Optimization with application in finance — exercises

Martin Branda, 22 April 2021

HW 2021: Example 1.8 (any method), example 1.10 (KKT conditions)

3 Multiobjective optimization
We start with the notation of dominance for two-dimensional vectors.

Definition 3.1 We say that (z;) strictly dominates (z;), denoted by (2) - (z;), iff v <

y1 and o2 < y2 *. We say that (i;) dominates (Z;), denoted by (ﬁ;) - (Z;), iff 11 <1 and

xo < yo with at least one inequality strict. We say that (;;) is (weakly) efficient if there is
no other (Z;) such that (Z;) = (=) ().
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Example 3.2 Consider five pairs
A= 17B: 2,0: 1,D: S,E: 3.
2 5 3 1 3
Identify all (weakly) efficient pairs.
Solution: We can identify pairs which are dominated, i.e.

(5)=00) () =) ()=(})

Therefore, A, C, D are weakly efficient, whereas only A, D are efficient. [

We repeat the notion of optimality in multiobjective optimization.
Definition 3.3 Consider multiobjective optimization problem
min T),... x
min (fi(2), -, fi(2)).

where f, : R™ = R and X CR". We say that & € X is an efficient solution if there exists
no other x € X such that fi(x) < fi(Z) for all k with at least one inequality strict. We
denote by XF C X the set of efficient solutions.

Basic methods to find the efficient solutions are:

1. Aggregate function approach:

zeX

K
k=1

with parameters A\ > 0.

!Since we will consider minimization problems later, lower values are preferred.



2. e-constrained approach

min f1(z)
st fi(x) <ep, k=2,... K,
e X,

where parameters ¢, are selected such that the problem is feasible.
3. Goal programming.

For basic properties see the lecture notes.
Example 3.4 Consider biobjective nonlinear optimization problem
(=1
min
; <3<x —2)2
s.t. x € [0, 3].

Find all efficient solutions.

Solution: We can use the plot
Yy

By comparing the objective functions at different points of domain [0, 3], we can identify
the efficient solutions as interval [1,2]. OJ

Example 3.5 Consider biobjective nonlinear optimization problem

i 2(z +1)*
sg.ct. 5 S[O_, 52})2 )

Find aoll efficient solutions.



Example 3.6 Consider biobjective linear optimization problem

. (=371 — T2
min
r1 — 21‘2
s.t. x1 + a0 < 4,
T S 37
T2 S 37
x1,x9 > 0.

Find all efficient solutions.

Solution: Denote by f : R? — R? the vector objective, i.e.

flz1,30) = <3m1 N x2>.

Tr1 — 2%2

We plot the set of feasibility solutions
x2

D

1 2 3 4 X1

Using the picture of the feasibility set, we can identify the extreme points and compute
their images, i.e.

100 = (o). £6.0 = (3): s = (7). .= (22). r03 = (Tp)

These values can be then used to plot the image of the feasibility set.
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-10 B > f

Since we minimize the vector objective, we can identify the efficient frontier in the
image space (in bold). Then we can return back to the decision vector space and identify
the efficient solutions (in bold):

T2

1 2 3 4 T1

The set of efficient solutions can be written as

xelf — {a<?> +(1—a)<;), a€ [0,1]} U {a(é) +(1—a)<g>, a € [0, 1]}7

i.e. it is union of two edges. Realize that the set is not convex.



Instead of deriving the image of the feasibility set, we can use the aggregate function
approach, i.e. minimize one objective

AM=3z1 —x2) + (1 = N) (21 — 222) = (—4X+ 1)z1 + (A — 2)x9,

for different values of parameter \ € [0, 1].

T2
5 A=1
4
F— =1
2
1
0
1 2 3 4 5 T1

Q
A=¢%
5

We can observe from the picture that already values A = 2 and A = % identify the whole
set of efficient solutions. [

o

Example 3.7 Consider biobjective linear optimization problem

. 3r1 + x2
min
—Xr1 — 2.’1}2
s.t. €I S 3,

3x1 — 22 <6,

x1, 12 > 0.

Find oll efficient solutions.

Solution: In this case, we are going to use the simplex algorithm, which is effective in
the case of two (linear) objective functions. First, we will reformulate the problem in the
standard form and apply the aggregation of objectives for A € [0, 1]:

min )\(31’1 + 3:2) + (1 — )\)(—$1 — 2.%‘2) = (4/\ — 1)3?1 + (3)\ — 2)1‘2
s.t. o + x3 = 3,
3x1 —x2 + x4 = 6,

X1,X2,T3,T4 > 0.

We can start the simplex table with z3, x4 as the basic variables.



4N —1 3A—2 0 0
T i) T3 T4
0 3 3 0 1 1 0
0 T4 6 3 -1 0 1
0 —4N+1 -3\ +2 0 0
S0eA>3 | <0eA>2| <0 <0
The first table is already optimal for A € [2,1], i.e. (0,0,3,6) is an optimal (efficient)

solution. We can continue in iterations for values \ €

replaced by xs.

2]. We change the basis: x5 is

-1 3N—-2 0 0
I T2 I3 Ty
3AN—2 | x 3 0 1 1 0
0 T4 9 3 0 1 1
9\ -6 —4AA+1 0 3\ -2 0
<0eA>1| <0 | <02 <O
The optimality condition is fulfilled for A € [1, 2], i.e. (0,3,0,9) is an optimal (efficient)

solution. We continue for A € [0, i] by changing the basis: x4 is replaced by z;.

AN-1[3x-2 0 0
L1 L2 T3 L4
BA—2| o 3 0 1 1 0
A1 3 1 0 3 3
2 -9 0 0 BT D1

<0 | <0 |S0&8A<GH | <S0eA<y

The optimality condition is fulfilled for A € [0, %], i.e. (3,3,0,0) is an optimal (efficient)
solution. We went through all possible values of parameter .

We must be careful with values A € {0, 1}, because then one objective function is not

taken into account. Uniqueness of the optimal solution is then necessary to verify that it
is an efficient solution. However, in our case the efficiency is ensured by that the values
{0,1} are contained in nontrivial intervals A € [2,1], and A € [0, ], for which the solutions
are stable.

If we return back to the original problem (by excluding slack variables z3,xz4), we
obtain the set of efficient solutions

xeff = {a<8> —i—(l—a)(g), oc [0,1]}U{a<g) —I—(l—a)<§>, oc [0,1]}.

Alternative way how to find the efficient solutions, is to use the e-constrained approach



when one objective is minimized and the other one is used as a constraint:

min 3x1 + T2

st. —x1 —2x9 <€,
x2 < 3,
311 — 22 <6,

T1,T2 Z O,

where ¢ is a parameter. This parameter must be restricted to the values when the problem
is feasible. Realize that if the parametric problem is solved by the simplex algorithm, the
parameter € appears only in the column B~1b. O

Example 3.8 Consider biobjective linear optimization problem

. (271 — @2
min
Xr1 — 2332
st. —x1 +x0 <2

$1§27

x1,22 2 0.

Find all efficient solutions.

Example 3.9 Consider biobjective nonlinear optimization problem

. < —T1 — 2.’1}2 >
min |
x] + 512 — 1

s.t. 4oy —x0 <0,
D) S 8.

Find oll efficient solutions using the KKT optimality conditions.

Solution: We can use the aggregate function approach to transform the problem to a
parametric optimization one, i.e. we solve for A € [0, 1]

min \(—x1 — 2z2) + (1 — A\) (2% + 5ag — 1)
s.t. doxy — 29 <0,
D) S 8.

Note that the problem is convex. The Lagrange function is then

L(x1, 29, u1,u2) = M—21 — 222) + (1 — A\)(@% + 5ao — 1) + uy (4a) — x2) + ug(x2 — 8),



with u1 2 > 0. The KKT optimality conditions are

Z) 4331—.%2 SO, $2—8§0,
ZZ) u1(4x1 — 172) = 0, (5] Z 0,
UQ<.1‘2 — 8) = 0, u9 Z 0,
oL
i) — = =X+ 2(1 — Ny + 4u; =0,
8.%1

oL
R 1—A) — = 0.
e A+5(1—=X) —up+u2=0

We can split our solution to four cases according to the complementarity conditions:
1) u; = 0, ug = 0: from iii) we have 5 — 7\ = 0, i.e. parameter is restricted to
A =2 €0,1]. From iii) we also obtain

p= =2
'Toa—n 4

To get a feasible solution, we must restrict zo using i), i.e.
4r1 — 29 <0< 29 > 5 and also xo < 8.

Thus we have KKT point

<i 2 € (5,8, 0, 0).

2) u; = 0, x2 = 8: From iii) we have

and 5

From i) it must hold 4z; < 8, i.e.
= <28 )<
Thus we have KKT point
A 5 4
—, 8,0, TA=5, A ==
(g &0 ™ -5) 2e 4]
3) 421 — x2 = 0, ug = 0: From iii) we have

U =-TA+5>0 A<

~| ot

Using iii)
29\ — 20

A +2(1 - 4(— = =
A42(1 =Nz +4(=TA+5)=0< 2y 20— )



From ii) z3 = 4z; and from i)

8
<8 A< —
To <O & _11>

| Ut

Thus we have KKT point

(29)\ —20 58X —40

5
—7A A —.
2(1—A)’ ]_—A ) —"_57 0) Y e |:07 }

7
4) 4x; —x9 = 0, x2 = 8, i.e. 1 = 2: From iii) we have

A AL = N) +dug =0,
—2)\+5(1—)\)—U1—|—UQ:0.

We multiply the second equation by 4 and sum the equations, we derive

33\ — 24 8
U2 A TE
and 5 — 4 4 8
=2 TS0 > > .
“1 T T

Thus we have KKT point

5A—4 33\—24 4
2 re o, 1.
<787 4 Y 4 )7 G [5’ :|

Each KKT point represents an efficient solution of the multiobjective problem (for A = 0
after discussion). O

Example 3.10 Consider biobjective nonlinear optimization problem

: ((961 —-2)*+ x%)
min 2 9
]+ (2 —2)

st.x1+x9 < 1.

Find oll efficient solutions using the KKT optimality conditions.



