Optimization with application in finance — exercises

Martin Branda, 21 February 2023

1 Parametric linear optimization

1.1 Simplex algorithm
Example 1.1 Consider linear programming problem
min 2x1 — 9
st. —x1+ a9 <1,
x9 <3,
r1,x2 > 0.

Solve the problem using the simplex algorithm.

Solution:

2 | =110 0

T €2 T3 | T4

0 |x3| 1 -1 1 1 0

0 |z4]| 3 0 1 0 1

0 -2 1 0 0

—1|x | 1 -1 1 0

0 |z4]| 2 1 0 |-1]1

-1 -1] 0 |—-1] 0

The optimal solution is (0, 1,0, 2) with optimal value —1.

1.2 Postoptimization
Example 1.2 Consider linear programming problem
min 2x1 — x2
st. —x1+ a9 <1,
z2 < 3,
z1,z9 > 0.

Solve the problem using the simplex algorithm. Then investigate the stability with respect

to
1. objective function: ¢ = (—1,—1),
2. new decision variable x5: c5 = —2, ae5 = (1, %),
3.% right hand side vector: b = (1,0.5),

4.% new constraint: xo < %



1.3 Parametric linear programming
Example 1.3 Consider the linear programming problem with real parameter A
min 3z + 5xo
s.t. 2x1 + 2 > 10,
1+ 212 2 124 A,

1+ 22 > 8,
12 > 0.

Using the graphical method, find the optimal solution and optimal values in dependence on
the values of \.

Example 1.4 Consider the linear programming problem with real parameter A

min 2x1 — X9

st. —x1+ A+ 23 =1,
T2 + x4 = 3,
r1,2,34 > 0.

Discuss an iteration of suitable simplex algorithm in dependence on the values of .

Solution: We can start with the simplex table

2 |—-110 0

Tl | X2 | x3 | T4

O|axg |1 || =1 1] A 1 0
0| x4 |3 0 1 0 1
0| -2 1 0 0

If\> %, To replaces xg in the basis, whereas if A < %, To replaces x4 in the basis. In the
first case, we get

2 |-1]0]0

L1 T2 | T3 | T4

Az | 3 = 1] 3]0
0 |z |3—3| = 0|31
sl e RS

IfA> %, then the optimality condition is fulfilled and we have got an optimal solution.
When A € [%, %), then we continue with iterations and z; replaces x4 in the basis.



Dual simplex algorithm*
Primal problem (standard form)

min ¢!z

s.t. Ax = b,
x > 0.

Basis B = regular square submatrix of A, i.e. A can be divided into the basis and

nonbasis part
A = (B|N).

We also consider B = {i1,...,im} as the set of column indices which correspond to the
basis. We split also the objective coefficients and the decision vector accordingly:

¢’ = (ch ),
z'(B) = (¢5(B), zx(B)),

where
zp(B) = B~'b, xx(B) = 0.

We consider
o feasible basis for which zp(B) > 0 (and zn(B) = 0),
e optimal basis corresponding to an optimal solution,
e basic solution(s).

The simplex algorithm can be represented by the simplex table:

cg | zp(B) B~ B~lA

In the table, we can identify

e feasibility condition:
B~ b >0,

e optimality condition:
cEB™1A - T <o.



Dual problem

max bly
s.t. ATy < ¢,
y e R™.

Dual simplex algorithm works with dual feasible basis B and basic dual solution
y(B), forwhich it holds

BTy(B) =c¢p,
NTy(B) <ey.

Primal feasibility B~'b > 0 is violated until reaching the optimal solution. Primal
optimality condition = dual feasibility is always fulfilled:

ckB™1A - T <o.
Using notation A = (B|N), ¢! = (c§, k), we have

chle — cg =0,

cEB7IN -k <o,
Setting § = (B~ ')T¢cp
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Thus, g is a basic dual solution.
Dual simplex algorithm — a step:

e Find index u € B such that x,(B) < 0 and denote the corresponding row by
o (B_IA)U,..
e Denote the criterion row by
sl =ckB'A-c <o
e Minimize the ratios

A 0;
i:argmin{% DT <O}.

Ti

e Substitute z, by z; in the basic variables, i.e. B = B\ {u} U {i}. We move to
another basic dual solution.



We say that the problem is dual nondegenerate if for all dual feasible basis B it holds
(ATy(B) —¢); =0, j € B,
(ATy(B) —¢); <0, j ¢ B.

If the problem is dual nondegenerate, then the dual simplex algorithm ends after finitely
many steps.

Example 1.5 Using the dual simplex algorithm solve the following linear programming
problem

minx + o

3

201 +x2 > >
.1'1—|—.’E2 Z 17
r1,T2 > 0

Solution: We will solve the problem in the following standard form
min x1 + x9

3

—2xy —r2t a3 =—7,

2

-1 — w2t as=—1,

x1,22,73,14 > 0.

We can derive the dual problem

max — 591 — Y2
st. —2y; —y2 <1
-y —y2=<1
y1 <0
y2 < 0.
1 1 0 0
T xT9 I3 T4
0las| 3| 2] -1 1] o0
O|ag | =1 =1 ] =110 1
0 -1 | -1 0 0
Lo | 3 1 3 | —-3] 0
1 1 1
1l 0l -5[-3]0
1| 3 1 [ o |-1]1
1@ | 5 0 [ 1 | 1 ]-2
1 0 0 0 -1




In the final table, we can identify the optimal solutions of
e primal problem: (%, %,0,0),
e dual problem: (0,—1).

Optimal value is equal to 1.

Example 1.6 Using the dual simplex algorithm solve the following linear programming
problem

mindxi + 5zs

1 + 4z

3r1 + 2z

Ty, T2

(AVARAVARIV]

Solution: We can formulate the dual problem

max — 5y1 - 7y2
s.t. — Yy — 3y2 < 4

—4y1 —2y2 <5
y1 <0
y2 < 0.
4 5 0 0
T T9 T3 T4
0 x3 -5 -1 -4 1 0
0] x4 -7 -3 -2 0 1
0 -4 -5 0 0
03] -8/3 [ 0]-10/3] 1 | -1/3
40z | 73 || 1] 23] o | -1/3
28/3 || 0 | -7/3 | 0 | -4/3
5]as| 8/10 | 0 1 ]-3/10] 1/10
4z | 18/10 || 1| 0 | 2/10 | -4/10
112/10 | 0 | 0 |-7/10 | -11/10

The last solution is primal and dual feasible, thus optimal, i.e. (18/10,8/10) is the optimal
solution of (P).

Example 1.7 (*) Consider the linear programming problem with real parameter \

min 2x1 — xo + x3
s.t. 21+ Axo + 23 =2,
1 — (24 N)ze + 24 = —1,

1,234 > 0.

Discuss an iteration of suitable simplex algorithm in dependence on the values of \.



Solution: We can start with the simplex table

2 -1 110

L1 L2 T3 | X4

1 I3 2 A 1 0
0] x4 | —1 1 | —2-X] 0|1
2 -1 A+1 010

We can observe that if A < —1 then the optimality (=dual feasibility) is fulfilled, however
the primal feasibility do not hold. There is only one possible pivot element —2 — A\ which

is negative only if A\ > —2. So, if A\ € (-2,

—1], we can continue with iterations using the

dual simplex algorithm. Basic variable x4 is removed from the basis and x5 enters

2 -1 1 0
I xI9 T3 X4
1 | x3 2 1 A 1 0
g | —1 1 —2-X1] 0 1
2 -1 A+1 0 0
A4 2242 A
1 I3 )\71_2 >‘_+12 0 1 )\7_'_12
A3 1 0 0 A+L
A+2 A+2 A+2

Remind that A\ € (—2,—1]. Since the criterion row is nonpositive, the primal optimality
(= dual feasibility) is preserved. Moreover, the primal feasibility (= dual optimality) is

fulfilled.

Example 1.8 Consider the simplex table with real parameter A

3 -1 0 0

ry T2 T3 T4

—1|ay|2—X| -1 1 1 0
0 | x4 3 1 0o -1 1
A=2|-2 0 -1 0

Discuss optimality in dependence on the values of A and perform one additional iteration

of suitable simplex algorithm.



