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Exascale Hardware

−1 sign × 2(exponent−offset) × 1. fraction

double 
(fp64)

single 
(fp32)

half 
(fp16)

quarter
(fp8)

size 
(bits) range 𝑢

perf. (NVIDIA 
H100)

fp64 64 10±308 1 × 10−16 60 Tflops/s

fp32 32 10±38 6 × 10−8 1 Pflop/s

fp16 16 10±5 5 × 10−4

2 Pflops/s
bfloat16 16 10±38 4 × 10−3

fp8-e5m2 8 10±5 1 × 10−1

4 Pflops/s
fp8-e4m3 8 10±2 6 × 10−2
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Exascale Hardware

−1 sign × 2(exponent−offset) × 1. fraction

Frontier
Oak Ridge National Laboratory

US

9.95 Eflops/s

double 
(fp64)

single 
(fp32)

half 
(fp16)

quarter
(fp8)
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Mixed precision in NLA
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• BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018] 

• Iterative refinement:

• Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], …

• More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C., 
Higham, Pranesh, 2020], [Amestoy et al., 2021]

• Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020], 
[Abdelfattah et al., 2020]

• Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al., 
2001], [Petschow et al., 2014], [Alvermann et al., 2019]

• Sparse direct solvers: [Buttari et al., 2008]

• Orthogonalization: [Yamazaki et al., 2015] 

• Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist, 
Kronbichler, 2017, 2019]

• (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi, 
Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et 
al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

For survey and references, see [Abdelfattah et al., IJHPC, 2021], [Higham and Mary, 2022]
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1. When low accuracy is needed
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1. When low accuracy is needed

A = diag(linspace(.001,1,100));

b = ones(n,1);
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1. When low accuracy is needed

b = ones(n,1);

𝑛 = 100, 𝜆1 = 10−3, 𝜆𝑛 = 1

𝜆𝑖 = 𝜆1 +
𝑖−1

𝑛−1
𝜆𝑛 − 𝜆1 (0.65)𝑛−𝑖 , 𝑖 = 2,… , 𝑛 − 1
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When Can I Use Low Precision?
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1. When low accuracy is needed

2. When a self-correction mechanism is available

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

(in precision 𝒖𝒇)

(in precision 𝒖𝒓)

(in precision 𝒖𝒔)

(in precision 𝒖)

Example: Iterative refinement

e.g., [Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], 
[Abdelfattah et al., 2016], [C. and Higham, 2018], [Amestoy et al., 2021]
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2. When a self-correction mechanism is available

3. When there are other significant sources of inexactness
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1. When low accuracy is needed

2. When a self-correction mechanism is available

3. When there are other significant sources of inexactness

• E.g., reduced models, sparsification, low-rank approximations, randomization

[Schilders, van der Vorst, Rommes, 2008]

Model Reduction

[Sinha, 2018]

Sparsification, randomizationLow-rank approximation

𝐴 ≈
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1. When low accuracy is needed

2. When a self-correction mechanism is available

3. When there are other significant sources of inexactness

[Schilders, van der Vorst, Rommes, 2008]

Model Reduction

[Sinha, 2018]

Sparsification, randomizationLow-rank approximation
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• E.g., reduced models, sparsification, low-rank approximations, randomization



Mixed Precision Sparse Approximate 
Inverse Preconditioners



SPAI Preconditioners
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Goal: Construct sparse matrix 𝑀 ≈ 𝐴−1 (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns 𝑚𝑘 of 𝑀 dynamically

Given matrix 𝐴, initial sparsity structure 𝐽, and tolerance 𝜺

For each column 𝑘:

Compute QR factorization of submatrix of 𝐴 defined by 𝐽

Use QR factorization to solve min
𝑚𝑘

𝑒𝑘 − 𝐴𝑚𝑘 2

If 𝑟𝑘 2 = 𝑒𝑘 − 𝐴𝑚𝑘 2 ≤ 𝜺

break;

Else

add select nonzeros to 𝐽, repeat. 



SPAI Preconditioners

Goal: Construct sparse matrix 𝑀 ≈ 𝐴−1 (for survey see [Benzi, 2002])

Approach of [Grote, Huckle, 1997]: Construct columns 𝑚𝑘 of 𝑀 dynamically

Given matrix 𝐴, initial sparsity structure 𝐽, and tolerance 𝜺

For each column 𝑘:

Compute QR factorization of submatrix of 𝐴 defined by 𝐽

Use QR factorization to solve min
𝑚𝑘

𝑒𝑘 − 𝐴𝑚𝑘 2

If 𝑟𝑘 2 = 𝑒𝑘 − 𝐴𝑚𝑘 2 ≤ 𝜺

break;

Else

add select nonzeros to 𝐽, repeat. 

Benefits: Highly parallelizable

But construction can still be costly, esp. for large-scale problems

[Gao, Chen, He, 2021], [Chao, 2001], [Benzi, Tůma, 1999], [He, Yin, Gao, 2020]
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SPAI Preconditioners in Low Precision
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What is the effect of using low precision in SPAI construction?

Notes and assumptions:

• We will assume that the SPAI construction is performed in some precision 𝒖𝒇

• We will denote quantities computed in finite precision with hats

• In our application, we want a left preconditioner, so we will run the algorithm 
on 𝐴𝑇 and get 𝑀𝑇.

• We will assume that the QR factorization of the submatrix of 𝐴𝑇 is computed 
fully using HouseholderQR/TSQR



SPAI Preconditioners in Low Precision
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Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on 𝑀, under what 
constraint on 𝒖𝒇 can we guarantee that Ƹ𝑟𝑘 2 ≤ 𝜺, with Ƹ𝑟𝑘 = 𝑓𝑙𝒖𝒇(𝑒𝑘 −

𝐴𝑇 ෝ𝑚𝑘
𝑇) for the computed ෝ𝑚𝑘

𝑇?
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7

Two interesting questions:

1. Assuming we impose no maximum sparsity pattern on 𝑀, under what 
constraint on 𝒖𝒇 can we guarantee that Ƹ𝑟𝑘 2 ≤ 𝜺, with Ƹ𝑟𝑘 = 𝑓𝑙𝒖𝒇(𝑒𝑘 −

𝐴𝑇 ෝ𝑚𝑘
𝑇) for the computed ෝ𝑚𝑘

𝑇?

2. Assume that when 𝑀 is computed in exact arithmetic, we quit as soon as 
𝑟𝑘 ≤ 𝜺. For 𝑀 computed in precision 𝒖𝒇 with the same sparsity pattern 

as 𝑀, what is 𝑒𝑘 − 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
?
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Using standard rounding error analysis and perturbation results for LS 
problems, we have

Ƹ𝑟𝑘 2 ≤ 𝑛3𝒖𝒇 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
.

So in order to guarantee we eventually reach a solution with Ƹ𝑟𝑘 2 ≤ 𝜺, we 
need

𝑛3𝒖𝒇 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
≤ 𝜺.
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Using standard rounding error analysis and perturbation results for LS 
problems, we have

Ƹ𝑟𝑘 2 ≤ 𝑛3𝒖𝒇 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
.

So in order to guarantee we eventually reach a solution with Ƹ𝑟𝑘 2 ≤ 𝜺, we 
need

𝑛3𝒖𝒇 𝑒𝑘 + 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
≤ 𝜺.

→ problem must not be so ill-conditioned WRT 𝒖𝒇 that we incur an error 
greater than 𝜺 just computing the residual
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Can turn this into the looser but more descriptive a priori bound:

cond2 𝐴𝑇 ≲ 𝜺𝒖𝒇
−1,

where cond2 𝐴𝑇 = 𝐴−𝑇 𝐴𝑇 2.
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−1,
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Another view: with a given matrix 𝐴 and a given precision 𝒖𝒇, one must set 𝜺
such that 

𝜺 ≥ 𝒖𝒇cond2 𝐴𝑇 .

Confirms intuition: The more approximate the inverse, the lower the 
precision we can use without noticing it. 



SPAI Preconditioning in Low Precision

9

Can turn this into the looser but more descriptive a priori bound:

cond2 𝐴𝑇 ≲ 𝜺𝒖𝒇
−1,

where cond2 𝐴𝑇 = 𝐴−𝑇 𝐴𝑇 2.

Another view: with a given matrix 𝐴 and a given precision 𝒖𝒇, one must set 𝜺
such that 

𝜺 ≥ 𝒖𝒇cond2 𝐴𝑇 .

Confirms intuition: The more approximate the inverse, the lower the 
precision we can use without noticing it. 

Resulting bounds for 𝑀: 

𝐼 − 𝑀𝐴
𝐹
≤ 2 𝑛𝜺,           𝐼 − 𝑀𝐴

∞
≤ 2𝑛𝜺
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Assume that when 𝑀 is computed in exact arithmetic, we quit as soon as 
𝑟𝑘 ≤ 𝜺. For 𝑀 computed in precision 𝒖𝒇 with the same sparsity pattern as 

𝑀, what is 𝑒𝑘 − 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
?



Second Question
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Assume that when 𝑀 is computed in exact arithmetic, we quit as soon as 
𝑟𝑘 ≤ 𝜺. For 𝑀 computed in precision 𝒖𝒇 with the same sparsity pattern as 

𝑀, what is 𝑒𝑘 − 𝐴𝑇 ෝ𝑚𝑘
𝑇

2
?

In this case, we obtain the bound

𝐼 − 𝑀𝐴
∞
≤ 𝑛 𝜺 + 𝑛 Τ7 2𝒖𝒇𝜅∞ 𝐴 .

→ If 𝜅∞ 𝐴 ≫ 𝜺𝒖𝒇
−1, then computed 𝑀 with same sparsity structure as 𝑀 can 

be of much lower quality. 



Krylov-Based Iterative Refinement
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Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

(in precision 𝒖𝒇)

(in precision 𝒖𝒓)

(in precision 𝒖𝒔)

(in precision 𝒖)



Krylov-Based Iterative Refinement
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GMRES-IR [C. and Higham, SISC 39(6), 2017]

To compute the updates 𝑑𝑖, apply GMRES to   𝑈−1 𝐿−1𝐴𝑑𝑖 = 𝑈−1 𝐿−1𝑟𝑖

ሚ𝐴 ǁ𝑟𝑖

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

(in precision 𝒖𝒇)

(in precision 𝒖𝒓)

(in precision 𝒖𝒔)

(in precision 𝒖)

For related work, see references in [Higham, Mary, 2022], [Vieuble, 2022]  



GMRES-IR with Inexact Preconditioners
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• Most existing analyses of GMRES-IR assume we use full LU 
factors

• In practice, often want to use approximate preconditioners 
(ILU, SPAI, etc.)

• [Amestoy et al., 2022]

• Analysis of block low-rank (BLR) LU within GMRES-IR 

• Analysis of use of static pivoting in LU within GMRES-IR

• [C., Khan, 2023]

• Analysis of sparse approximate inverse (SPAI) 
preconditioners within GMRES-IR



SPAI-GMRES-IR
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SPAI-GMRES-IR [C. and Khan, SISC 45(3), 2023]

To compute the updates 𝑑𝑖, apply GMRES to  𝑀𝐴𝑑𝑖 = 𝑀𝑟𝑖

ሚ𝐴 ǁ𝑟𝑖

Compute SPAI 𝑀; solve 𝑀𝐴𝑥0 = 𝑀𝑏

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

(in precision 𝒖𝒇)

(in precision 𝒖𝒓)

(in precision 𝒖𝒔)

(in precision 𝒖)

via GMRES on 𝑀𝐴𝑑𝑖 = 𝑀𝑟𝑖



Low Precision SPAI within GMRES-IR
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Using 𝑀 computed in precision 𝒖𝒇, for the preconditioned system ሚ𝐴 = 𝑀𝐴,

𝜅∞ ሚ𝐴 ≲ 1 + 2𝑛𝜺 2.

saylr1steam3



Low Precision SPAI within GMRES-IR
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To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝒖𝒇cond2 𝐴𝑇 ≲ 𝑛𝜺 ≲ 𝒖− Τ1 2.



Low Precision SPAI within GMRES-IR

15

𝑀 can be 
constructed

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝒖𝒇cond2 𝐴𝑇 ≲ 𝑛𝜺 ≲ 𝒖− Τ1 2.
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𝑀 can be 
constructed

𝑀 is a good enough 
preconditioner

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝒖𝒇cond2 𝐴𝑇 ≲ 𝑛𝜺 ≲ 𝒖− Τ1 2.
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To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝒖𝒇cond2 𝐴𝑇 ≲ 𝑛𝜺 ≲ 𝒖− Τ1 2.

If 𝜺 satisfies these constraints, then the constraints on condition number for 
forward and backward errors to converge are the same as for GMRES-IR with 
full LU factorization. 

𝑀 can be 
constructed

𝑀 is a good enough 
preconditioner



Low Precision SPAI within GMRES-IR
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𝑀 can be 
constructed

𝑀 is a good enough 
preconditioner

To guarantee that both SPAI construction will complete and the GMRES-
based iterative refinement scheme will converge, we must have roughly

𝑛𝒖𝒇cond2 𝐴𝑇 ≲ 𝑛𝜺 ≲ 𝒖− Τ1 2.

If 𝜺 satisfies these constraints, then the constraints on condition number for 
forward and backward errors to converge are the same as for GMRES-IR with 
full LU factorization. 

Compared to GMRES-IR with full LU factorization, in general expect slower 
convergence, but much sparser preconditioner. 



SPAI-GMRES-IR Example
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Matrix: steam1, 𝑛 = 240, nnz = 2,248, 𝜅∞ 𝐴 = 3 ⋅ 107, cond 𝐴𝑇 = 3 ⋅ 103



SPAI-GMRES-IR Example

16

𝒖𝒇, 𝒖, 𝒖𝒓 = (single, double, quad)

nnz(𝐿 + 𝑈) = 13,765

Matrix: steam1, 𝑛 = 240, nnz = 2,248, 𝜅∞ 𝐴 = 3 ⋅ 107, cond 𝐴𝑇 = 3 ⋅ 103



SPAI-GMRES-IR Example

16

𝒖𝒇, 𝒖, 𝒖𝒓 = (single, double, quad)

nnz(𝑀) = 2,248nnz(𝐿 + 𝑈) = 13,765

Matrix: steam1, 𝑛 = 240, nnz = 2,248, 𝜅∞ 𝐴 = 3 ⋅ 107, cond 𝐴𝑇 = 3 ⋅ 103



Ongoing and Future Work
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• Incorporate mixed-precision storage of 𝑀 and adaptive-precision SpMV
to apply 𝑀 using the work of [Graillat et al., 2022]

• Theoretical analysis of incomplete factorization preconditioners in mixed 
precision (with J. Scott and M. Tůma)

• Experimental work shows that half precision works well in practice 
[Scott, Tůma, 2023]



Randomized Preconditioners for 
GMRES-Based Least Squares Iterative 

Refinement



Least Squares Problems

18

• Want to solve
min
𝑥

𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

• Commonly solved using QR factorization:

𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 ×𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2

• As in linear system case, for ill-conditioned problems, iterative refinement 
often needed to improve accuracy and stability



Least Squares Iterative Refinement

18

• For inconsistent systems, must simultaneously refine both solution and 
residual

• (Björck, 1967): Least squares problem can be written as a linear system 
with square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0



Least Squares Iterative Refinement

18

• For inconsistent systems, must simultaneously refine both solution and 
residual

• (Björck, 1967): Least squares problem can be written as a linear system 
with square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals" 

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖

2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":

𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖



GMRES-LSIR

18

• For inconsistent systems, must simultaneously refine both solution and 
residual

• (Björck, 1967): Least squares problem can be written as a linear system 
with square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals" 

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖

2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

via preconditioned GMRES

3. Update "solution":

𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

(in precision 𝒖𝒓)

(in precision 𝒖𝒔)

(in precision 𝒖)

[C., Higham, Pranesh, 2020]: 

Compute QR factorization in 𝒖𝒇, 
use as preconditioner for GMRES
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• Using the preconditioner

𝑀 =
𝛼𝐼 𝑄1 𝑅
𝑅𝑇 𝑄1

𝑇 0

we can prove that for the left-preconditioned system,

𝜅 𝑀−1 ሚ𝐴 ≤ 1 + 𝒖𝒇𝑐 𝜅 𝐴
2

where 𝑐 = 𝑂(𝑚2).

[C., Higham, Pranesh, SISC 2020]
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• Using the preconditioner

𝑀 =
𝛼𝐼 𝑄1 𝑅
𝑅𝑇 𝑄1

𝑇 0

we can prove that for the left-preconditioned system,

𝜅 𝑀−1 ሚ𝐴 ≤ 1 + 𝒖𝒇𝑐 𝜅 𝐴
2

where 𝑐 = 𝑂(𝑚2).

• So for GMRES-based LSIR, expect convergence of forward error when 
𝜅∞ 𝐴 < 𝒖−1/2𝒖𝒇

−1.

[C., Higham, Pranesh, SISC 2020]

Can we use other 
preconditioners?



Randomized Preconditioning for LS
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“Sketch-and-precondition” [Rokhlin, Tygert, 2008]:

1.   Randomly sketch 𝐴

𝑆 = Ω𝐴, where Ω ∈ ℝ𝑠×𝑚, 𝑠 ≥ 𝑛

2.   Compute economic QR    

𝑆 = 𝑄𝑅

3. Solve via LSQR preconditioned with 𝑅

min
𝑦

𝑏 − 𝐴𝑅−1𝑦 2 , where 𝑦 = 𝑅𝑥

[Avron, Maymounkov, Toledo, 2010]: Efficient implementation (Blendenpik) 
in one precision

=

=
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“Sketch-and-precondition” [Rokhlin, Tygert, 2008]:

1.   Randomly sketch 𝐴

𝑆 = Ω𝐴, where Ω ∈ ℝ𝑠×𝑚, 𝑠 ≥ 𝑛

2.   Compute economic QR    

𝑆 = 𝑄𝑅

3. Solve via LSQR preconditioned with 𝑅

min
𝑦

𝑏 − 𝐴𝑅−1𝑦 2 , where 𝑦 = 𝑅𝑥

[Avron, Maymounkov, Toledo, 2010]: Efficient implementation (Blendenpik) 
in one precision

[Georgiou, Boutsikas, Drineas, Anzt, 2023]: Experimental results that show 𝑅
can be computed in mixed precision

(in precision 𝒖𝒔)

(in precision 𝒖𝑸𝑹)

(in precision 𝒖)

𝒖 = 𝒖𝑸𝑹 ≤ 𝒖𝒔
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𝒖 = 𝒖𝑸𝑹 = double



Randomized Preconditioning
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“Sketch-and-apply” [Meier, Nakatsukasa, Townsend, Webb, 2023]

1. Compute 𝑅 as in [Rokhlin, Tygert, 2008]

2. Explicitly form preconditioned matrix

𝑌 = 𝐴𝑅−1

3. Solve via (unpreconditioned) LSQR

min
𝑧

𝑏 − 𝑌𝑧 2

4. Recover 𝑥

𝑅𝑥 = 𝑧



Example
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𝒖 = 𝒖𝑸𝑹 = double
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𝒖 = 𝒖𝑸𝑹 = double

Relative forward error:

𝑅, 𝑢𝑠 double: 4 × 10−8

𝑅, 𝑢𝑠 double:    3 × 10−8

Formed 𝐴𝑅−1: 2 × 10−8



“Sketch-and-Precondition” GMRES-LSIR

24

Compute 𝑅 factor of 𝑄𝑅 decomposition of randomly sketched 𝐴 using 
precision 𝒖𝒔 (sketching step) and 𝒖𝑸𝑹 (QR step).
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𝑥

𝑏 − 𝐴𝑥 2via LSQR preconditioned with 𝑅 in precision 𝒖 to 

get initial solution 𝑥0 and residual 𝑟0.



“Sketch-and-Precondition” GMRES-LSIR

24

Compute 𝑅 factor of 𝑄𝑅 decomposition of randomly sketched 𝐴 using 
precision 𝒖𝒔 (sketching step) and 𝒖𝑸𝑹 (QR step).

Solve min
𝑥

𝑏 − 𝐴𝑥 2via LSQR preconditioned with 𝑅 in precision 𝒖 to 

get initial solution 𝑥0 and residual 𝑟0.

for 𝑖 = 0,… , until convergence

Compute residual 
𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

and ℎ𝑖 = 𝑅−𝑇𝑔𝑖 in 

precision 𝒖𝒓.

Solve via FGMRES in (effective) precision 𝒖𝒔:

𝐼 0
0 𝑅−𝑇

𝐼 𝐴
𝐴𝑇 0

𝐼 0
0 𝑅−1

𝛿𝑟𝑖
𝛿𝑧𝑖

=
𝑓𝑖
ℎ𝑖

, 

where 𝑅𝛿𝑥𝑖 = 𝛿𝑧𝑖.

Update in precision 𝒖:

𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
𝛿𝑟𝑖
𝛿𝑥𝑖



“Sketch-and-Precondition” GMRES-LSIR

24

Compute 𝑅 factor of 𝑄𝑅 decomposition of randomly sketched 𝐴 using 
precision 𝒖𝒔 (sketching step) and 𝒖𝑸𝑹 (QR step).

Solve min
𝑥

𝑏 − 𝐴𝑥 2via LSQR preconditioned with 𝑅 in precision 𝒖 to 

get initial solution 𝑥0 and residual 𝑟0.

for 𝑖 = 0,… , until convergence

Compute residual 
𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

and ℎ𝑖 = 𝑅−𝑇𝑔𝑖 in 

precision 𝒖𝒓.

Solve via FGMRES in (effective) precision 𝒖𝒔:

𝐼 0
0 𝑅−𝑇

𝐼 𝐴
𝐴𝑇 0

𝐼 0
0 𝑅−1

𝛿𝑟𝑖
𝛿𝑧𝑖

=
𝑓𝑖
ℎ𝑖

, 

where 𝑅𝛿𝑥𝑖 = 𝛿𝑧𝑖.

Update in precision 𝒖:

𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
𝛿𝑟𝑖
𝛿𝑥𝑖

[C., Daužickaitė, 2024]: 
Analysis of four-precision 
split-preconditioned FGMRES



“Sketch-and-Precondition” GMRES-LSIR
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Theoretical analysis suggests how to choose precisions:

• For generating preconditioner, 𝒖𝒔 ≈ 𝒖𝑸𝑹 (although 𝒖𝑸𝑹 < 𝒖𝒔 is inexpensive 
and may help avoid overflow)

• For FGMRES, apply left preconditioner and matrix to a vector in precision 
≤ 𝒖 (can be less careful with right preconditioner)



“Sketch-and-Apply” GMRES-LSIR

26

Compute 𝑅 factor of 𝑄𝑅 decomposition of randomly sketched 𝐴 using 
precision 𝒖𝒔 (sketching step) and 𝒖𝑸𝑹 (QR step).
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precision 𝒖𝒙 to get initial solution 𝑥0 and residual 𝑟0.
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Compute 𝑅 factor of 𝑄𝑅 decomposition of randomly sketched 𝐴 using 
precision 𝒖𝒔 (sketching step) and 𝒖𝑸𝑹 (QR step).

Form 𝑌 = 𝐴 𝑅−1 in precision 𝒖𝒀.

Solve min
𝑧

𝑏 − 𝑌𝑧 2 via LSQR in precision 𝒖 and solve 𝑅𝑥 = 𝑧 in 

precision 𝒖𝒙 to get initial solution 𝑥0 and residual 𝑟0.

for 𝑖 = 0,… , until convergence

Compute residual 
𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

and ℎ𝑖 = 𝑅−𝑇𝑔𝑖 in 

precision 𝒖𝒓.

Solve via unpreconditioned GMRES in precision 𝒖:

𝐼 𝑌
𝑌𝑇 0

𝛿𝑟𝑖
𝛿𝑧𝑖

=
𝑓𝑖
ℎ𝑖

Solve 𝑅𝛿𝑥𝑖 = 𝛿𝑧𝑖 in precision 𝒖𝒙.

Update in precision 𝒖:

𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
𝛿𝑟𝑖
𝛿𝑥𝑖



“Sketch-and-Apply” GMRES-LSIR
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Theoretical analysis suggests how to choose precisions:

• For generating preconditioner, 𝒖𝒔 ≈ 𝒖𝑸𝑹 (although 𝒖𝑸𝑹 < 𝒖𝒔 is inexpensive 
and may help avoid overflow)

• Triangular solves: Want 𝒖𝒙𝜅 𝐴 < 1

• GMRES: Want 𝒖𝜅 𝐴 𝜅 𝑌 < 1

• Forming 𝑌: Want 𝒖𝒀𝜅 𝐴 2𝜅 𝑌 < 1

Ongoing work: Collaboration on high-performance implementation with V. 
Georgiou and H. Anzt



Mixed Precision Randomized Nystrӧm 
Approximation



Randomized Nystrӧm Approximation

28

Want to compute a rank-𝑘 approximation 𝐴 ≈ 𝑈Θ𝑈𝑇 via the randomized 
Nystrӧm method.

Nystrӧm approximation:

𝐴𝑁 = 𝐴Ω Ω𝑇𝐴Ω † 𝐴Ω 𝑇

where Ω is an 𝑛 × 𝑘 sampling matrix 

Many applications: approximation of kernel matrices, spectral limited memory 
preconditioners, etc.



Randomized Nystrӧm Approximation

28

Want to compute a rank-𝑘 approximation 𝐴 ≈ 𝑈Θ𝑈𝑇 via the randomized 
Nystrӧm method.

Nystrӧm approximation:

𝐴𝑁 = 𝐴Ω Ω𝑇𝐴Ω † 𝐴Ω 𝑇

where Ω is an 𝑛 × 𝑘 sampling matrix 

Many applications: approximation of kernel matrices, spectral limited memory 
preconditioners, etc.

In the case that 𝐴 is very large, matrix-matrix products with 𝐴 are the 
bottleneck.

→ Can use single-pass version of the Nystrӧm method [Tropp et al., 2017].



Single-Pass Nystrӧm Approximation

29

Given sym. PSD matrix 𝐴, target rank 𝑘

𝐺 = randn(𝑛, 𝑘)

[𝑄,~]= qr(𝐺, 0)

𝑛

𝑘
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𝑛

𝑘

𝑛

𝑘𝑛

=

𝑘
𝑛 𝑘

=
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𝑛

𝑘

𝑛

𝑘𝑛

=

𝑘
𝑛 𝑘

=

=

𝑈 Θ

Given sym. PSD matrix 𝐴, target rank 𝑘

𝐺 = randn(𝑛, 𝑘)

[𝑄,~]= qr(𝐺, 0)

𝒀 = 𝑨𝑸

Compute shift 𝜈; 𝑌𝜈 = 𝑌 + 𝜈𝑄

𝐵 = 𝑄𝑇𝑌𝜈

𝐶 = chol((𝐵 + 𝐵𝑇)/2)

Solve 𝐹 = 𝑌𝜈/𝐶

[𝑈, Σ, ~] = svd(𝐹, 0)

Θ = max 0, Σ2 − 𝜈𝐼



Single-Pass Nystrӧm Approximation

29

Given sym. PSD matrix 𝐴, target rank 𝑘

𝐺 = randn(𝑛, 𝑘)

[𝑄,~]= qr(𝐺, 0)

𝒀 = 𝑨𝑸

Compute shift 𝜈; 𝑌𝜈 = 𝑌 + 𝜈𝑄

𝐵 = 𝑄𝑇𝑌𝜈

𝐶 = chol((𝐵 + 𝐵𝑇)/2)

Solve 𝐹 = 𝑌𝜈/𝐶

[𝑈, Σ, ~] = svd(𝐹, 0)

Θ = max 0, Σ2 − 𝜈𝐼

𝑛

𝑘

𝑛

𝑘𝑛

=

𝑘
𝑛 𝑘

=

=

𝑈 Θ

Can we further reduce the cost 
of the matrix-matrix product 
with 𝐴 by using low precision?



Single-Pass Nystrӧm Approximation

29

Given sym. PSD matrix 𝐴, target rank 𝑘

𝐺 = randn(𝑛, 𝑘)

[𝑄,~]= qr(𝐺, 0) (precision 𝒖)

𝒀 = 𝑨𝑸 (precision 𝒖𝒑)

Compute shift 𝜈; 𝑌𝜈 = 𝑌 + 𝜈𝑄 (precision 𝒖)

𝐵 = 𝑄𝑇𝑌𝜈 (precision 𝒖)

𝐶 = chol((𝐵 + 𝐵𝑇)/2) (precision 𝒖)

Solve 𝐹 = 𝑌𝜈/𝐶 (precision 𝒖)

[𝑈, Σ, ~] = svd(𝐹, 0) (precision 𝒖)

Θ = max 0, Σ2 − 𝜈𝐼 (precision 𝒖)

𝒖 ≪ 𝒖𝒑



Error Bounds

30

𝐴 − መ𝐴𝑁 2
= 𝐴 − 𝐴𝑁 + 𝐴𝑁 − መ𝐴𝑁 2

≤ 𝐴 − 𝐴𝑁 2 + 𝐴𝑁 − መ𝐴𝑁 2

exact Nystrӧm 
approximation

Nystrӧm approximation 
computed in 
finite precision
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≤ 𝐴 − 𝐴𝑁 2 + 𝐴𝑁 − መ𝐴𝑁 2

Deterministic bound [Gittens, Mahoney, 2016]

Expected value bound [Frangella, Tropp, Udell, 2021]

exact 
approximation 

error

finite precision
error
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error
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[C., Daužickaitė, 2024]: With failure probability at most 𝑒−𝑡
2/2 + 𝑐1𝛼,

𝐴𝑁 − መ𝐴𝑁 2
≲ 𝛼−1𝑛 Τ1 2𝑘 𝑛 Τ1 2 + 𝑘 Τ1 2 + 𝑡

2
𝒖𝒑 𝐴 2𝜅(𝐴𝑘)

where 𝐴𝑘 is the best rank-𝑘 approximation of 𝐴.
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[C., Daužickaitė, 2022]: With failure probability at most 𝑒−𝑡
2/2 + 𝑐1𝛼,

𝐴𝑁 − መ𝐴𝑁 2
≲ 𝛼−1𝑛 Τ1 2𝑘 𝑛 Τ1 2 + 𝑘 Τ1 2 + 𝑡

2
𝒖𝒑 𝐴 2𝜅(𝐴𝑘)

where 𝐴𝑘 is the best rank-𝑘 approximation of 𝐴.

Interpretation: Likely that  𝐴𝑁 − መ𝐴𝑁 2
≳ 𝐴 − 𝐴𝑁 2 when 

𝜆𝑘+1
𝜆1

≲ 𝑛𝒖𝒑
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𝐴 − መ𝐴𝑁 2
= 𝐴 − 𝐴𝑁 + 𝐴𝑁 − መ𝐴𝑁 2

≤ 𝐴 − 𝐴𝑁 2 + 𝐴𝑁 − መ𝐴𝑁 2

exact 
approximation 

error
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error

[C., Daužickaitė, 2022]: With failure probability at most 𝑒−𝑡
2/2 + 𝑐1𝛼,

𝐴𝑁 − መ𝐴𝑁 2
≲ 𝛼−1𝑛 Τ1 2𝑘 𝑛 Τ1 2 + 𝑘 Τ1 2 + 𝑡

2
𝒖𝒑 𝐴 2𝜅(𝐴𝑘)

where 𝐴𝑘 is the best rank-𝑘 approximation of 𝐴.

Interpretation: Likely that  𝐴𝑁 − መ𝐴𝑁 2
≳ 𝐴 − 𝐴𝑁 2 when 

𝜆𝑘+1
𝜆1

≲ 𝑛𝒖𝒑

The worse the low-rank 
representation, the lower 
the precision we can use!



Numerical Experiment

31

Matrix: bcsstm07, 𝑛 = 420

𝜆𝑘+1/𝜆1

𝑛𝒖𝒑, 𝒖𝒑 = half

𝑛𝒖𝒑, 𝒖𝒑 = single

𝑘

https://github.com/dauzickaite/mpNystrom

https://github.com/dauzickaite/mpNystrom
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Matrix: bcsstm07, 𝑛 = 420

𝑘

mean total error, 𝐴 − መ𝐴𝑁 2 exact 

𝒖𝒑 = half, 𝒖 = double

𝒖𝒑 = single, 𝒖 = double

𝒖𝒑, 𝒖 = double

https://github.com/dauzickaite/mpNystrom

𝜆𝑘+1/𝜆1

𝑛𝒖𝒑, 𝒖𝒑 = half

𝑛𝒖𝒑, 𝒖𝒑 = single

https://github.com/dauzickaite/mpNystrom
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Where can you use mixed or low precision?



carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/

Thank You!



Size of SPAI Preconditioner in Low Precision
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How does precision used affect the number of nonzeros in 𝑀?

steam3



Size of SPAI Preconditioner in Low Precision
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How does precision used affect the number of nonzeros in 𝑀?

saylr1steam3



A Question
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Matrix: bfwa782, 𝑛 = 782, nnz = 7514, 𝜅∞ 𝐴 = 7 ⋅ 103, cond 𝐴𝑇 = 1 ⋅ 103

Is there a point in using precision higher than that dictated by 𝒖𝒇cond2 𝐴𝑇 ≤ 𝜺?

Preconditioner 𝜅∞( ሚ𝐴) Precond. nnz GMRES-IR steps/iteration

SPAI (𝜺 = 0.2) 2.1𝑒 + 02 28053 67 (31, 36)

SPAI (𝜺 = 0.5) 9.7𝑒 + 02 7528 153 (71, 82)

𝒖𝒇, 𝒖, 𝒖𝒓 = (half, single, double)



A Question
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Preconditioner 𝜅∞( ሚ𝐴) Precond. nnz GMRES-IR steps/iteration

SPAI (𝜺 = 0.2) 2.1𝑒 + 02 28053 67 (31, 36)

SPAI (𝜺 = 0.5) 9.7𝑒 + 02 7528 153 (71, 82)

𝒖𝒇, 𝒖, 𝒖𝒓 = (half, single, double)

Preconditioner 𝜅∞( ሚ𝐴) Precond. nnz GMRES-IR steps/iteration

SPAI (𝜺 = 0.2) 2.2𝑒 + 02 26801 69 (32, 37)

SPAI (𝜺 = 0.5) 9.7𝑒 + 02 7529 153 (71, 82)

𝒖𝒇, 𝒖, 𝒖𝒓 = (single, single, double)

Is there a point in using precision higher than that dictated by 𝒖𝒇cond2 𝐴𝑇 ≤ 𝜺?

Matrix: bfwa782, 𝑛 = 782, nnz = 7514, 𝜅∞ 𝐴 = 7 ⋅ 103, cond 𝐴𝑇 = 1 ⋅ 103



Summary and Takeaway
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• To efficiently use modern exascale machines, we need to use 
mixed precision hardware

• Understanding the interaction and balance of errors from 
finite precision and sources of algorithmic approximation is 
thus crucial

• Careful analysis can reveal not only limitations, but  
opportunities!
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• To efficiently use modern exascale machines, we need to use 
mixed precision hardware

• Understanding the interaction and balance of errors from 
finite precision and sources of algorithmic approximation is 
thus crucial

• Careful analysis can reveal not only limitations, but  
opportunities!

Where can you use mixed or low precision?


