
If there exists positive constants λ, λ with εC−2

P > λ, such that −λ ≤ f ′(u) ≤ λ for all
u ∈ R, whereCP is the Poincáre constant (∥w∥0,2 ≤ CP ∥∇w∥0,2); then, for any fixed u(m) ∈ X
it is possible to show that aε(u(m); ·, ·) is a continuous, coercive, bilinear form on X ×X and
aε(u

(m);u(m), ·)− εmℓε(u(m); ·) is a continuous linear form on X . Hence, by Lax-Milgram the
damped Newton method (4.5) has a unique solution u(m+1) ∈ X .

We now construct a finite element discretisation of this Newton iteration to get a Newton-
Galerkin approximation scheme. To this end, we partition the domain Ω into intervals/triangles
T such that Ω =

⋃
T∈Th T to create the mesh Th, and define the finite element space

Xh := {v ∈ H1
0 (Ω) : v|T ∈ P1(T ) ∀K ∈ Th} ⊂ X.

Then, we consider the finite element formulation: Find u(m+1)
h ∈ Xh such that

aε(u
(m)
h ;u

(m+1)
h , vh) = aε(u

(m)
h ;u

(m)
h , vh)− εmℓε(u

(m)
h ; vh) (4.6)

for all vh ∈ Xh, with given initial guess u(0)h ∈ Xh. We can change this into a linear system
by defining

u
(m)
h =

N∑
j=1

α
(m)
j ϕj , u

(m+1)
h =

N∑
j=1

α
(m+1)
j ϕj ,
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where ϕj , j = 1, . . . , N = dimXh, are the basis functions of Xh (more exactly, hat functions
at each interior vertex of the mesh). Then, (4.6) can be written as

N∑
j

aε(u
(m)
h ;ϕj , ϕi)α

(m+1)
j =

N∑
j

aε(u
(m)
h ;ϕj , ϕi)α

(m)
j − εmℓε(u(m)

h ;ϕi) for i = 1, . . . , N.

This can be written as

J(m)α(m+1) = J(m)α(m) − εmR(m), (4.7)

where the Jacobian matrix J(m) ∈ RN×N and residual vector R(m) ∈ RN , dependent on u
(m)
h ,

are defined as

J(m)
ij := aε(u

(m)
h ;ϕj , ϕi), i, j = 1, . . . , N,

R(m)
i := ℓε(u

(m)
h ;ϕi), i = 1, . . . , N.

Hence, the iteration (4.7) can be changed to

α(m+1) = α(m) + εmδ(m), (4.8)

where δ(m) ∈ RN is the solution the linear system

J(m)δ(m) = −R(m). (4.9)

We now consider the iterative process of the damped Newton method, for example in Algo-
rithm 4.1. At each step m it is only necessary to construct the matrix J(m) and residual vector
R(m), and compute the solution of the linear system (4.9), only once and then computing
u
(m+1)
h only requires evaluating (4.8). Additionally, evaluating the norm ∥Aεu

(m)
h ∥ can be

replaced by evaluating ∥R(m)∥ in some vector norm (such as the vector 2-norm) as

∥Aεu
(m)
h ∥ = sup

v∈Xh

⟨Aεu
(m)
h , v⟩
∥v∥

and R(m) =
(
ℓε(u

(m)
h ;ϕi)

)N
i=1

=
(
⟨Aεu

(m)
h , ϕi⟩

)N
i=1

.

4.3 Iterative linearised Galerkin method
We now consider a more generalised iterative method. Consider the operator equationAu =
f where A : X → X ′, u ∈ X , and f ∈ X ′; then, we construct a general fixed point iterative
as follows. For a fixed v ∈ X , define a linear invertible operator L[v] : X → X ′, and the fixed
point equation

u = u− L[u]−1(Au− f).

Then, for an initial guess u(0) ∈ X , we can propose the iterative scheme

u(m+1) = u(m) − L[u(m)]−1(Au(m) − f), m ≥ 0.

Equivalently,
L[u(m)]u(m+1) = L[u(m)]u(m) − (Au(m) − f), m ≥ 0. (4.10)

This is a linear scheme for finding u(m+1); i.e., we call (4.10) a linear iterisation scheme for
Au = f . Defining G : X → X ′ as

G(u) = L[u]u− (Au− f),
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we can write (4.10) as

L[u(m)]u(m+1) = G(u(m)), m ≥ 0, (4.11)

or

u(m+1) = L[u(m)]−1G(u(m)) m ≥ 0. (4.12)

Remark. This later form is in the form of a Picard iteration

u(m+1) = T (u(m)),

where T : X → X is an operator.

We assume there exists a bilinear form for a fixed u ∈ X

a(u; v, w) = ⟨L[u]v, w⟩ v, w ∈ X;

e.g., from the weak formulation of (linearised) partial differential equation. Then, for a given
u(m) ∈ X the solution u(m+1) ∈ X of (4.11) can be obtained from the weak formulation

a(u(m);u(m+1), v) = ⟨G(u(m)), v⟩, for all v ∈ X. (4.13)

We assume that the bilinear form a(u; ·, ·) is uniformly coercive and bounded; i.e., there exists
positive constants α and β independent of u such that

a(u; v, v) ≥ α∥v∥2X for all v ∈ X, (4.14)
a(u; v, w) ≤ β∥v∥X∥w∥X for all v, w ∈ X. (4.15)

In particular, these properties imply the well-posedness of the solution u(m+1) ∈ X of (4.13)
for any u(m) ∈ X by Lax-Milgram.

We consider this general form as it allows us to consider several different linearisation
schemes. We note, for example, that the following linearisation schemes fit this form.

Zarantonello For X a Hilbert space, a Zarantonello iteration is given by

(u(m+1), v)X = (u(m), v)X − ε⟨Au(m) − f, v⟩ for all v ∈ X,m ≥ 0,

for ε > 0 sufficiently small; see Corollary 2.10 and (3.2) for strongly monotone and
Lipschitz continuous A. This is equivalent to (4.13) if

L[u] :=
1

ε
JX .

Kačanov Defining L[u] such that L[u]u = Au; then, G(u) = L[u]u − (Au − f) = f , which
gives a Kačanov iteration.

(Damped) Newton SetL[u] = ε−1
m A′(u), whereA′ is the Gâteaux derivative ofA; then, (4.13)

is equivalent to (4.5).
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We now consider a finite dimensional subspace Xn ⊂ X and consider the galerkin ap-
proximation: Find un ∈ Xn such that

⟨Aun, v⟩ = ⟨f, v⟩ for all v ∈ Xn. (4.16)

Then, the iterative linearised Galerkin (ILG) (cf. Heid and Wihler (2020)) scheme is to consider
a Galerkin approximation of the linearised weak formulation (4.13): Given an initial guess
u
(0)
n ∈ Xn, find u(m+1)

n ∈ X such that

a(u(m)
n ;u(m+1)

n , v) = ⟨G(u(m)
n ), v⟩ for all v ∈ Xn,m ≥ 0. (4.17)

We shall now only consider an operator A which meets the following assumptions:

(M1) A is Lipschitz continuous; i.e., there exists a constant L > 0 such that

|⟨Au−Av,w⟩| ≤ L∥u− v∥∥w∥.

We note this is different to the previous definition, but that it follows from the previ-
ous definition and the definition of the dual norm ∥·∥X′ .

(M2) A is strongly monotone; i.e., there exists a constant M > 0 such that

⟨Au−Av, u− v⟩ ≥M∥u− v∥2.

Lemma 4.2. Consider the sequence {u(m)}m≥0 ⊂ X generated by (4.13). Let A satisfy (M1)–(M2)
and a(u; ·, ·) satisfy (4.14) and (4.15) for fixed u ∈ X ; then, it holds that

∥u− u(m)∥ ≤
(
1 +

β

M

)
∥u(m) − u(m−1)∥, m ≥ 1,

where u ∈ X is the solution of Au = f .

Proof. From (4.13) and definition of a(·; ·, ·) we have for all v ∈ X that

a(u(m−1);u(m), v) = ⟨G(u(m−1)), v⟩ = ⟨L[u(m−1)]u(m−1), v⟩ − ⟨Au(m−1) − f, v⟩;

hence, for all v ∈ X

⟨Au(m−1) − f, v⟩ = a(u(m−1);u(m−1), v)− a(u(m−1);u(m), v) = a(u(m−1);u(m−1) − u(m), v).

The, by (M2) and (4.15), as u(m−1) − u ∈ X ,

M∥u− u(m−1)∥2 ≤ ⟨Au−Au(m−1), u− u(m−1)⟩
= ⟨f −Au(m−1), u− u(m−1)⟩
= a(u(m−1);u(m−1) − u(m), u(m−1) − u)
≤ β∥u(m−1) − u(m)∥∥u(m−1) − u∥.

This yields that

∥u− u(m−1)∥ ≤ β

M
∥u(m−1) − u(m)∥;

then, by the triangle inequality,

∥u− u(m)∥ ≤ ∥u− u(m−1)∥+ ∥u(m−1) − u(m)∥ ≤
(
1 +

β

M

)
∥u(m−1) − u(m)∥.
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Remark. The above lemma also holds for un, u
(m)
n ∈ Xn ⊂ X from (4.16) and (4.17), respec-

tively, instead of u, u(m).

We now consider a sequence of hierarchical finite dimensional subspaces Xn, n ≥ 0; i.e.,

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X.

Remark. For example,X0 could be a finite element space on a coarse mesh T0; then,Xn, n ≥ 1
is the finite element space on a mesh Tn which is a refinement (not necessarily uniform) of
Tn−1.

We suppose that there exists a computable error estimator ηn : Xn → R+, n ≥ 0, and
constants CS , CE > 0 independent of n such that

(N1) |ηn(u)− ηn(v)| ≤ CS∥u− v∥ for all u, v ∈ Xn,

(N2) the error of the Galerkin approximation un ∈ Xn from (4.16) is controlled by the a
posteriori error bound

∥u− un∥ ≤ CEηn(un)

where u ∈ X is the exact solution of Au = f .

We can show that ηn(un) and ηn(u
(m)
n ) are equivalent (in a norm equivalence-like sense) once

the linearisation error is sufficiently small.

Lemma 4.3. Suppose A satisfies (M1)–(M2), ηn satisfies (N1), and for m ≥ 1

∥u(m)
n − u(m−1)

n ∥ ≤ ληn(u(m)
n ),

with λ ∈ (0, C−1
λ ) where Cλ = (1 + β/M)CS ; then,

∥u− u(m)
n ∥ ≤ λ

(
1 +

β

M

)
min

(
ηn(u

(m)
n ), (1− λCλ)

−1ηn(un)
)
.

Moreover,
(1− λCλ)ηn(u

(m)
n ) ≤ ηn(un) ≤ (1 + λCλ)ηn(u

(m)
n ).

Remark. Note that the assumption

∥u(m)
n − u(m−1)

n ∥ ≤ ληn(u(m)
n ),

essentially requires that the linearisation error, cf, Lemma 4.2 is less than the discretisation or
Galerkin approximation error from ηn. See Algorithm 4.2 for a practical example of ensuring
this assumption is met.

Proof. By Lemma 4.2 and (N1)

∥un − u(m)
n ∥ ≤

(
1 +

β

M

)
∥u(m)

n − u(m−1)
n ∥ ≤ λ

(
1 +

β

M

)
ηn(u

(m)
n ) (4.18)

≤ λ
(
1 +

β

M

)(
ηn(u

(m)) + CS∥un − u(m)
n ∥

)
.
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Hence,

∥un − u(m)
n ∥ ≤

λ
(
1 + β

M

)
1− λ

(
1 + β

M

)
CS

ηn(un) = λ

(
1 +

β

M

)
(1− λCλ)

−1 ηn(un).

Combining this result with (4.18) proves the first result. Moreover, by this result and (N1),

η(un) ≤ ηn(u(m)
n ) + CS∥un − u(m)∥ ≤ (1 + λCλ) ηn(u

(m)
n ),

η(u(m)
n ) ≤ ηn(un) + CS∥un − u(m)∥ ≤

(
1 +

λCλ

1− λCλ

)
ηn(un) = (1− λCλ)

−1ηn(un).

Using these assumptions we can derive an iterative algorithm which only performs
enough iterations on each Galerkin space Xn to reduce the error from the linearisation to
be less than the Galerkin approximation error rather than continuing until an arbitrary tol-
erance is reached.

Algorithm 4.2 (Heid and Wihler (2020)). For a prescribed tolerance TOL and λ > 0, set n = 0,
and start with an initial Galerkin approximation space X0 with initial guess u(0)n ∈ X0.

while ηn(u
(0)
n ) > TOL do

m← 1
Compute u(1)n from single step of (4.17)
while ∥u(m)

n − u(m−1)
n ∥ > ληn(u

(m)
n ) do

Compute u(m+1)
n from single step of (4.17)

m← m+ 1
end while
uFn ← u(m) ∈ X
Enrich Xn based on ηn(uFn ) to obtain Xn+1

u
(0)
n+1 ← uFn by inclusion (Xn ↪→ Xn+1)
n← n+ 1

end while
Output the sequence {uFn }n≥0

Remark. Note, we have no guarantee that the inner loop actually terminates; depends on the
convergence of the selected ILG method.
Remark. We note that in the case of finite element spaces the a posteriori error estimate ηn can
be often split into element-wise contributions, indicating the elements which need refining
to create an enhanced space Xn+1 from Xn.

We want to show convergence of this algorithm. To this end, we need extra assumptions
on the sequence of Galerkin approximations, which we note can be shown for finite element
spaces under certain conditions on mesh refinement; cf. Gantner et al. (2017).

Proposition 4.4. Let (M1)–(M2) and (N1) hold, and λ ∈ (0, Cλ) be given. Moreover, for n ≥ 0
assume that the inner while loop of Algorithm 4.2 terminates; i.e., there exists a sequence {uFn }n≥0.
Furthermore, suppose that there exists constants 0 < q < 1 and C > 0 such that

ηn+1(un+1)
2 ≤ qηn(un)2 + C∥un+1 − un∥2, for all n ≥ 0,

where un ∈ Xn is the unique solution of the Galerkin approximation (4.16). Then, ηn(uFn ) → 0 as
n→∞.
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Proof. See, for example, Gantner et al. (2017) for the case of finite element spaces.

Corollary 4.5. Let the assumptions in Proposition 4.4 and (N2) hold; then, uFn → u as n → ∞,
where the sequence {uFn } is generated by Algorithm 4.2 and u ∈ X is the unique solution of Au = f .

Proof. Let uFn = u
(m+1)
n , m ≥ 1, be the output of Algorithm 4.2 on Xn. By Lemma 4.3 and

(N2)

∥u− uFn ∥ ≤ ∥un − u(m)
n ∥+ ∥u− un∥

≤ λ
(
1 +

β

M

)
ηn(u

(m)) + CEηn(un)

≤
(
λ

(
1 +

β

M

)
ηn(u

(m)) + CE(1 + λCλ)

)
ηn(u

F
n ).

Hence, by Proposition 4.4, ∥u− uFn ∥ → 0 as n→∞, which completes the proof.

Example 4.3 (ILG form strongly monotone & Lipschitz continuous PDE). We again revisit
Example 2.1 & Example 3.1. Consider

−∇ · (µ(x, |∇u|)∇u) = f in Ω,

u = 0 on ∂Ω,

where there exists positive constants α1 ≥ α2 > 0 such that, for t ≥ s ≥ 0 and x ∈ Ω

α2(t− s) ≤ µ(x, t)t− µ(x, s)s ≤ α1(t− s).

Let X = H1
0 (Ω), we can define A : X → X ′ and F ∈ X ′ as

⟨Au,w⟩ =
∫
Ω
µ(x, |∇u|)∇u · ∇w dx

⟨F,w⟩ =
∫
Ω
fv dx.

The selection of a(·; ·, ·) depends on the linearisation method:

Zarantonello: For ε > 0, see Example 3.1,

aZ(u; v, w) =
1

ε

∫
Ω
∇u · ∇v dx

Kačanov:
aK(u; v, w) =

∫
Ω
µ(x, |∇u|)∇v · ∇w dx

Damped Newton: For damping parameter εm ∈ (0, 1], m ≥ 0,

aN (u; v, w) =
1

εm

∫
Ω

(
µ′(x, |∇u|)∇u · ∇v

|∇u|
∇u · ∇w + µ(x|∇u|)∇v · ∇w

)
dx

where µ′(x, t) denotes the derivative of µ(x, t) with respect to t.
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E
T+

T−

n−

n+

Figure 4.1: Edge E between mesh elements T+, T− ∈ Tn

We can define a sequence of finite element meshes Tn, n ≥ 0, where Tn+1 is a refinement of
Tn and let

Xn = {v ∈ H1
0 (Ω) : v|T ∈ Pp(T ) ∀T ∈ Tn} ⊂ X, n ≥ 0;

hence, X0 ⊂ X1 ⊂ X2,⊂ . . . . We note that by standard a posteriori error bounds (Congreve
and Wihler, 2017, Gantner et al., 2017, Heid and Wihler, 2020) we can show that

∥∇u−∇un∥2 ≤ Cηn(un)2,

where

ηn(u)
2 :=

∑
T∈Tn

ηn,T (u)
2,

ηn,T (u)
2 := h2T ∥f +∇ · (µ(x, |∇u|)∇u)∥20,2,T + hT ∥[[µ(x, |∇u|)∇u]]∥20,2,∂T\∂Ω

where hT is the diameter of T ∈ Tn and on an edge E = ∂T+ ∩ ∂T− shared between two
neighbouring elements T+, T− ∈ Tn, see Figure 4.1,

[[v]] = v|T+ · n+ + v|T− · n−.
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