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Optimal outflow boundary condition for a stationary flow of
an incompressible fluid

Michal Bathory and Miroslav Buĺıček

Abstract. We prove the existence of a weak solution to the stationary Navier-
Stokes system with an implicitly prescribed outflow boundary condition. This

boundary condition is stated as a requirement that the “right” weak solution

is a minimum of an appropriate functional. This functional can be chosen as,
e.g., the energy dissipation, which then gives a physical meaning to such an

implicit boundary condition. The existence theorem is proven in a general

framework of non-Newtonian fluids. Further, we obtain an explicit form of the
implicit boundary condition for two simpler fluid models: Stokes model with

a non-linearity obeying the square integrable structure, and the Stokes model

with the power-law rheology. For these models, the uniqueness of the weak
solution with explicit or implicit outflow boundary condition is shown. This

work builds upon and extends the idea presented in author’s previous short
article in proceedings, where only the Stokes model was considered.

1. Introduction

There is an old and very well known problem in fluid mechanics: How to pre-
scribe an outflow boundary condition? This problem is definitely interesting from
the viewpoint of engineering, numerical mathematics, physics and also mathemat-
ical analysis. Although its notoriety, there are many unanswered questions even
in the simple setting of the stationary flow of an incompressible Newtonian fluid.
The difficulty is, of course, that no apriori information about the outflow is avail-
able. Let us imagine the canonical situation of a flow through an elongated pipe
described by, let us say, the Navier-Stokes system. Then, typically, one would like
to prescribe an outflow boundary condition which ensures:

(M) existence (and uniqueness) of the solution,
(P) the boundary condition itself has a meaningful physical interpretation,
(E) admissibility of some reference flow (e.g. the Poiseuille flow),
(N) no matter, where the pipe is cut, the flow remains (almost) the same.
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for mathematical modelling.

1



2 BATHORY AND BULÍČEK

It seems that there are certain general relations between these properties. For
example, if (P) is satisfied, then one should be able to obtain an energy estimate,
which is crucial for (M). Further, the properties (E) and (N) can be enforced by
certain artificial alterations to the outflow boundary condition. This freedom of
choice is probably related to the fact that properties (E) and (N) depend on how
the geometry of the pipe continues behind the outlet (while (M) and (P) not). What
is the real problem is although one can find many boundary conditions satisfying
(M), (E), (N), the physical interpretation is lacking. Let us now substantiate this
heuristics in the context of some outflow boundary conditions that are known.

The outflow boundary condition that one can find in the literature very often
is the “do-nothing” boundary condition, which reads as

(1.1) − pn+ ν(∇v)n = cn on Θ,

where (v, p) represent the velocity and the pressure of the flow, ν > 0 stands for the
kinematic viscosity, n denotes the outward normal vector on the outlet boundary Θ
and where c ∈ R is some constant. Along with this condition, it is common to find
a statement saying that “do-nothing” is a natural outflow boundary condition as it
can be read from the weak formulation of the Navier-Stokes equation. However, it
would be fair to say that there are infinitely many boundary conditions with this
property. Indeed, since the incompressibility constraint div v = 0 is assumed, we
get div(∇v)T = 0, which, in turn implies, for example, that∫

Ω

div(v ⊗ v) ·ϕ =

∫
Ω

(−∇p+ ν∆v) ·ϕ =

∫
Ω

divT ·ϕ

=

∫
Θ

(−pI + 2νDv)n ·ϕ− 2ν

∫
Ω

Dv ·Dϕ

for all ϕ ∈ W 1,2
Γ,div(Ω), where Dv := 1

2 (∇v + (∇v)T ) and T := −pI + 2νDv.
According to this computation, we could prescribe

(1.2) Tn = cn on Θ

instead of (1.1). Then, the actual effect of prescribing (1.2) instead of (1.1)
in the weak formulation of the Navier-Stokes equation is that the bilinear form
(v,ϕ) 7→ ν

∫
Ω
∇v · ϕ changes to (v,ϕ) 7→ 2ν

∫
Ω
Dv ·Dϕ. The reason why (1.1) is

usually preferred over (1.2) (and over all other boundary condition obtained in this
manner) is that it has the property (E), while, for example, (1.2) does not (see,
e.g., [8] for details and corresponding figures). However, the great downside is that
there is absolutely no physical reason for (1.1), i.e., it does not fulfil (P). Further-
more, neither of the conditions (1.1) and (1.2) satisfies (M) (there is no large-data
existence result for Navier-Stokes system with these conditions). The cause for this
lies in the fact that the corresponding energy estimate is not available.

There has been a lot of effort to find outflow boundary condition, for which the
energy estimate holds. This usually results in a modification of (1.1), where the
head pressure p+ 1

2 |v|
2 (cf. [8]) or a back flow (v ·n)− (see [4] and [3]) is used. In

[4], the authors find a whole family of energy-preserving boundary conditions. For
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illustration, one of them reads as

(1.3) (T − T P )n+ 1
2 (v · n)−(v − vP ) = 0 on Θ,

where quantities with subscript P correspond to the reference Poiseuille flow (in a
straight pipe). This way, the property (E) is obviously satisfied. Furthermore, it
is shown in [4] that also (M) and (N) are fulfilled. However, it is totally unclear
whether (1.3) can be physically justified (its derivation in [4] is purely mathemati-
cal).

We shall, on the other hand present an (implicit) outflow boundary condition
which can be physically interpreted and which ensures the existence of a weak so-
lution. However, we will not be concerned with properties (E), (N), since these de-
pend too much on a particular situation (model, geometry of the domain, Reynolds
number, etc.)

The paper is organized as follows. The second section contains all the necessary
notation and function spaces that are used. We also include some auxiliary technical
results. In the third section, we shall introduce an (implicit) outflow boundary
condition that fulfils (P). The fifth section contains the existence proof for quite a
general fluid model with this implicit boundary condition. In the final section, we
find an explicit form of this boundary condition for two types of the generalized
Stokes model.

2. Mathematical tools

In this section, we shall fix the notation and review some basic concepts that
are used in connection with the weak solutions to Navier-Stokes equations. Also, we
include some generalizations of the convergence lemma that will be used to identify
some weak non-linear limits.

2.1. Notation. The symbol Ω will always stand for an open, connected subset
of Rd, d > 2, with a Lipschitz boundary ∂Ω. Then, the symbol n denotes the
outward unit normal vector on ∂Ω (if it exists). By Rd×dsym , we denote the set of
all symmetric n × n matrices. We reserve the symbols A and B for symmetric
matrices that are arbitrary, i.e., whenever a statement contains A or B, it is meant
for all A,B ∈ Rd×dsym . Non-scalar quantities will be distinguished by a boldface. The
inequality L 6 cR will be sometimes shortened to L . R if the number c > 0 is
unimportant (i.e., if it is independent of quantities that we want to estimate). The
weak and strong convergence will be distinguished just by ⇀ and →, respectively.

2.2. Function spaces. For 1 6 r 6∞, we set r′ = r
r−1 . The Lebesgue space

Lr(Ω), the Sobolev space W 1,r(Ω) and their vectorial counterparts Lr(Ω), W 1,r(Ω)
are defined in an usual way. The set of all smooth functions of compact support
in Ω is denoted by C∞(Ω) or C∞(Ω). By the symbols W 1,r

0 (Ω) and W 1,r
div(Ω), we

denote the subspaces of W 1,r(Ω) of functions with zero trace and zero divergence,
respectively. Further, the subset of W 1,r(Ω) consisting of divergence-free functions
whose trace is zero on some measurable subset Γ of the boundary ∂Ω is denoted by



4 BATHORY AND BULÍČEK

W 1,r
Γ,div(Ω). We shall also need the fractional Sobolev space W 1− 1

r ,r(∂Ω) for func-

tions defined on the boundary ∂Ω (traces ofW 1,r(Ω) functions). The space of traces

of functions from W 1,r
Γ,div(Ω) will be denoted correspondingly by W

1− 1
r ,r

Γ,div (∂Ω). It is

the subspace of W 1− 1
r ,r(∂Ω), whose elements v satisfy v = 0 on Γ and

∫
∂Ω
v ·n = 0

(see Lemma 5.1 for details). The norms in Lr(Ω) and W 1,r(Ω) (and in their sub-
spaces) will be denoted by ‖·‖r and ‖·‖1,r, respectively. For any Banach space X,
the symbol X∗ stands for its topological dual space.

2.3. Maximally monotone graphs. Let r > 1. We shall say that S :
Ω × Rd×dsym → Rd×dsym defines a maximal monotone r-graph if it fulfils each of the
following properties:

(S(A)− S(B)) · (A−B) > 0

if (S(A)− S) · (A−B) > 0, then S = S(B)

c1(|A|r + |S(A)|r
′
)− c2 6 S(A) ·A, c1, c2 > 0.

2.4. Generalizations of the convergence lemma for a sequence of
graphs. Suppose that we manage to describe the problem of interest using a max-
imally monotone graph and also suppose that we approximated the solution to this
problem by some weakly converging sequence in this graph. Then, since the prob-
lem is non-linear, one needs to identify the weak limit, i.e., to show that the graph
is closed in the weak topology that we considered. To do that, it seems natural to
use the convergence lemma (cf. [6]) that tells us that it is enough to verify

lim sup
λ→∞

∫
Ω

S(Dλ) ·Dλ 6
∫

Ω

S ·D,

where S and D denote the weak limits of S(Dλ) and Dλ, respectively.
However, we shall need a modified version of the convergence lemma for the

case, where the graph itself changes with the index of the sequence. The next lemma
will be used to identify the non-linear weak limit for the sequences of graphs that
linearize the original graph near the origin.

Lemma 2.1. Let {Sδ}δ>0 be a sequence of maximal monotone r-graphs, r > 1,
satisfying

Sδ(A) ·A > c1(|A|r + |Sδ(A)|r
′
)− c2,

where c1, c2 > 0 are independent of δ. Suppose that the graphs Sδ converge to some
graph S in the sense that

(2.1) Sδ(A)→ S(A) ∀A ∈ Rd×dsym .

If
Dδ ⇀D in Lr(Ω),

Sδ(Dδ) ⇀ S in Lr
′
(Ω).

and

lim sup
δ→0+

∫
Ω

Sδ(Dδ) ·Dδ 6
∫

Ω

S ·D,



OPTIMAL OUTFLOW BOUNDARY CONDITION 5

then

S = S(D).

Proof. The assumption (2.1) implies

(2.2) Sδ(D)→ S(D) in Lr
′
(Ω).

Then

0 6
∫

Ω

(Sδ(Dδ)− Sδ(D)) · (Dδ −D)

and, using (2.2), one can repeat the proof of the usual convergence lemma (cf. proof
of [6, Lemma 2.4.1]). �

In the next lemma we treat the other case, where the graph is linearized for
large arguments. In this case, to preserve monotonicity of the graph, the coercivity
estimate may contain some power-weights, which, however, cannot be arbitrary.

Lemma 2.2. Let Ω ⊂ Rd be a bounded domain. Let S be a maximally monotone
r-graph with r ∈ (1,∞). Furthermore, let Sλ, λ > 0, be a graph defined by

Sλ(A) :=

{
S(A), |A| 6 λ;
Nλ(A), |A| > λ,

where Nλ is a monotone 2-graph with Nλ(0) = 0 and chosen in a way that Sλ is
a monotone 2-graph, for each λ > 0.

Let

α > −1

2

and set

β := 2α+ 2.

Let {Dλ}λ>0 be a sequence in L1(Ω) and set

Eλ := χ|Dvλ|6λDλ and F λ := χ|Dλ|>λDλ.

Suppose that

Eλ ⇀ E in Lr(Ω),

S(Eλ) ⇀ S in Lr
′
(Ω),

λαF λ ⇀ F in L2(Ω),

λ−αNλ(F λ) ⇀N in L2(Ω).(2.3)
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Then

Dλ ⇀D in Lmin(2,β,r)(Ω),

E = D,

F = 0,

N = 0,

Sλ(Dλ) ⇀ S in Lmin(2,β′,r′)(Ω),

S(Eλ)χ|Dvλ|6λ ⇀ S in Lr
′
(Ω),

F λ ⇀ 0 in Lmin(2,β)(Ω),

Nλ(F λ) ⇀ 0 in Lmin(2,β′)(Ω)(2.4)

for some subsequences.
If, moreover

lim sup
λ→∞

∫
Ω

Sλ(Dλ) ·Dλ 6
∫

Ω

S ·D,(2.5)

then

S = S(D).

Proof. The assumption (2.3)3 implies

λ2α

∫
|Dλ|>λ

|Dλ|2 6 C,

thus, using α > − 1
2 , we get

(2.6) |{|Dλ| > λ}| . λ−2α−2 < λ−1 → 0, λ→∞.

In this proof, for a limit identification, we shall use an arbitrary test function
B ∈ L∞(Ω). It follows from (2.3)3, (2.6) and Hölder’s inequality, that∣∣∣∣∫

Ω

λαF λ ·B
∣∣∣∣ . |{|Dλ| > λ}| 12 . λ−α−1 < λ−

1
2 → 0,

therefore F = 0. Similarly, using (2.3)4 and Nλ(0) = 0, we get∣∣∣∣∫
Ω

λαNλ(F λ) ·B
∣∣∣∣ =

∣∣∣∣∣
∫
|Dλ|>λ

λαNλ(F λ) ·B

∣∣∣∣∣ . λ−α−1 → 0,

thus N = 0. To prove (2.4)6, we apply (2.3)2 and (2.6) to get∫
Ω

S(Eλ)χ|Dvλ|6λ ·B =

∫
Ω

S(Eλ) ·B −
∫
|Dλ|>λ

S(0) ·B →
∫

Ω

S ·B.

With (2.3)3 given, there is no need to prove (2.4)7 if α > 0. If α ∈ (− 1
2 , 0), then

2α+ 2 < 2 and we can use (2.3)3, Hölder’s inequality and (2.6) to obtain∫
Ω

|F λ|2α+2 = λ−α(2α+2)

∫
Ω

|λαF λ|2α+2 . λ−α(2α+2)(λ−2α−2)−α = 1.
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Hence, there is a subsequence F λ which converges weakly in L2α+2(Ω). Its weak
limit is zero, since (2.3)3 gives∣∣∣∣∫

Ω

F λ ·B
∣∣∣∣ . λ−α ∫

Ω

|λαF λ| . λ−α(λ−2α−2)
1
2 = λ−2α−1 → 0.

Since ∫
Ω

|Dλ|p =

∫
Ω

|Eλ|p +

∫
Ω

|F λ|p,

the properties (2.3)1 and (2.4)7 (that we already proved) imply (2.4)1. We can
prove (2.4)8 similarly as (2.4)7. Indeed, this property is interesting only if α > 0
and in that case, we get∫

Ω

|Nλ(F λ)|
2α+2
2α+1 = λα

2α+2
2α+1

∫
Ω

|λ−αNλ(F λ)|
2α+2
2α+1 . λα

2α+2
2α+1 (λ−2α−2)

α
2α+1 = 1

and ∣∣∣∣∫
Ω

Nλ(F λ) ·B
∣∣∣∣ . λα ∫

Ω

|λ−αNλ(F λ)| . λα(λ−2α−2)
1
2 = λ−1 → 0.

Since ∫
Ω

|Sλ(Dλ)|p =

∫
|Dλ|6λ

|S(Eλ)|p +

∫
Ω

|Nλ(F λ)|p,

the relation (2.4)5 follows from (2.4)6 and (2.4)8. Using (2.4)1, (2.3)1 and (2.4)7,
we obtain ∫

Ω

D ·B ←
∫

Ω

Dλ ·B =

∫
Ω

Eλ ·B +

∫
Ω

F λ ·B →
∫

Ω

E ·B,

hence D = E.
Now we shall prove the last part of the lemma, concerning the identification of

S. To this end, we use the monotonicity of Sλ, to write

0 6
∫

Ω

(Sλ(Dλ)− Sλ(B)) · (Dλ −B)

=

∫
Ω

Sλ(Dλ) ·Dλ −
∫
|Dλ|6λ

S(Eλ) ·B −
∫
|Dλ|>λ

Nλ(F λ) ·B

−
∫

Ω

Sλ(B) ·Eλ −
∫

Ω

Sλ(B) · F λ +

∫
Ω

Sλ(B) ·B.(2.7)

Now we apply limes superior λ → ∞ to the right hand side, we use (2.5), (2.4)5,
(2.4)7, (2.3)2 and (2.4)6 and get

0 6
∫

Ω

(S ·D − S ·B − S(B) ·D + S(B) ·B) =

∫
Ω

(S − S(B)) · (D −B)

for all B ∈ L∞(Ω). The rest of the proof is furnished by the generalized Minty
method and it can be found, e.g., in [6, Lemma 2.4.2]. �

The following lemma is a modification of the Du-Bois Reymond theorem and
it will be used to identify the explicit boundary condition.
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Lemma 2.3. Let G :=
⋃n
i=1Gi, where Gi are open, pairwise disjoint sets in Rd

of finite Lebesgue measure. Suppose that f ∈ L1(G) satisfies

(2.8)

∫
G

fϕ = 0 ∀ϕ ∈ C∞0 (G),

∫
Gi

ϕ = 0 ∀i ∈ {1, . . . , n}

Then there exist ci ∈ R, i ∈ {1, . . . , n}, such that

f = ci a.e. in Gi.

Proof. Let n = 1 and suppose that ψ, η ∈ C∞0 (G) with
∫
G
η > 0. Then the

function

ϕ := ψη −
∫
G
ψη∫
G
η
η

belongs to C∞0 (G) and
∫
G
ϕ = 0. Consequently, using (2.8) and the properties of

ϕ, we obtain ∫
G

(
f −−

∫
G

f

)
ψη =

∫
G
ψη∫
G
η

∫
G

(
f −−

∫
G

f

)
η

where −
∫

denotes the mean value of an integral. Now we are going to use this
identity for a sequence of functions 0 6 ηk ∈ C∞0 (Θ), k ∈ N, satisfying ηk ↑ 1 as
k →∞ pointwise in Θ. This way, if we apply the dominated convergence theorem,
we get ∫

G

(
f −−

∫
G

f

)
ψ =

(
−
∫
G

ψ

)∫
G

(
f −−

∫
G

f

)
= 0.

Since ψ ∈ C∞0 (Θ) was arbitrary and f − −
∫
G
f ∈ L1(G), we may infer, by means

of the classical Du-Bois Reymond theorem, that f = −
∫
G
f a.e. on G, which means

that there exists a constant c ∈ R such that

f = c a.e. on G.

If n = 2, we may choose ϕ ∈ C∞(G),
∫
G1
ϕ =

∫
G2
ϕ = 0 such that it is zero in

one of the components G1, G2 and then apply the lemma for n = 1. �

2.5. Model of fluid. We shall consider a stationary flow, described by the
velocity field v, of an incompressible (non-Newtonian) fluid in a domain Ω. The
boundary ∂Ω of Ω consists of two parts: Γ, where the Dirichlet boundary condition
is prescribed and Θ, which is the remaining part of the boundary. In typical
situation, one may imagine a flow through a pipe, where Γ represents walls of the
pipe and eventually also the inlet, if it is prescribed. On the other hand, Θ then
represents the outlet, eventually also the inlet (for example if the flow is driven
by a pressure difference). To save some space, we shall formulate our main results
for the case, where Θ has only one component (i.e., is connected). However, we
are able to easily describe also the general case of multiple outlets or inlets (see
Remark 5.1).
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We shall consider that, in the most general case, the stationary flow of an
incompressible fluid is described by the system

div v = 0 in Ω,

div(v ⊗ v)− divS(Dv) = −∇p in Ω

v = vD on Γ.(2.9)

Here S(Dv) represents the generalized stress and S is always assumed to define a
maximal monotone r-graph. If we set T := −pI + S(Dv) (Cauchy stress tensor),
we can rewrite the momentum balance (2.9)2 as

div(v ⊗ v) = divT .

3. Optimization problem

Here we shall explain the main idea. Our goal is to supplement the system
(2.9) with a boundary condition on Θ. Obviously, at this moment, we need to
impose some physically reasonable requirement on the outflow boundary condition
we are looking for. Let us suppose that this requirement can be formulated as a
minimization problem for some functional F , defined for every solution to (2.9),
regardless of its boundary condition on Θ. Then the following definition has a good
sense.

Definition 3.1. Let Ω and F be as above. Let P be a stationary system of
PDE with a Dirichlet boundary condition on Γ, describing an incompressible flow
in Ω. We shall say that a boundary condition on Θ for P is F -optimal if there
exists a corresponding solution that is a minimum of F in the set of all solutions
to P.

If we, in particular, consider that F is the energy dissipation, i.e., if

F (v) = ξ(v) :=

∫
Ω

S(Dv) ·Dv,

then a possible interpretation of Definition 3.1 is that an ξ-optimal boundary con-
dition yields the most stable flow. It is interesting to note that the idea to minimize
the energy dissipation was also used in [7]. However, it was used for a completely
different purpose (the optimal shape of a pipe). If we take

F (v) = ν

∫
Ω

|∇v|2,

then the physical meaning is lost. However, it has been shown in [2], that this
choice leads to the “do-nothing” boundary condition (for the Stokes system). The
last possibility which will be considered is

F (v) = η(v) :=

∫
Ω

R(Dv) ·Dv,

where

R(v) :=

∫ 1

0

S(sDv) ds
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which represents the potential to the energy dissipation.
If we denote by S the set of all weak solutions to P, then the fact that v solves

P with an F -optimal boundary condition can be written symbolically as

(3.1) v ∈ arg min
ϕ∈S

F (ϕ).

At this point, the boundary condition (3.1) is, of course, implicit.
For all this to make sense, we need to show that arg minϕ∈S ξ(ϕ) is a non-

empty set, i.e., that a F -optimal boundary condition for P exists. This is done
in the next section for the case that P is the generalized Navier-Stokes, or Stokes,
system.

4. The optimal outflow boundary condition in implicit form for the
generalized (Navier)-Stokes system

From now on, we will consider system (2.9) or its particular cases (e.g. the
Stokes case, where div(v ⊗ v) vanishes).

Definition 4.1. Let Ω be as above. Suppose that vD ∈ W 1− 1
r ,r(∂Ω) and

denote by v0 ∈ W 1,r(Ω) its extension. By a weak solution to (2.9), we mean a

function v ∈ v0 +W 1,r
Γ,div(Ω) (v0 ∈W 1,r

div(Ω) is an extension of vD to Ω) satisfying

(4.1) −
∫

Ω

(v ⊗ v) · ∇τ +

∫
Ω

S(Dv) ·Dτ = 0 ∀τ ∈W 1,r
0,div(Ω).

This is a meaningful definition as long as r > 3d
d+2 , since then v ⊗ v ∈ Lr

′
(Ω).

It is, of course, possible to test (4.1) by smooth functions and then require just
r > 2d

d+2 . However, for the sake of simplicity, we will exclude the super-critical case

r ∈ ( 2d
d+2 ,

3d
d+2 ) and from now on focus only on the sub-critical case r > 3d

d+2 .

The pressure p can be obtained from (4.1) in the second step by the following
lemma.

Lemma 4.1. Let 1 < r <∞. Suppose that f ∈ (W 1,r
0 (Ω))∗ satisfies

f(ϕ) = 0 ∀ϕ ∈W 1,r
0 (Ω).

Then, there exists p ∈ Lr′(Ω) satisfying

‖p‖r′ 6 c‖f‖(W 1,r
0 (Ω))∗

and

f(ϕ) =

∫
Ω

p divϕ ∀ϕ ∈W 1,r
0 (Ω).

Proof. For n ∈ N, the expression

(4.2) J(u) :=
1

r
‖∇u‖rr +

n

r
‖divu‖rr − f(u), u ∈W 1,r

0 (Ω),
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defines a coercive, weakly-W 1,r(Ω) lower semi-continuous functional, which is also

bounded below. Therefore, there is a minimum un ∈W 1,r
0 (Ω) of J satisfying

0 =
∂

∂t
J(un + tϕ) �t=0

=

∫
Ω

|∇un|r−2∇un · ∇ϕ+ n

∫
Ω

|divun|r−2 divun divϕ− f(ϕ)(4.3)

for all ϕ ∈W 1,r
0 (Ω). On testing (4.3) with un, we obtain

‖∇un‖rr + n‖divun‖rr = f(un)

6 ‖f‖(W 1,r
0 (Ω))∗‖un‖1,r 6 c‖f‖(W 1,r

0 (Ω))∗ +
1

2
‖∇un‖rr,(4.4)

therefore

(4.5) un ⇀ u in W 1,r
0 (Ω)

and

(4.6) divun → 0 in Lr(Ω)

for some subsequence. The relations (4.6) and (4.5) imply divu = 0, which, to-
gether with (4.4) and the assumptions on f , gives

‖∇u‖rr 6 lim inf
n→∞

‖∇un‖rr 6 lim inf
n→∞

f(un) = f(u) = 0,

so necessarily u = 0. From (4.5) we also get S ∈ Lr
′
(Ω) and

(4.7) |∇un|r−2∇un ⇀ S in Lr
′
(Ω).

for another subsequence. Moreover, the relation ∇un ⇀ 0 in Lr(Ω) and the mono-
tonicity of the mapping A 7→ |A|r−2A imply S = 0. Indeed, observe that

0 6
∫

Ω

(|∇un|r−2∇un−|D|r−2D)·(∇un−D)→ −
∫

Ω

S ·D+‖D‖rr ∀D ∈ Lr(Ω).

Choosing D := 1
2 |S|

1
r−1−1S ∈ Lr(Ω), we obtain

−1

2

∥∥S∥∥r′
r′

+
1

2r
∥∥S∥∥r′

r′
> 0,

hence S = 0.
Now let

pn := n|divun|r−2 divun −
1

|Ω|

∫
Ω

n|divun|r−2 divun ∈ Lr
′

0 (Ω),

where Lr
′

0 (Ω) denotes the subspace of Lr
′
(Ω) whose elements g satisfy

∫
Ω
g = 0.

Since ϕ = 0 on ∂Ω, the divergence theorem implies that (4.3) can be rewritten as

(4.8)

∫
Ω

pn divϕ+

∫
Ω

|∇un|r−2∇un · ∇ϕ = f(ϕ) ∀ϕ ∈W 1,r
0 (Ω).

Let

ϕ := B

(
|pn|r

′−2pn −
1

|Ω|

∫
Ω

|pn|r
′−2pn

)
,
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where B is Bogovskii operator. Then

(4.9) ‖ϕ‖1,r 6 c
∥∥∥|pn|r′−1

∥∥∥
r

= c ‖pn‖r
′−1
r′

and ∫
Ω

pn divϕ = ‖pn‖r
′

r′ −
(

1

|Ω|

∫
Ω

|pn|r
′−2pn

)(∫
Ω

pn

)
= ‖pn‖r

′

r′ .

Using that, (4.8) and (4.9), we get

‖pn‖r
′

r′ 6 ‖f‖(W 1,r
0 (Ω))∗‖ϕ‖1,r + ‖∇un‖r−1

r ‖∇ϕ‖r 6 c‖f‖(W 1,r
0 (Ω))∗ ‖pn‖

r′−1
r′ ,

thus

pn ⇀ p in Lr
′

0 (Ω)

for some subsequence. Then, using these relations to pass to the limit in (4.8), we
hereby obtain ∫

Ω

p divϕ = f(ϕ) ∀ϕ ∈W 1,r
0 (Ω)

and the lemma is proved. �

Hence, we may also think of a weak solution to (2.9) as of a pair (v, p) ∈
(v0 +W 1,r

Γ,div(Ω))× Lr′(Ω) satisfying

(4.10) −
∫

Ω

(v ⊗ v) · ∇τ +

∫
Ω

S(Dv) ·Dτ =

∫
Ω

pdiv τ ∀τ ∈W 1,r
0 (Ω).

In either case p is defined only up to a constant.
The functional F cannot be, of course, arbitrary. It must be coercive in the

sense that

(4.11) lim
‖∇v‖r→∞

F (v)

‖∇v‖r
> 0.

Furthermore, we shall need weak lower semi-continuity, at least in the sense that

F (v) 6 lim inf
n→∞

F (vn) for any {vn}∞n=1 ⊂ S

satisfying vn ⇀ v ∈ S in W 1,r(Ω),(4.12)

where S is the set of weak solutions to (2.9). If we define the topology on S to be
the weak-W 1,r(Ω) topology, then the property (4.12) reads simply as:

F is weakly lower semi-continuos on S.

We remark that, since the theory for the existence of weak solutions for the
system (2.9) with inhomogeneous Dirichlet boundary condition on ∂Ω is incomplete,
the set S may be empty, depending on Ω, vD and r. Therefore, in the Theorem 4.1
below we just assume that there is at least one weak solution to (4.1), without saying
when this actually happens. This is not the case for the generalized Stokes system
that will be considered in the next section, where the corresponding existence results
are known.
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Theorem 4.1. Let S define a maximal monotone r-graph with r > 3d
d+2 . If

the set S is not empty, then the functional F satisfying (4.11) and (4.12) attains
a minimum on S.

Proof. Let {vn}∞n=1 be a minimizing sequence, so that limn→∞ F (vn) =
infS F =: m. Since we assume S 6= ∅, we have m < ∞. Then, using a version
of Korn’s inequality (it is enough that the trace of vn is prescribed on Γ), we
obtain

∞ > F (vn) > c1(|S(Dvn)|r + |Dvn|r)− c2
> c1|S(Dvn)|r + c3|∇(vn − v0)|r + c4|Dv0|r − c2

for some c, c1, c2 > 0 independent of n ∈ N. Hence, using the reflexivity and

Lemma 4.1, we can find v ∈ v0 +W 1,r
Γ,div(Ω), S ∈ Lr

′
(Ω), p ∈ Lr′(Ω) and weakly

converging subsequences satisfying

vn ⇀ v in W 1,r(Ω)

S(Dvn) ⇀ S in Lr
′
(Ω)

pn ⇀ p in Lr
′
(Ω).(4.13)

Moreover, the subsequence can be selected in a way that

(4.14) vn → v in Lq(Ω) for q = r, 2, 3.

Indeed, this is a consequence of the compact embedding W 1,r(Ω) ↪→↪→ Lr(Ω) ∩
L3(Ω) (recall that r > 3d

d+2 >
3d
d+3 , which implies rd

d−r > 3).

To identify the weak limit S we shall use the maximal monotonicity of S. If
we use (4.13)2, (4.13)3 and (4.14) to pass to the limit in (4.10) (with vn instead of
v), we obtain

(4.15) −
∫

Ω

(v ⊗ v) · ∇τ +

∫
Ω

S ·Dτ =

∫
Ω

pdiv τ ∀τ ∈W 1,r
0 (Ω).

Now we take 0 6 ψ ∈ C∞0 (Ω) and we use (4.10), (4.13)2, (4.13)3, (4.14) and (4.15)
to compute the limit∫

Ω

S(Dvn) ·Dvnψ

=

∫
Ω

S(Dvn) ·D(vnψ)−
∫

Ω

S(Dvn) · (vn ⊗∇ψ)

=

∫
Ω

(vn ⊗ vn) ·Dvn +

∫
Ω

|vn|2vn · ∇ψ +

∫
Ω

pnvn · ∇ψ −
∫

Ω

S(Dvn) · (vn ⊗∇ψ)

→
∫

Ω

(v ⊗ v) ·Dv +

∫
Ω

|v|2v · ∇ψ +

∫
Ω

pv · ∇ψ −
∫

Ω

S · (v ⊗∇ψ)

=

∫
Ω

S ·D(vψ)−
∫

Ω

S · (v ⊗∇ψ)

=

∫
Ω

S ·Dvψ
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as n→∞. Using that, (4.13)1, (4.13)2 and the monotonicity of S, we get

0 6
∫

Ω

(S(Dvn)−S(A)) ·(Dvn−A)ψ →
∫

Ω

(S−S(A)) ·(Dv−A)ψ > 0, n→∞,

for all A ∈ Rd×dsym . Since 0 6 ψ ∈ C∞0 (Ω) was arbitrary, we conclude that

(S − S(A)) · (Dv −A) > 0 a.e. in Ω,

which, using the maximal monotonicity, yields S = S(Dv). The property (4.12)
then gives

F (v) 6 lim inf
n→∞

F (vn) = lim
n→∞

F (vn) = m 6 F (v),

thus v is indeed a minimum of F in S. �

Corollary 4.1. Let S define a maximal monotone r-graph with r > 3d
d+2 . If

the system (2.9) has at least one weak solution, then there exists a weak solution
to (2.9) with ξ-optimal boundary condition on Θ and also a weak solution to (2.9)
with η-optimal boundary condition.

Proof. If we prove that the dissipation ξ satisfies (4.11) and (4.12), then
Theorem 4.1 finishes the proof. The property (4.11) follows immediately from the
fact that S is a r-graph and from Korn’s inequality. The property (4.12) follows
from the monotonicity of S. Indeed, if {vn}n is a sequence of weak solutions to
(2.9) that converges weakly-W 1,r to v, then we will obtain S(Dvn) ⇀ S(Dv) in

Lr
′
(Ω) as in the proof of Theorem 4.1. Thus, using the monotonicity of S, we get

0 6 lim inf
n→∞

∫
Ω

(S(Dvn)− S(Dv)) · (Dvn −Dv) = lim inf
n→∞

ξ(vn)− ξ(v),

which proves that v is a minimum of ξ. We can proceed analogously for the
functional η, except that we use the convexity of A 7→ R(A) ·A and property

∂R(A) ·A
∂A

= S(A).

�

We can also consider the generalized Stokes system, i.e.,

div v = 0 in Ω,

−divS(Dv) = −∇p in Ω

v = vD on Γ.(4.16)

Then the proof of Theorem 4.1 simplifies in an obvious way and the restriction on
r can be removed. Hence, we also get

Corollary 4.2. Let S define a maximal monotone r-graph with r > 1. Then
there exists a weak solution to (4.16) with a ξ-optimal boundary condition on Θ.
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Finally, note that we can restrict the set where we look for a minimum, for
example, by prescribing the tangential part of the velocity on Θ. Hence, let us
consider the system

div v = 0 in Ω,

−divS(Dv) = −∇p in Ω

v = vD on Γ

vτ = 0 on Θ,(4.17)

where vτ = v − (v · n)n and where n is the unit outward normal vector on ∂Ω.
Since this is just an easy modification of the previous case, we eventually get

Corollary 4.3. Let S define a maximal monotone r-graph with r > 1. Then
there exists a weak solution to (4.17) with a ξ-optimal boundary condition on Θ.

With these existence results in hand, it is natural to ask what is the explicit
form of the optimal boundary condition. For the system (2.9), this question seems
difficult and it is not even clear what is the source of these difficulties (besides
non-linearity). So far, the most general model, for which we have been able to
characterize the optimal boundary condition is the power-law model (and thus also
the Stokes model as a particular case).

5. The explicit form of the optimal outflow boundary condition for the
r-Stokes model

Existence results for the generalized Stokes model. First of all, we
remind the reader the following lemma that is a simplified version of [1, Lemma 3.3].
It will play an important role in determining the explicit boundary condition in the
next section. For the generalized Stokes system, it tells us which Dirichlet boundary
data are reasonable to prescribe. Alternatively, it can be seen as an inverse trace
theorem for solenoidal functions.

Lemma 5.1. Let Ω be a Lipschitz domain in Rd and r ∈ (1,∞). Suppose that

vD ∈W 1− 1
r ,r(∂Ω) satisfies ∫

∂Ω

vD · n = 0.

Then, there exists v ∈W 1,r(Ω), determined up to a function u ∈W 1,r
0,div(Ω),

satisfying

v = vD on ∂Ω and div v = 0 in Ω.

Moreover, there exists a constant C > 0 (independent of v and vD), such that

inf
u∈W 1,r

0,div(Ω)
‖v + u‖1,r 6 C‖vD‖1− 1

r ,r
.

Proof. The lemma follows by a combination of [9, Theorem 6.9.2] with the
Bogovskii operator, or with a version of the De-Rahm theorem. For details, see [1,
Lemma 3.3] and references there. �
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We also recall the following theorem that provides an existence and uniqueness
of a weak solution to the generalized Stokes system with inhomogeneous Dirichlet
boundary data.

Theorem 5.1. Let Ω be a Lipschitz domain in Rd. Suppose that S defines a

maximally strictly monotone r-graph with r ∈ (1,∞). Let vD ∈ W 1− 1
r ,r(∂Ω) be

such that ∫
∂Ω

vD · n = 0.

Then, there exists an unique weak solution (v, p) (in the sense of Definition 4.1)
to the system

div v = 0 in Ω,

−divS(Dv) = −∇p in Ω

v = vD on ∂Ω.(5.1)

Proof. By Lemma 5.1, there is v0 ∈W 1,r
div(Ω) satisfying v0 = vD on ∂Ω. For

almost every x ∈ Ω, we define

R(A) ≡ R(x,A) := S(Dv0(x) +A).

Then R is clearly maximally strictly monotone for a.e. x ∈ Ω. Furthermore, from
the r-coercivity of S, we get

R(A) ·A = S(Dv0 +A) · (Dv0 +A)−R(A) ·Dv0

> c1(|Dv0 +A|r + |R(A)|r
′
)− c2 − c3|Dv0|r −

c1
2
|R(A)|r

′

>
c1
2

(|A|r + |R(A)|r
′
)− c4

for some c1, c2, c3, c4 > 0, hence R is also r-coercive. Thus, we may apply [5,

Theorem 1.3.2] to get u ∈ W 1,r(Ω) and p ∈ Lr
′
(Ω) that solve the homogeneous

problem

divu = 0 in Ω,

−divR(Du) = −∇p in Ω

u = 0 on ∂Ω.

Now it is enough to observe that v := u+ v0 and p is a solution to (5.1).

If v1 and v2 are weak solutions to (5.1), then v1 − v2 ∈W 1,r
0,div(Ω), hence

0 =

∫
Ω

(S(Dv1)− S(Dv2)) · (Dv1 −Dv2).

This, using the strict monotonicity of S, implies Dv1 = Dv2 a.e. in Ω and, conse-
quently, v1 = v2. �

Now we formulate one of the main results which gives us the explicit form of
the η-optimal boundary condition for the generalized Stokes system.
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Theorem 5.2. Let S define a continuous and monotone 2-graph. Furthermore,
suppose that there exists its derivative ∂S

∂A which is a symmetric tensor of fourth
order satisfying

(5.2)

∣∣∣∣∂S(A)

∂A

∣∣∣∣ 6 c1
and

(5.3)
∂S(A)

∂A
B ·B > c2|B|2

with some c1, c2 > 0. Let v be a solution to

div v = 0 in Ω,

−divS(Dv) = −∇p in Ω

v = vD on Γ(5.4)

with an η-optimal boundary condition on Θ. Then, there exists a constant c ∈ R,
such that

(5.5) Tn = cn on Θ,

where
T := −pI + S(Dv).

Proof. In order to utilize the optimal boundary condition, we need to con-
struct a perturbation of v within the set of solutions. To this end, let ε 6= 0

and let b ∈ W
1
2 ,2

Γ,div(∂Ω). By Lemma 5.1, there exists wb ∈ W 1,2
Γ,div(Ω), such

that wb = b on Θ. Then, we apply Theorem 5.1 to obtain a solution (vε, pε) ∈
(v0 +W 1,2

Γ,div(Ω))×L2(Ω) to the system

div vε = 0 in Ω

−divSδλ(Dvε) = −∇pε in Ω

vε = v0 on Γ

vε = v + εb on Θ.

Then, we define

ϕε :=
vε − v
ε

∈W 1,2
Γ,div(Ω).

If we test the equations for vε and v by ϕε −wb ∈W 1,2
0 (Ω), we get∫

Ω

(S(Dvε)− S(Dv)) ·Dϕε =

∫
Ω

(S(Dvε)− S(Dv)) ·Dwb.

Then, using the mean value theorem and dividing by ε, we obtain∫
Ω

∫ 1

0

∂S(Dv + sεDϕε)

∂A
Dϕε ·Dϕε ds =

∫
Ω

∫ 1

0

∂S(Dv + sεDϕε)

∂A
Dϕε ·Dwb ds.

This, together with the assumptions (5.2), (5.3) and Young’s inequality, implies

(5.6)

∫
Ω

|Dϕε|2 6 C,
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hence

ϕε ⇀ ϕ in W 1,2
Γ,div(Ω)

εϕε → 0 in W 1,2
Γ,div(Ω)

vε → v in W 1,2
div(Ω)(5.7)

for some subsequences. Note that, since A 7→ R(A) ·A is a potential to S(A), it
holds that

∂R(A)

∂A
A = S(A)−R(A).

Now we take ε > 0 and use this identity together with the assumption that v
satisfies η-optimal boundary condition on Θ:

0 6
η(vε)− η(v)

ε
=

1

ε

∫
Ω

(R(Dvε)−R(Dv)) ·Dv +

∫
Ω

R(Dvε) ·Dϕε

=

∫
Ω

∫ 1

0

∂R(Dv + sεDϕε)

∂A
Dϕε ·Dv ds+

∫
Ω

R(Dvε) ·Dϕε

=

∫
Ω

∫ 1

0

∂R(Dv + sεDϕε)

∂A
(Dv + sεDϕε) ·Dϕε ds

− ε
∫

Ω

∫ 1

0

∂R(Dv + sεDϕε)

∂A
Dϕε ·Dϕε sds+

∫
Ω

R(Dvε) ·Dϕε

=

∫
Ω

∫ 1

0

S(Dv + sεDϕε) ·Dϕε ds−
∫

Ω

∫ 1

0

R(Dv + sεDϕε) ·Dϕε ds

− ε
∫

Ω

∫ 1

0

∂R(Dv + sεDϕε)

∂A
Dϕε ·Dϕε sds+

∫
Ω

R(Dvε) ·Dϕε

= ε

∫
Ω

∫ 1

0

∫ 1

0

∂S(Dv + tsεDϕε)

∂A
Dϕε ·Dϕε dt sds+

∫
Ω

S(Dv) ·Dϕε

− ε
∫

Ω

∫ 1

0

∫ 1

0

∂R(Dv + tsεDϕε)

∂A
Dϕε ·Dϕε dt sds−

∫
Ω

R(Dv) ·Dϕε

− ε
∫

Ω

∫ 1

0

∂R(Dv + sεDϕε)

∂A
Dϕε ·Dϕε sds+

∫
Ω

R(Dvε) ·Dϕε

=

∫
Ω

S(Dv) ·Dϕε + ε

∫ 1

0

∫ 1

0

M Dϕε ·Dϕε dtds,(5.8)

where

M = s
∂S(Dv + tsεDϕε)

∂A
− s∂R(Dv + tsεDϕε)

∂A
+ (1− s)∂R(Dv + sεDϕε)

∂A
.

Using ∣∣∣∣∂R(A)

∂A

∣∣∣∣ =

∣∣∣∣ ∂∂A
∫ 1

0

S(sA) ds

∣∣∣∣ 6 ∫ 1

0

∣∣∣∣∂S(sA)

∂A

∣∣∣∣ ds
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and (5.2), we find |M | 6 C. This, (5.6) and (5.7)1 used in (5.8) yields

0 6
∫

Ω

S(Dv) ·Dϕ.

However, if we assume ε < 0 instead (before (5.8)), we will analogously get

0 >
∫

Ω

S(Dv) ·Dϕ,

hence

0 =

∫
Ω

S(Dv) ·Dϕ.

This implies, using the fact that v is a weak solution to (4.17), that

0 =

∫
Ω

S(Dv) ·Dwb =

∫
Ω

T ·Dwb,

where

T = −pI + S(Dv) ∈ Lr
′
(Ω).

This proves that the functional T ∈ (W
1
2 ,2(∂Ω))∗ defined by

T (b) :=

∫
Ω

T ·Dwb

vanishes on the set where
∫

Θ
b · n = 0 and b = 0 on Γ. Therefore, the restriction

of the functional T to this set can be represented by a function g ∈ L2(Θ). Since
divT = 0, we identify g = Tn. Thus, we obtain

(5.9)

∫
Θ

Tn · b = 0 ∀b ∈ L2(Θ),

∫
Θ

b · n = 0.

In (5.9), if we consider only those b with b · n = 0 on Θ, we get, by the Du-Bois
theorem, that

(5.10) (Tn)τ = 0 on Θ.

Using that in (5.9) yields∫
Θ

Tn · n φ = 0 ∀φ ∈ L2(Θ),

∫
Θ

φ = 0.

Lemma 2.3 then implies that there is a constant c ∈ R such that

Tn · n = c on Θ,

which together with (5.10) finishes the proof. �

Corollary 5.1. Suppose that S defines a continuous and monotone 2-graph.
Further, assume that ∂S

∂A exists, is symmetric and satisfies (5.2) and (5.3). Then,
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there exists an unique weak solution to

div v = 0 in Ω

−2ν divS(Dv) = −∇p in Ω

v = vD on Γ

Tn = cn on Θ.(5.11)

Moreover, the boundary condition on Θ is η-optimal.

Proof. By Lemma 5.1, we know that there exists a weak solution to (5.11)1,
(5.11)2, (5.11)3 with some compatible Dirichlet boundary condition on Θ. Hence,
the set where η is minimized is non-empty and, by Theorem 4.1, there is a weak
solution to (5.11)1, (5.11)2, (5.11)3 with η-optimal boundary condition. By Theo-
rem 5.2, every such solution satisfies Tn = cn on Θ for some constant. To show
uniqueness, let (v1, p1) and (v2, p2) both be weak solutions to (5.11) and let T 1,T 2

be the corresponding Cauchy stress tensors. Then v1− v2 ∈W 1,2
Γ,div(Ω), therefore,

integrating by parts, using (5.11)2 and (5.3), we get

0 =

∫
Θ

(T 1n− T 2n) · (v1 − v2) =

∫
∂Ω

(T 1n− T 2n) · (v1 − v2)

=

∫
Ω

(S(Dv1)− S(Dv2)) · (Dv1 −Dv2)

=

∫
Ω

∫ 1

0

∂S(Dv2 + s(Dv1 −Dv2))

∂A
(Dv1 −Dv2) · (Dv1 −Dv2) ds

&
∫

Ω

|Dv1 −Dv2|2,

hence v1 = v2. �

Remark 5.1. The previous result was formulated for the case, where Θ is con-
nected (i.e., there is only one input). If there are multiple components Θi of Θ, we
need to prescribe flow rates through Θi, i.e. the numbers

∫
Θi
v · n = Qi (actually,

we need to prescribe this for every Θi, except one, due to the incompressibility).
Then, a quick inspection of the proof of Theorem 5.1 reveals that the “test func-
tions” w must satisfy

∫
Gi
w · n = 0. Thus, by Lemma 2.3, we would eventually

get

Tn = cin on Θi,

where ci are constants corresponding to the components of Θ. This remark is, of
course, valid also for the results below.

Now one may ask whether there is also an analogous result directly for the
energy dissipation, not its potential. The answer is positive, if we consider the
r-Stokes model described by the constitutive relation

T = −pI + S(Dv),

where

S(A) := 2ν|A|r−2A.
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This model is a special instance of the generalized Stokes model, where viscosity
depends on |Dv|. Then, an easy computation reveals

∂S(A)

∂A
A = (r − 1)S(A) and R(A) =

1

r
S(A).

We shall construct the solution to the r-Stokes system as the limit of the sequence
of solutions from the previous theorem. This way, the optimal boundary condition
is preserved. To make this limit, we shall need the modified convergence lemmas
from the second section.

The next theorem is a crucial step to find the explicit form of ξ-optimal outflow
boundary condition for the r-Stokes model

Theorem 5.3. Let vD ∈W
1− 1

r ,r

div (∂Ω) with r > 2 and denote by v0 ∈W 1,r
div(Ω)

its divergence-free extension to Ω.
Then, there exists an unique weak solution to the system

div v = 0 in Ω

−2ν div(|Dv|r−2Dv) = −∇p in Ω

v = vD on Γ

Tn = cn on Θ.(5.12)

Moreover, the boundary condition (5.12)4 is ξ-optimal.

Proof. The boundary condition Tn = cn on Θ implies∫
Θ

Tn · b = 0 ∀b ∈W 1− 1
r ,r

Γ,div (∂Ω),

which gives

(5.13)

∫
Ω

S(Dv) ·Dw = 0 ∀w ∈W 1,r
Γ,div(Ω)

whenever v is a weak solution to (5.12). Relation (5.13) tells us that the weak
formulation of the equation −divS(Dv) = −∇p remains the same if tested by
functions that do not need to vanish on Θ. This is the key observation of the
following proof.

The uniqueness follows by testing (5.13) with v1 − v2 ∈W 1,r
Γ,div(Ω) and using

the strict monotonicity of S (cf. the proof of Theorem 5.1).
The existence of a weak solution could be proved directly from the formula-

tion (5.13) (using e.g. the Galerkin approximation). However, since we additionally
require that our solution satisfies an ξ-optimal boundary condition, we shall con-
struct v as certain limit of weak solutions obtained from Theorem 5.2, which we
know that satisfy η-optimal boundary condition. Then, at the last step we shall use
the fact that for our particular graph S, we have η = 1

r ξ. This approach, though,
requires to linearize the graph S.

For δ, λ ∈ (0,∞), let

Sδλ(A) := 2ν(δ + min(λ, |A|2))
r−2
2 A.
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Then, the graph Sδλ is clearly a maximally monotone 2-graph. Moreover, its de-
rivative satisfies

(5.14)
∂Sδλ(A)

∂A
=

{
2ν(r − 2)|A|r−4A⊗A+ 2ν(δ + |A|2)

r−2
2 I, |A| < λ;

2ν(δ + λ2)
r−2
2 I, |A| > λ

,

hence, it is easy to see that (5.2) and (5.3) are satisfied (with c2 = 2ν(δ + λ2)
r−2
2

and c1 = (r − 1)c2). Thus, we may apply Corollary 5.1 to find the weak solution

vδλ ∈ v0 + W 1,2
Γ,div(Ω) to (5.11). To get the δ-uniform estimates for vδλ, we use

(5.13) and the fact that vδλ − v0 ∈W 1,2
Γ,div(Ω) to get

(5.15)

∫
Ω

Sδλ(Dvδλ) ·Dvδλ =

∫
Ω

Sδλ(Dvδλ) ·Dv0.

Note that, with λ fixed, the graph Sδλ is a 2-graph. Indeed we may write

Sδλ(A) ·A > 2νmin(λ, |A|)r−2|A|2 = 2νλr−2|A|2

for |A| large and

|Sδλ(A)|2 6 4ν2(1 + λ2)r−2|A|2.
This, together with (5.13) and Young’s inequality gives∫

Ω

|Dvδλ|2 +

∫
Ω

|Sδλ(Dvδλ)|2 6 C(λ),

therefore

(5.16) vδλ ⇀ vλ in W 1,2(Ω)

and

(5.17) Sδλ(Dvδλ) ⇀ S in L2(Ω)

as δ → 0+ for a subsequence. Using (5.17) in (5.13), we get

(5.18)

∫
Ω

S ·Dw = 0 ∀w ∈W 1,2
Γ,div(Ω).

We use (5.15) and (5.18) with vλ − v0 ∈W 1,2
Γ,div(Ω) to obtain

(5.19)

∫
Ω

Sδλ(Dvδλ) ·Dvδλ =

∫
Ω

Sδλ(Dvδλ) ·Dv0 →
∫

Ω

S ·Dv0 =

∫
Ω

S ·Dvλ,

which, in view of Lemma 2.1 is enough to conclude

S = Sλ(Dvλ),

where Sλ(A) := 2νmin(λ, |A|)r−2A. At this point, we know that vλ ∈ v0 +

W 1,2
Γ,div(Ω) is a weak solution to

div vλ = 0 in Ω

−divSλ(Dvλ) = −∇pλ in Ω

vλ = v0 on Γ,(5.20)
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where pλ ∈ L2(Ω) is obtained from De-Rahm’s theorem. Moreover, the solution vλ
satisfies

(5.21)

∫
Ω

Sλ(Dvλ) ·Dw = 0 ∀w ∈W 1,2
Γ,div(Ω).

Now we will prove that the boundary condition on Θ for vλ, that is encoded
in (5.21), is ηλ-optimal.

Let

f(x) := 2νmin(λ, x)r−2, x > 0.

Observe that r > 2 and (5.14) imply

∂Sδλ(A)

∂A
B ·B > f(|A|)|B|2.

Thus, using (5.13), (5.18) tested by vδλ − vλ ∈W 1,2
Γ,div(Ω) and (5.16), we get∫

Ω

∫ 1

0

f(|Dvsδλ|)|Dvδλ −Dvλ|2 ds

6
∫

Ω

∫ 1

0

∂Sδλ(Dvsδλ)

∂A
(Dvδλ −Dvλ) · (Dvδλ −Dvλ) ds

=

∫
Ω

(Sδλ(Dvδλ)− Sδλ(Dvλ)) · (Dvδλ −Dvλ)

= −
∫

Ω

(Sδλ(Dvλ)− Sλ(Dvλ)) · (Dvδλ −Dvλ)→ 0,

where Dvsδλ := (1− s)Dvλ + sDvδλ (note that Sδλ(Dvλ)→ Sλ(Dvλ) in Lr(Ω) by
the dominated convergence theorem). Thus, there is a subsequence of {Dvδλ}δ,
such that

(5.22) f(|Dvsδλ|)|Dvδλ −Dvλ|2 → 0 a.e. in Ω× (0, 1).

If, at some point where (5.22) holds, |Dvδλ−Dvλ| does not converge to zero, then
f(|Dvsδλ|) → 0 for a subsequence, which in turn implies Dvδλ → Dvλ = 0. Thus,
we see that in any case, we have

(5.23) Dvδλ → Dvλ a.e. in Ω

for some subsequence. This, together with (5.16) and Vitali’s lemma yields

(5.24) Dvδλ → Dvλ in L2(Ω).

Using that and Sδλ(Dvδλ) ⇀ Sλ(Dvλ) in L2(Ω), we easily obtain

(5.25) Sδλ(Dvδλ) ·Dvδλ ⇀ Sλ(Dvλ) ·Dvλ in L1(Ω),

which, in turn, implies the uniform integrability of {Sδλ(Dvδλ) ·Dvδλ}δ. We claim
that this yields also the uniform integrability of {Rδλ(Dvδλ) ·Dvδλ}δ. Indeed, this
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follows immediately from the estimate

|Rδλ(A) ·A| 6 (Rδλ(A)− Rδλ(0)) ·A+ |Rδλ(0) ·A|

= Rδλ(A) ·A =

∫ 1

0

Sδλ(sA) · (sA)
1

s
ds

6 Sδλ(A) ·A
∫ 1

0

s2

s
ds =

1

2
Sλ(Dvλ) ·Dvλ.

Since Sδλ is continuous (with respect to δ, λ and its argument), its integral Rδλ
must be continuous as well. Then, the property (5.23) implies Rδλ(Dvδλ) ·Dvδλ →
Rλ(Dvλ) ·Dvλ almost everywhere in Ω. Thus, the Vitali’s theorem yields

(5.26) ηδλ(vδλ) =

∫
Ω

Rδλ(Dvδλ) ·Dvδλ →
∫

Ω

Rλ(Dvλ) ·Dvλ = ηλ(vλ).

Now let (uλ, πλ) be a weak solution of (5.20) and let (uδλ, πλδ) be the weak
solution to

−divSδλ(Duδλ) = −∇πδλ in Ω

divuδλ = 0 in Ω

uδλ = uλ on ∂Ω.(5.27)

We claim that the estimates and convergence results that were proved up to this
point for vδλ and vλ hold in an analogous form also for uδλ and uλ. Indeed,
although uδλ and uλ do not satisfy the implicit boundary condition of the form
(5.13), we can now simply use the fact that uλ is given and uδλ−uλ ∈W 1,2

0,div(Ω) is

a test function for the weak formulation of (5.27)1. This way, we get the analogous
estimates for uδλ and uλ and, by repeating the arguments above, we eventually
find that also

(5.28) ηδλ(uδλ)→ ηλ(uλ).

Recall that Corollary 5.1 gives us

ηδλ(vδλ) 6 ηδλ(uδλ),

which, using (5.26) and (5.28) immediately yields

ηλ(vλ) 6 ηλ(uλ)

for all weak solutions uλ of (5.20).
It remains to make the limit passage λ → ∞. This is more difficult than the

δ → 0+ limit since a 2-graph transforms to r-graph, however the basic scheme of
the proof is similar. From (5.21) tested by vλ − v0 ∈W 1,2

Γ,div(Ω), we get

(5.29)

∫
Ω

Sλ(Dvλ) ·Dvλ =

∫
Ω

Sλ(Dvλ) ·Dv0,
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which implies∫
|Dvλ|6λ

|Dvλ|r + λr−2

∫
|Dvλ|>λ

|Dvλ|2

6
∫
|Dvλ|6λ

|Dvλ|r−1|Dv0|+ λr−2

∫
|Dvλ|>λ

|Dvλ||Dv0|.

Here we apply the Young inequality to both integrals on the right hand side (we
use v0 ∈W 1,r(Ω), r > 2) and get

(5.30)

∫
|Dvλ|6λ

|Dvλ|r + λr−2

∫
|Dvλ|>λ

|Dvλ|2 6 C.

Let

S(A) := 2ν|A|r−2A

and

Eλ := χ{|Dvλ|6λ}Dvλ and F λ := χ{|Dvλ|>λ}Dvλ.

We shall now verify the assumptions of Lemma 2.2 for the graph Sλ. First of all,

the estimate (5.30) implies that Eλ is bounded in Lr(Ω) and λ
r−2
2 F λ is bounded

in L2(Ω) (hence we choose α = r−2
2 > − 1

2 , β = r). Furthermore,

|S(Eλ)|r
′

= 2ν||Eλ|r−2Eλ|r
′

= 2ν|Eλ|r,

thus S(Eλ) is bounded in Lr
′
(Ω) as required. Since, in our case Nλ(A) = λr−2A,

it also holds that

|λ−
r−2
2 Nλ(F λ)|2 = λ−r+2λ2(r−2)|F λ|2 = λr−2|F λ|2.

Therefore λ−
r−2
2 Nλ(F λ) is bounded in L2(Ω). Hence the assumptions of the first

part of Lemma 2.2 are verified and with the help of the Korn inequality we get, in
particular, that there exists v ∈ v0 +W 1,2

Γ,div(Ω) and a subsequence such that

(5.31) Dvλ ⇀ Dv in L2(Ω).

By Lemma 2.2, the limit Dv coincides with the limit of {Eλ}λ, thus it must hold

that Dv ∈ Lr(Ω) and v ∈ v0 +W 1,r
Γ,div(Ω). Further, from (2.4)5 we obtain

(5.32) Sλ(Dvλ) ⇀ S in Lr
′
(Ω).

Hence, by passing to the limit in (5.21), we get

(5.33)

∫
Ω

S ·Dw = 0 ∀w ∈W 1,r
Γ,div(Ω).

Now we choose w = v − v0 ∈ W 1,r
Γ,div(Ω) in (5.33) and use (5.29) together with

(5.32) and the assumptions on v0 to get

(5.34)

∫
Ω

Sλ(Dvλ) ·Dvλ =

∫
Ω

Sλ(Dvλ) ·Dv0 →
∫

Ω

S ·Dv0 =

∫
Ω

S ·Dv.
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Thus, the property (2.5) is verified, hence Lemma 2.2 yields S = S(Dv). If we use
this in (5.33), we get ∫

Ω

S(Dv) ·Dw = 0 ∀w ∈W 1,r
Γ,div(Ω)

and consequently (cf. end of the proof of Theorem 5.2) also

Tn = cn on Θ.

It remains to prove that this boundary condition for v is ξ-optimal. To this
end, let u be a weak solution to the r-Stokes system and let uλ be a weak solution
to (5.20) with Dirichlet boundary condition uλ = u on ∂Ω. Similarly as for the
δ → 0+ limit, the sequence {uλ}λ satisfies analogous estimates as {vλ}λ does (since

uλ − u ∈ W 1,2
0,div(Ω)). Since vλ satisfies the ηλ-optimal boundary condition, we

know that

(5.35) ηλ(vλ) 6 ηλ(uλ).

The goal is to pass to the limit λ → ∞ in this inequality. Again, we will only
show that ηλ(vλ)→ 1

r ξ(v), since the limit on the right hand side of (5.35) is then
completely analogous. At this point, we only know from Lemma 2.2, that

(5.36)

∫
Ω

Sλ(Dvλ) ·Dvλ →
∫

Ω

S(Dv) ·Dv,

i.e., convergence of Sλ(Dvλ) · Dvλ in the sense of averages. In what follows, we
shall use the special form of Sλ and the assumption r > 2 to prove that, actually,
we have

Sλ(Dvλ) ·Dvλ → S(Dv) ·Dv in L1(Ω)

for some subsequence. However, compared to the δ limit above, now we will only
have Dvλ → Dv in L2(Ω), which is insufficient to pass to the (weak) limit in
the product Sλ(Dvλ) · Dvλ. To overcome this, we first verify that the sequences
{Sλ(Dv) ·Dvλ}λ, {Sλ(Dvλ) ·Dv}λ and {Sλ(Dv) ·Dv}λ converge weakly to S(Dv) ·
Dv and then we apply (5.36) and the monotonicity of Sλ.

The first step is to prove that

(5.37) Sλ(Dv) ·Dvλ ⇀ S(Dv) ·Dv in L1(Ω).

To this end, we take φ ∈ L∞(Ω) and write∫
Ω

Sλ(Dv) ·Dvλφ =

∫
|Dv|6λ
|Dvλ|6λ

S(Dv) ·Dvλφ+

∫
|Dv|6λ
|Dvλ|>λ

S(Dv) ·Dvλφ

+

∫
|Dv|>λ
|Dvλ|6λ

2νλr−2Dv ·Dvλφ+

∫
|Dv|>λ
|Dvλ|>λ

2νλr−2Dv ·Dvλφ

=: I1 + I2 + I3 + I4

By the dominated convergence theorem, we obtain

S(Dv)χ|Dv|6λφ→ S(Dv)φ in Lr
′
(Ω).
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From this and from Eλ ⇀ Dv in Lr(Ω), we obtain

I1 =

∫
Ω

(S(Dv)χ|Dv|6λφ) ·Eλ →
∫

Ω

S(Dv) ·Dvφ.

To estimate I2, first note that

Gλ := λ−
r−2
2 S(Dv)χ|Dv|6λχ|Dvλ|>λφ

is bounded in L2(Ω). Indeed, we have∫
Ω

|Gλ|2 . λ−r+2

∫
|Dv|6λ
|Dvλ|>λ

|S(Dv)|2 . λ−r+2λ2(r−1)λ−r = 1

(recall that |{|Dvλ| > λ}| . λ−r, cf. the proof of Lemma 2.2). Hence, using

λ
r−2
2 F λ ⇀ 0 in L2(Ω) (again from Lemma 2.2), we get

I2 =

∫
Ω

Gλ · (λ
r−2
2 F λ)→ 0, λ→∞.

The term I3 can be estimated using Hölder’s inequality, Dv ∈ Lr(Ω) and r > 2 as

I3 . λ
r−2

∫
|Dv|>λ
|Dvλ|6λ

|Dvλ|r
′
. λr−2λr

′
λ−r = λr

′−2 → 0, λ→∞.

To estimate the last term, first note that

Hλ := 2νλ
r−2
2 Dvχ|Dv|>λχ|Dvλ|>λφ

is bounded in L2(Ω). Indeed, the Hölder’s inequality and Dv ∈ Lr(Ω), yield∫
Ω

|Hλ|2 . λr−2λ−r(1−
2
r ) = 1.

Then, using λ
r−2
2 F λ ⇀ 0 in L2(Ω) once more, we obtain

I4 =

∫
Ω

Hλ · (λ
r−2
2 F λ)→ 0, λ→∞.

Thus, the the property (5.37) is verified.
Next, observe that

(5.38) Sλ(Dv) ·Dv → S(Dv) ·Dv in L1(Ω).

follows by the dominated convergence theorem. Indeed, the pointwise limit is ob-
vious and the members of the sequence are dominated by 2ν|Dv|r ∈ L1(Ω), since

|Sλ(Dv) ·Dv| 6 |S(Dv) ·Dvχ|Dv|6λ|+ |2νλr−2Dv ·Dvχ|Dv|>λ| < 2ν|Dv|r.

Finally, since r > 2, we have

Sλ(Dvλ) ⇀ S(Dv) in Lr
′
(Ω),

which, using Dv ∈ Lr(Ω), yields

(5.39) Sλ(Dvλ) ·Dv ⇀ S(Dv) ·Dv in L1(Ω).
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By putting together (5.36), (5.37), (5.38), (5.39) and the monotonicity of Sλ,
we get

(5.40) (Sλ(Dvλ)− Sλ(Dv)) · (Dvλ −Dv)→ 0 in L1(Ω),

and, consequently, also

(5.41) (Sλ(Dvλ)− Sλ(Dv)) · (Dvλ −Dv) ⇀ 0 in L1(Ω).

This implies, using (5.37), (5.38), (5.39), that

Sλ(Dvλ) ·Dvλ ⇀ S(Dv) ·Dv in L1(Ω),

which, in turn, means that the sequence {Sλ(Dvλ) ·Dvλ}λ is uniformly integrable.
From this point onwards, we can proceed analogously as for the δ limit. This

way, we deduce that {Rλ(Dvλ)·Dvλ}λ is also uniformly integrable, that Dvλ → Dv
a.e. in Ω and thus, by the Vitali’s theorem, we get

ηλ(vλ) =

∫
Ω

Rλ(Dvλ) ·Dvλ →
∫

Ω

R(Dv) ·Dv =
1

r

∫
Ω

S(Dv) ·Dv =
1

r
ξ(v).

As we explained above, the corresponding property for uλ can be proved anal-
ogously. Using that in (5.35), we obtain

ξ(v) 6 ξ(u),

which finishes the proof. �

Our final result gives an explicit form of ξ-optimal outflow boundary condition
for the r-Stokes model.

Theorem 5.4. Let r > 2 and let (v, p) be a weak solution to

−2ν div(|Dv|r−2Dv) = −∇p in Ω

div v = 0 in Ω

v = vD on Γ(5.42)

with a ξ-optimal boundary condition on Θ. Then

(5.43) Tn = cn on Θ.

Proof. The case r = 2 was done in [2].
If we prove that there is only one solution to (5.42)1, (5.42)2, (5.42)3 with a

ξ-optimal boundary condition, then it must be the solution that was constructed
in Theorem 5.3, which satisfies (5.43). Hence, it remains to prove the uniqueness.

Let v1 6= v2 be weak solutions to (5.42)1, (5.42)2, (5.42)3 with a ξ-optimal
boundary condition. Then, necessarily, ξ(v1) = ξ(v2). Let v be another solution
to (5.42)1, (5.42)2, (5.42)3 with the Dirichlet boundary condition v = v1+v2

2 on ∂Ω

(which exists due to Theorem 5.1). Since S(A) := 2ν|A|r−2A is strictly monotone,
the mapping f(A) := S(A) ·A is strictly convex as(

∂f(A)

∂A
− ∂f(B)

∂A

)
· (A−B) = r(S(A)− S(B)) · (A−B) > 0
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whenever A 6= B. Thus, we obtain

f(A)− f(B) >
∂f(B)

∂A
· (A−B) = rS(B) · (A−B)

and, by choosing A = Dvi, i = 1, 2, B = Dv, we get∫
Ω

S(Dv) ·Dvi <
1

r
ξ(Dvi) +

1

r′
ξ(Dv).

Using that and the fact that v is a weak solution and v − v1+v2

2 a test function,
we find

ξ(v) =
1

2

∫
Ω

S(Dv) ·Dv1 +
1

2

∫
Ω

S(Dv) ·Dv2

<
1

2r
ξ(v1) +

1

2r
ξ(v2) +

1

r′
ξ(v) =

1

r
ξ(v1) +

1

r′
ξ(v),

hence

ξ(v) < ξ(v1),

which is the desired contradiction. �

Lemma 5.2. Let b ∈W
1
2 ,2(∂Ω) such that

∫
∂Ω
b ·n = 0. There exists a constant

δ > 0 (depending on d, Ω) such that if

‖b‖
W

1
2
,2

div (∂Ω)
< δ,

then there exists a solution v ∈W 1,2(Ω) satisfying

div v = 0 in Ω

div(v ⊗ v) = divT in Ω

v = b on ∂Ω.

Proof. �
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6. M. Buĺıček, P. Gwiazda, J. Málek and A. Swierczevska-Gwiazda: On Unsteady Flows of
Implicitly Constituted Incompressible Fluids, SIAM J. Math. Anal., 44, No. 4, 2756–2801,

2012.
7. A. Henrot, Y. Privat: What is the optimal shape of a pipe? Arch. Ration. Mech. Anal. 196

(2010), no. 1, 281–302.



30 BATHORY AND BULÍČEK
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