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We prove that there exists a large-data and global-in-time weak solution to a sys-

tem of partial differential equations describing the unsteady flow of an incompressible

heat-conducting rate-type viscoelastic stress-diffusive fluid filling up a mechanically and
thermally isolated container of any dimension. To overcome the principal difficulties

connected with ill-posedness of the diffusive Oldroyd-B model in three dimensions, we

assume that the fluid admits a strengthened dissipation mechanism, at least for exces-
sive elastic deformations. All the relevant material coefficients are allowed to depend

continuously on the temperature, whose evolution is captured by a thermodynamically

consistent equation. In fact, the studied model is derived from scratch using only the bal-
ance equations for linear momentum and energy, the formulation of the second law of

thermodynamics and the constitutive equation for the internal energy. The latter is

assumed to be a linear function of temperature, which simplifies the model. The concept
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of our weak solution incorporates both the temperature and entropy inequalities, and

also the local balance of total energy provided that the pressure function exists.

Keywords: Viscoelastic heat-conducting fluids; Johnson–Segalman; weak solution.

AMS Subject Classification 2020: 35A01, 76A10, 76D03

1. Introduction

Material properties of both synthetic and organic viscoelastic materials are very

sensitive to temperature changes. Reliable predictions of corresponding processes

by computational tools require one to incorporate complex thermal/mechanical

effects into the description of the model. The understanding of how thermal and

mechanical processes are coupled and what the structure of the complete temper-

ature equation is has been considered to be an open problem until recently (see

Refs. 31 and 54). A methodology that can be used to develop such a complete

model (a system of partial differential equations — PDEs) and that is followed in

this study has its origin in Refs. 50 and 51. A complete (i.e. including elastic contri-

bution to the internal energy) thermodynamically consistent model for viscoelastic

rate-type fluids is developed in Ref. 31, where also further references to earlier

studies, including in particular Refs. 36, 56, 22 and 32, are given. Incorporation of

additional stress-diffusive phenomena into this thermodynamic framework is then

developed in Ref. 42.

The aim of this study is to establish mathematical foundation for a robust class

of heat-conducting viscoelastic rate-type fluids with stress diffusion. In particular,

we identify reasonable conditions on material functions/coefficients that are suffi-

cient to prove long-time and large-data existence of a weak solution. To develop

analysis for complete thermal/mechanical systems of PDEs is considerably harder

than studying merely mechanical systems. To the best of our knowledge, there is

only one existing analytical work dealing with such a problem, see Ref. 13, where

however the elastic response is drastically reduced to a spherical stress governed

by a scalar quantity. In our work, we do not make such an assumption and we

work with the full d-dimensional elastic tensor. On the other hand, we assume that

there is a linear relation between the internal energy and temperature. The main

purpose for this assumption is to simplify the (already very technical) presentation

of the existence analysis. Additionally, the linear relationship between the inter-

nal energy and temperature is used in applications involving viscoelastic fluids,

such as polymer melts, see Ref. 52. Apart from this, our model contains no further

simplifications. A complete physical derivation of the model studied in this paper

and a more detailed description of the participating physical quantities are given

in Sec. 2. This opening section continues below with an informal formulation of

the main result, a brief description of the PDE system and a basic overview of

the relevant literature. In Sec. 3, we introduce the necessary notation, derive infor-

mally a priori estimates that naturally lead to the definition of function spaces

in which the existence theory is established. This section also contains the precise
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definition of the solution to the problem studied and the formulation of the main

result. Its proof represents the content of the remaining sections of the paper, see

Secs. 4–6. The detailed description of the strategy of the proof is given at the end

of Sec. 3.

Formulation of the problem

We consider an incompressible fluid with the constant density set to be equal to one,

for simplicity. The fluid is flowing inside an open bounded connected set Ω ⊂ Rd
with a Lipschitz boundary ∂Ω. For an arbitrary (but fixed) time interval (0, T ),

T > 0, we set Q := (0, T ) × Ω and Σ := (0, T ) × ∂Ω. Our main objective in this

study is to develop a long-time and large-data existence theory for the following

initial- and boundary-value problem.

For given

• right-hand side g : Q→ Rd,
• initial data v0 : Ω → Rd, B0 : Ω → Rd×dsym being positive definite and θ0 : Ω →

(0,∞),

• constants a ∈ R, α ≥ 0, µ > 0 and cv > 0,

• continuous functions ν, λ, κ : [0,∞)→ (0,∞) and P : [0,∞)× Rd×dsym → Rd×dsym ,

we look for functions v : Q → Rd, p, θ, e, E, η, ξ : Q → R and B,S : Q → Rd×dsym

fulfilling the (physical) restrictions

θ > 0, (1.1)

Bx · x > 0 for all x ∈ Rd\{0}, (1.2)

S = 2ν(θ)Dv + 2aµθB, (1.3)

e = cvθ, (1.4)

E =
1

2
|v|2 + e, (1.5)

η = cv ln θ − f(B), where f(B) := µ(trB− d− ln detB), (1.6)

ξ =
2ν(θ)

θ
|Dv|2 + κ(θ)|∇ ln θ|2 + P(θ,B) · f ′(B) + λ(θ)∇B · ∇f ′(B), (1.7)

and solving (in a suitable sense) the following system of PDEs in Q:

div v = 0, (1.8)

∂tv + v · ∇v +∇p − div S = g, (1.9)

∂tB + v · ∇B + P(θ,B)− div(λ(θ)∇B) = WvB− BWv + a(DvB + BDv),

(1.10)

∂te+ v · ∇e− div(κ(θ)∇θ) = S · Dv, (1.11)

∂tE + v · ∇E − div(κ(θ)∇θ) = div(−pv + Sv) + g · v, (1.12)

∂tη + v · ∇η − div(κ(θ)∇ ln θ) + div(λ(θ)∇f(B)) = ξ, (1.13)
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completed by the boundary conditions on Σ

v · n = 0, (Sn+ αv)τ = 0, (1.14)

n · ∇B = 0, (1.15)

n · ∇θ = 0, (1.16)

and by the initial conditions fulfilled in Ω

v(0, ·) = v0, B(0, ·) = B0, θ(0, ·) = θ0. (1.17)

The physical meaning of the above unknowns is the following: v is the flow

velocity, p is the pressure, B is the extra stress tensor (arising due to the elastic

properties of the fluid), θ is the temperature, e is the internal energy, E is the total

energy and η is the entropy. We shall now state informally our main result.

Main theorem. If the material coefficients κ(θ) and P(·,B) grow sufficiently fast as

θ →∞ and |B| → ∞, respectively (with the other coefficients being merely bounded

and positive), then there exists a generalized global-in-time solution of the system

(1.1)–(1.17) for any initial data with finite total energy and entropy.

In order to explain the equations above, let us first clarify some notation, see also

the beginning of Sec. 3. The symbol v · ∇v denotes a vector with the i-component

(v · ∇v)i =
∑d
k=1 vk∂xkvi. Similarly, v · ∇B is a tensor with the ij-component

(v · ∇B)ij =
∑d
k=1 vk∂xk(B)ij . The first two terms of each equation (1.9)–(1.13)

represent the material (or convective) derivative of the respective unknown and we

shall sometimes use the abbreviation

•
u := ∂tu+ v · ∇u.

Further, the symbol n denotes the outward unit normal vector at a given point of ∂Ω

and zτ stands for the tangential part (with respect to ∂Ω) of any vector z ∈ Rd∩∂Ω,

i.e. zτ := z−(z ·n)n. Furthermore, for any vector u : Ω→ Rd, the symbols Du and

Wu denote the symmetric and antisymmetric parts of a gradient ∇u = (∂jui)
d
i,j=1

so that ∇u = Du+ Wu with (Du)T = Du and (Wu)T = −Wu.

The first two equations (1.8) and (1.9) resemble the incompressible Navier–

Stokes system for the unknowns velocity field v and the pressure (constitutively

undetermined part of the Cauchy stress) p, however, with an additional term

2aµdiv(θB) coming from S and bringing to the problem two other quantities:

the temperature θ and the tensor B representing the elastic response of the fluid.

The presence of this additional term prohibits one to use the usual methods known

in the analysis of the Navier–Stokes–Fourier-like systems, as there is no longer a

useful form of the balance of kinetic energy (the inner product B ·Dv does not have

a sign). Instead, the estimates on ∇v are deduced only after taking into account

the whole thermodynamical evolution of the system.

Since the dependence of the material parameters (namely the viscosity of

the fluid) on the pressure p is neglected, we simplify the analysis by eliminating
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the pressure from the system completely, taking the Leray projection of (1.9) and

searching for v in divergence-free function spaces. If needed (for example, if we want

to preserve Eq. (1.12)), the pressure can be reconstructed at the last step. Then,

it is known that Navier’s slip boundary condition (1.14), or even more generally

a stick–slip boundary condition, allows one to prove that p is an integrable function

(if the boundary of Ω is smooth enough so that W 2,r-regularity for the classical

Neumann problem holds), see Refs. 15, 7, 11, 12 and 5 for details. Recall that

the integrability of the pressure is not known to be true in general for no-slip bound-

ary condition. The integrability of p is not only important in itself, but is also useful

for the validity of the weak formulation of (1.12).

To understand Eq. (1.10), it is better to define first the objective derivative

of B as

◦
B :=

•
B− (WvB− BWv)− a(DvB + BDv), a ∈ R. (1.18)

This turns (1.10) into

◦
B + P(θ,B)− div(λ(θ)∇B) = 0, (1.19)

which is the mathematical formulation of a generalized (due to an implicit form

of P) Johnson–Segalman33 viscoelastic model with stress diffusion (cf. Ref. 48 and

references therein) and temperature-dependent material parameters. The reason

why
◦
B appears in (1.19) is that, unlike the material derivative, the objective deriva-

tive
◦
B (for any a) transforms correctly (as a tensor) under a time-dependent rota-

tion of the observer. When a ∈ [−1, 1], then
◦
B is precisely the Gordon–Schowalter

derivative.28 It is known (see e.g. Ref. 49) that by modifying the value of a, it is

possible to capture shear-thinning behavior of the fluid. The case a = 0 leads to

the class of models with the corrotational objective derivative,59 which has very

special properties that simplify the analysis. The case a = 1 in (1.18) coincides

with the upper-convected objective derivative, which is probably the most popular

choice in the literature. One of the main features of our analysis is that, we are

able to treat (1.10) with any a ∈ [−1, 1] (or even a ∈ R). As we shall see later, if

a 6= 0, the summability of the nonlinear terms like BDv in (1.10) (and especially the

related term in (1.11)) becomes the main difficulty. This is essentially the reason,

why we formulate (1.10) with a general function P(θ,B). The strategy is that if

P(θ,B) grows sufficiently fast as |B| → ∞, then B admits sufficient integrability to

define a meaningful concept of solution to the system (1.1)–(1.17). Moreover, as the

form of P can be attributed to the dissipation mechanism of the fluid, restricting

its asymptotic growth should not be seen as a significant physical drawback of our

model. Recall that, for the classical Oldroyd-B and Giesekus models, the function

P takes the form

P(θ,B) = δ(θ)(B− I) and P(θ,B) = δ(θ)(B2 − B),
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respectively. While these models are not covered by the analysis presented below,

the existence result, in three dimensions, holds for

P(θ,B) = δ(θ)(Bα − Bα−1), α > 2,

or

P(θ,B) = δ(θ) max

{
1,
|B− I|2

K2

}
(B− I), K > 0. (1.20)

Note that the last model coincides with the Oldroyd-B model as long as |B−I| ≤ K.

Due to (1.4), the balance of internal energy (1.11) is also the temperature equa-

tion. As we hinted above, the term 2aµθB · Dv arising from the right-hand side of

(1.11) is the most difficult term to control in the whole system (1.8)–(1.13) and

it is also the term which is occasionally omitted in some “naive” approaches to

thermoviscoelasticity, as pointed out in Sec. 3 in Ref. 31. Note also that this term

does not have a clear sign and thus, one cannot conclude the positivity of temper-

ature directly from (1.11) as in the Navier–Stokes–Fourier case. Equations (1.12)

and (1.13) govern the evolution of two other unknowns E and η, respectively. Since

these quantities together with θ are mutually connected by simple algebraic rela-

tions (1.4)–(1.6), Eqs. (1.11)–(1.13) are interchangeable and each of them alone can

be used as the equation for temperature evolution. To see this, note that (1.5) and

(1.6) imply that

∂tE = v · ∂tv + ∂te, (1.21)

∂tη = cvθ
−1∂tθ − f ′(B) · ∂tB. (1.22)

Within the considered system of equations (assuming that all involved operations

are meaningful), one can verify that Eqs. (1.11)–(1.13) are mutually equivalent. We

remark that this equivalence may no longer be in place when, on the level of gener-

alized solutions, the integrability of the solution is not sufficient to define the critical

nonlinear terms in (1.11) and (1.12), that is θB · Dv and θBv, respectively. For

example, this would be the case when the initial datum B0 has low integrability, as

then the available a priori estimates deteriorate (cf. (3.15)). In such cases, one may

be forced to discard (1.11), or even (1.12) from the notion of generalized solution

and leave only (1.13), which is least restrictive but still sufficient (together with

the global version of (1.12)) to keep track of the thermal evolution of the system.

Generalized solutions relying on the weak formulation of balance of entropy were

applied, e.g. in Refs. 6, 23, 25 and 26 or in Ref. 24 for different fluid models. See

also Ref. 9 for similar ideas in the context of certain mixtures. For brevity, in this

work, we shall avoid the low integrability case and work only in the setting, where

both (1.11) and (1.13) (and (1.12) if the pressure can be defined) hold simultane-

ously, but only as the inequalities. Although these become automatically equalities

if the solution is smooth enough (see (3.48)), in general this is unknown.
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State of the art

Regarding the existence analysis of a viscoelastic fluid model including the full

temperature evolution, there is a recent study,14 where the authors develop a long-

time and large-data existence theory for a rate-type incompressible viscoelastic

fluid model with stress diffusion under the simplifying assumption that B = bI.
This assumption leads to annihilation of irregular terms coming from the objec-

tive derivative and it also simplifies the momentum equation, where the coupling

to the rest of the system is realized only via a temperature- and elastic stress-

dependent viscosity. Other than that, to the best knowledge of the authors, there is

no existence theory in a setting that would be of similar generality as the one consid-

ered here. Thus, for the first time, we provide an existence analysis for a viscoelastic

fluid model with a full thermal evolution and taking into account all components

of the extra stress tensor. Moreover, the equation for the temperature we consider

is derived from fundamental thermodynamical laws (similarly as in Refs. 14, 31

and 42) and consequently, the heating originates from both the viscous and elastic

effects. Also, we would like to point out that the all material coefficients of the model

depend on the temperature. Although we place some restrictions on the growth

of these coefficients, these are only asymptotic and therefore unimportant from

the point of view of physical applications. Furthermore, the model considered here

has the property that the evolution of the temperature cannot be decoupled from

the rest of the model even in the case of constant material coefficients.

Even if we confine to a much simpler class of isothermal processes, the exis-

tence theory there is far from being complete. Although there are several relevant

global-in-time existence results for large data, in most cases, they are restricted in

an essential way. For example, in Ref. 37, the authors provide an existence theory

for a model with the corrotational Jaumann–Zaremba derivative (the case a = 0).

This case is much easier than for the other choices of a since the corrotational part

drops out upon multiplication by any matrix that commutes with B. Moreover, it

seems that the physically preferred case is a = 1, which corresponds to the upper-

convected (Oldroyd) derivative (see Refs. 41, 44, 45, 50 and 51). Then, in Ref. 46,

a proof of existence of a weak solution to FENE-P, Giesekus and PTT viscoelas-

tic models is outlined. In fact, it is shown there that certain defect measures of

the nonlinear terms are compact. A complete proof in the case of two-dimensional

flows of a Giesekus fluid is given in Ref. 10. In the case of spherical elastic response

when B = bI, we refer to Ref. 13 (and Refs. 7 and 38 in the compressible case) for

an analysis of such models. In the two-dimensional case, existence and regularity

results can be found in Ref. 20. An existence theory for related viscoelastic models

(Peterlin class) was developed, e.g. in Ref. 39. However, for these models, the energy

storage mechanism depends only on the spherical part of the extra stress, which is

a major simplification compared to our case. A notable exception is the thesis,34

where the author obtains a global weak solution to an Oldroyd-like diffusive model

under certain growth assumptions on the material coefficients. However, the overall
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thermodynamical compatibility of the studied model is unclear. Furthermore, there

are existence results for viscoelastic models involving various approximations that

improve properties of the system, see e.g. Ref. 2 or Ref. 35.

The paper4 develops the existence theory for viscoelastic diffusive Oldroyd-B or

Giesekus models. This result relies on a certain physical correction of the energy

storage mechanism away from the stress-free state resulting in L2 a priori esti-

mates for ∇B. Interestingly, for such models, in two dimensions, uniqueness and

full regularity of weak solution is available (at least in the spatially periodic case),

see Ref. 16. Various modifications of the classical Oldroyd-B model are also dis-

cussed in Ref. 18. The paper contains also existence results that are of local nature

or for small (initial) data. Local-in-time existence of regular solutions to a viscoelas-

tic Oldroyd-B model without diffusion was shown in Ref. 29. It is also proved there

that for small data there exists a global-in-time solution. For the steady case of

a generalized Oldroyd-B model with small and regular data, see e.g. Ref. 1.

2. Thermodynamical Compatibility of the Model

In this section, we show the physical consistency of the system (1.1)–(1.17) as

it follows naturally from the elementary balance equations for mass, momentum

and energy and some reasonable constitutive assumptions. The latter can be effi-

ciently encoded in just two scalar quantities describing how the energy is stored

and dissipated in the material, see Refs. 50 and 51 for the origins of this method.

Physical justification of viscoelastic fluid models similar to ours is carried out in

many works.21, 31, 42, 44, 45

For the rest of this section, we make an implicit assumption that all functions

depend smoothly on time and spatial position (if not specified otherwise), with

the arguments (t, x) suppressed as usual.

Since the density of the fluid is assumed to be constant (% = 1), the balance of

mass

•
%+ %div v = 0,

is reduced to (1.8). Next, the general forms of the balance equations of momentum,

total energy and specific entropy are

•
v = divT, (2.1)

•
E + div je = div(Tv), (2.2)

•
η + div jη = ξ, (2.3)

where T is the Cauchy stress tensor and je and jη are energy and entropy fluxes,

respectively. The tensor T is symmetric due to the conservation of angular momen-

tum. Furthermore, the balance equation for the internal energy e := E − 1
2 |v|

2 is

•
e+ div je = T · Dv, (2.4)

as follows easily from (2.1) and (2.2).
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Turning to thermodynamics, we assert the following fundamental relation

(cf. (1.8) in Ref. 17) between specific entropy, internal energy and positive definite

tensor B

η = S(e,B), where ∂eS > 0. (2.5)

In this case, the temperature θ is defined as usual by

1

θ
:= ∂eS(e,B). (2.6)

Taking the material time derivative of both sides of (2.5) then leads to

•
η =

1

θ
•
e+ ∂BS(e,B) ·

•
B.

This in turn allows us to express the rate of entropy production in the general form

via the balance equations (2.3) and (2.4) as follows:

ξ =
1

θ
(T · Dv − div je) + div jη + ∂BS(e,B) ·

•
B. (2.7)

In the next step, we make special choices of T, je, jη and S that lead to (1.9),

(1.11)–(1.13) and verify, using the above formula and also (1.10), that ξ ≥ 0.

The formula for specific entropy is chosen as

S(e,B) := cv ln e− f(B), (2.8)

where cv > 0 is the specific heat constant and

f(B) := µ(trB− d− ln detB), µ > 0, (2.9)

is a function that characterizes the elastic properties of the fluid. If µ = 0 or B = I,
then (2.8) reduces to the classical Navier–Stokes–Fourier model, where one has

e = cvθ. (2.10)

Furthermore, as long as µ does not depend on temperature, which is the case in

this work, this property actually remains valid even with our generalized assump-

tion (2.8), as is immediately obvious from (2.8), (2.6) and (2.5). Note that we in

fact assume (2.10) from the beginning, see (1.4).

Next, comparing (2.1), (2.4) and (2.3) with (1.9), (1.11) and (1.13), respectively,

the constitutive choices for the fluxes are evidently as follows:

T := −pI + 2ν(θ)Dv + 2aµθB, (2.11)

je := −κ(θ)∇θ, (2.12)

jη := −κ(θ)∇ ln θ + λ(θ)∇f(B), (2.13)

where ν(θ) > 0, κ(θ) > 0 and λ(θ) > 0 are the kinematic viscosity, thermal con-

ductivity and stress diffusion coefficients, respectively, and the parameter a arises

from the definition of the objective tensorial time derivative (1.18).
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Finally, plugging the relations (2.11)–(2.13) and (1.19) into (2.7) and taking

advantage of the identities

−pI · Dv = −p div v = 0,

∂BS(e,B) = −f ′(B) = −µ(I− B−1) (see (A.21)), (2.14)

(I− B−1) · (WvB− BWv) = (I− B−1)B ·Wv − B(I− B−1) ·Wv = 0,

(I− B−1) · (DvB + BDv) = 2(B− I) · Dv = 2B · Dv,

∇(I− B−1) · ∇B = B−1∇BB−1 · ∇B = |B− 1
2∇BB− 1

2 |2, (2.15)

(here we used that B is a symmetric positive definite matrix, which follows from

the same property of B0 as we shall see later) leads to

ξ =
1

θ
(2ν(θ)|Dv|2 + 2aµθB · Dv + div(κ(θ)∇θ)) + div(−κ(θ)∇ ln θ + λ(θ)∇f(B))

−µ(I− B−1) · (WvB− BWv + a(DvB + BDv)− P (θ,B) + div(λ(θ)∇B))

=
2ν(θ)

θ
|Dv|2 + κ(θ)|∇ ln θ|2 + µ(I− B−1) · P(θ,B) + µλ(θ)|B− 1

2∇BB− 1
2 |2,

which validates (1.7) and verifies the physical consistency of the model. Moreover,

from the last expression, it is evident that ξ ≥ 0 whenever (I− B−1) · P(θ,B) ≥ 0,

in which case the second law of thermodynamics is always fulfilled.

3. Weak Formulation and Main Result

In this section, we focus on mathematical properties of the problem (1.1)–(1.17).

After we introduce the necessary notation, we formally derive a priori estimates

that clarify the imposed restrictions on the model parameters. They also indicate

the function spaces in which the long-time and large-data existence theory can be

established. Then, we provide the definition of weak solution to (1.1)–(1.17) and

formulate the main result of the paper.

Notation and function spaces

The sets of symmetric, positive definite and positive semi-definite matrices are

defined as follows:

Rd×dsym := {A ∈ Rd×d : A = AT },

Rd×d>0 := {A ∈ Rd×dsym : Ax · x > 0 for all 0 6= x ∈ Rd},

Rd×d≥0 := {A ∈ Rd×dsym : Ax · x ≥ 0 for all x ∈ Rd}.

If d = 1, we set R>0 := R1×1
>0 = (0,∞) and R≥0 := R1×1

≥0 = [0,∞). We use the sym-

bol “·” to denote the standard inner product in any multi-dimensional space, while

the symbol “⊗” denotes the outer product. Further, the symbol “|·|” can be applied
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to either scalars, vectors or matrices, meaning always the Euclidean (or Frobe-

nius) norm. Functions of matrices, such as matrix real powers, matrix logarithm

and matrix exponential, are understood in the standard way, using the spectral

decomposition for symmetric matrices, for instance. For various products of matrix-

valued functions, we use an intuitive index-free notation. One can follow the rule

that ∇ can only be contracted with another vector (or one-form), but never with

columns or rows of some matrix, so for example: ∇A · ∇B =
∑
i,j,k ∂iAjk∂iBjk or

(v ⊗ A) · ∇B =
∑
i,j,k viAjk∂iBjk or |A∇BC|2 =

∑
i,j,k

(∑
l,mAil∂kBlmCmj

)2
.

If not stated otherwise, the set Ω ⊂ Rd is an open bounded set with a Lipschitz

boundary (i.e. of the class C0,1) in the sense of Sec. 2.1.1 in Ref. 47. Let O ⊂ Rm be

an open bounded set (such as (0, T ), Ω or Q) and let V be a subset of a Euclidean

space. The symbol (Lp(O;V ), ‖·‖Lp(O;V )) denotes the Lebesgue space of functions

u : O → V . The standard inner products in L2(O;V ) and also in L2(∂Ω;V ) are

denoted as (·, ·)O and (·, ·)∂Ω, respectively. In the special case when O = Ω, we

write just ‖·‖p instead of ‖·‖Lp(Ω;V ) and (·, ·) instead of (·, ·)Ω.

The symbol (W k,p(Ω;V ), ‖·‖k,p), 1 ≤ p ≤ ∞, k ∈ N, is used to denote

the Sobolev spaces with their standard norm considered over the set Ω. If p > 1,

we set W−k,p(Ω;V ) := (W k,p′(Ω;V ))∗, where p′ := p/(p − 1), k ∈ N, and the star

symbol “∗” denotes the topological (continuous) dual space. For vector-valued func-

tions, we introduce the following subspaces:

W k,p
n := {u ∈W k,p(Ω;Rd) : u · n = 0}, k ∈ N, p <∞,

W k,p
n,div := {u ∈W k,p

n : divu = 0}, k ∈ N, p <∞,

W−k,2n,div := (W k,2
n,div)∗, k ∈ N,

L2
n,div := W 1,2

n,div

‖·‖2
.

The expression u · n is understood as a trace of a Sobolev function, for which we

do not use any special notation. The meaning of the duality pairing 〈·, ·〉 is always

understandable in the given context.

Let X be a Banach space. The Bochner spaces Lp(0, T ;X) with 1 ≤ p ≤ ∞
consist of strongly measurable mappings u : [0, T ]→ X for which the norm

‖u‖Lp(0,T ;X) :=


(∫ T

0

‖u‖pX

) 1
p

if 1 ≤ p <∞,

ess sup
(0,T )

‖u‖X if p =∞,

is finite. If X = Lq(Ω;V ) or X = W k,q(Ω;V ), with 1 ≤ q ≤ ∞, n ∈ N, we use

the abbreviations ‖·‖LpLq or ‖·‖LpWk,q , respectively, for the corresponding norms.

Next, the space of weakly continuous functions is defined as

Cw([0, T ];X) :=
{
u ∈ L∞(0, T ;X) : the function 〈g, u〉 is continuous in [0, T ]

for every g ∈ X∗
}
,
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whereas the standard space of continuous X-valued functions on [0, T ] is denoted

by C([0, T ];X) and equipped with the norm

‖u‖C([0,T ];X) := sup
t∈[0,T ]

‖u(t)‖X .

In addition, if X is separable and reflexive, we define two more spaces. First,

the space of X∗-valued Radon measures on [0, T ] is defined as

M([0, T ];X∗) := (C([0, T ];X))∗.

Then, we set

BV ([0, T ];X∗) :=
{
u ∈ L∞(0, T ;X∗), ∂tu ∈M([0, T ];X∗)

}
,

to be the space of functions having X∗-valued bounded variation with respect to

the time variable. Note that if u ∈ BV ([0, T ];X∗) then it makes sense to define

the value from the left and from the right at any point t, i.e. there exist

u(t+) := lim
τ→t+

u(τ) for any t ∈ [0, T ) and

u(t−) := lim
τ→t−

u(τ) for any t ∈ (0, T ],

where the limits are considered in the strong topology of X∗. For properties of BV

mappings in Bochner spaces, we refer e.g. to Ref. 30.

Assumptions on material coefficients

The mathematical properties of the system (1.1)–(1.17) depend crucially on

the behavior of the material coefficients, which we now specify. In principle, the

material parameters ν, κ, λ and P needed to be defined only for nonnegative values

of the temperature. However, in certain steps of the proof we need to deal with

approximative problems, where we cannot a priori guarantee that the temperature

is nonnegative, and we therefore need to define ν(s), κ(s), λ(s) and P (s,A) also

for negative s. Since all these functions are continuous from the right at 0 (see the

formulation of the problem in the introduction section), we can easily extend them

to negative s by corresponding constant values, so that they remain continuous for

all s ∈ R. Thus, we will require that

ν, κ, λ,P are continuous functions on R,R,R and R× Rd×dsym , respectively,

(3.1)

and there are numbers q, r > 0, C,Cα > 0 and ωP > 0, such that, for all s ∈ R,

the following conditions hold:

C−1 ≤ ν(s) ≤ C, (3.2)

C−1(1 + sr) ≤ κ(s) ≤ C(1 + sr), (3.3)

C−1 ≤ λ(s) ≤ C, (3.4)
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P(s,A) = P(s,A)T for all A ∈ Rd×dsym , (3.5)

|P(s,A)| ≤ C(1 + |A|q+1) for all A ∈ Rd×dsym , (3.6)

P(s,A) · Aα ≥ Cα|A|q+1+α − C for all α > 0 and A ∈ Rd×d>0 , (3.7)

P(s,A) · I ≥ −C for all A ∈ Rd×d>0 , (3.8)

P(s,A) · (I− A−1) ≥ 0 for all A ∈ Rd×d>0 , (3.9)

P(s,A + ωPI)x · x ≤ 0 for all A ∈ Rd×dsym and x ∈ Rd

such that Ax · x ≤ 0. (3.10)

Assumption (3.2) is quite standard for fluids. The restriction (3.3) means that κ

is a bounded function near zero and has r-growth near infinity. Assumption (3.4)

is chosen just for simplicity. Condition (3.5) is necessary for the validity of (1.10).

Assumptions (3.6) and (3.7) mean that P(·,A) behaves asymptotically as Aq+1,

which is crucial information to obtain sufficiently strong a priori estimates. Condi-

tion (3.8) simplifies the analysis at one step and means basically that the leading

order term of P(·,A) appears with the positive sign, compare e.g. with the Oldroyd-

B and Giesekus model, where P(·,A) = A − I and P(·,A) = A2 − A, respectively.

Property (3.9) is important for the validity of the second law of thermodynamics

in our model. Again, both Oldroyd-B and Giesekus models fulfill this requirement.

Finally, the assumption (3.10) restricts the behavior of P(·,A) when A is not positive

definite or if its eigenvalues are too small. We remark that this technical condition

concerns the case s ≤ 0 or A ∈ Rd×d\Rd×d>0 that actually never arises in the studied

problem. An explicit example of function P satisfying (3.5)–(3.10) would be

P(s,A) = δ(s)(1 + |A− I|q−β)Aβ(A− I),

where δ is a continuous positive real-valued function and β ∈ [0, q]. Indeed, note

that, for any A ∈ Rd×d>0 , we can write

Aβ(A− I) · (I− A−1) = A
β
2 A

β
2 (A

1
2 − A−

1
2 )A

1
2 · (I− A−1)

= A
β
2 (A

1
2 − A−

1
2 ) · A

β
2 (I− A−1)A

1
2

= |A
β
2 (A

1
2 − A−

1
2 )|2 ≥ 0,

implying (3.9). The properties (3.6)–(3.8) follow easily from (A.20) in Appendix A.

Finally, we claim that (3.10) holds with ωP = 1. Indeed, let 0 6= x ∈ Rd be an

eigenvector of A ∈ Rd×dsym , for which λ := Ax · x/|x|2 ≤ 0. If A + I 6∈ Rd×d>0 then

we can redefine P(·,A + I) as needed. Otherwise, we have A + I ∈ Rd×d>0 , and thus,

λ > −1 and we can write

P(s,A + I)x · x = δ(s)(1 + |A|q−β)(A + I)βAx · x

= δ(s)(1 + |A|q−β)(λ+ 1)βλ|x|2 ≤ 0.
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Conditions on q and r

To make sure that the individual terms appearing in the weak formulation of

the governing equations (defined below) are well defined, we need to restrict

the parameters q and r by the conditions

r > 1− 2

d
and q > 1 +

2

r − 1 + 2
d

; (3.11)

we recall that d ≥ 2 is the dimension of the domain Ω.

Condition (3.11) is sufficient to define every term of the system (1.1)–(1.17) in

a weak sense, with the exception of (1.12), which needs additional technical assump-

tions due to the presence of the pressure (see the second part of Theorem 3.1).

As such, (3.11) is actually sufficient for the existence of a weak solution, which is

the content of our main result. The condition (3.11) in fact describes an interplay

between two different dissipative mechanisms and the second inequality in (3.11)

specifies how strong they must be together in order to deduce the existence of a

weak solution. For example, we see that if q → 1+ then necessarily r →∞ and vice

versa, if r → 1− 2
d then q →∞.

By imposing (3.11), we place some restrictions on the coefficients of the model

which may not agree with experimental measurements. Note, however, that (3.3),

(3.6) and (3.7) restrict only the asymptotic behavior of the coefficients. For exam-

ple, any continuous function κ defined on some interval (θ0, θ1), 0 < θ0 < θ1 <∞,

can be modified in a neighborhood of 0 and ∞ so that (3.3) holds. The interval

(θ0, θ1) may represent the temperature range for which the model we are consider-

ing makes sense. When the fluid starts to freeze or boil, then we are clearly outside

this range and it makes no sense to prescribe the coefficients ν, κ, δ and λ there.

On the other hand, it is unclear whether one can deduce some absolute bounds

for the temperature, besides θ > 0, using only the information that is encoded

in the system. Thus, purely for mathematical reasons, we have to assume that

these material coefficients are defined in some way also outside (θ0, θ1). A simi-

lar remark applies also for the other coefficients. For example, if |A| is too large,

any realistic material eventually breaks down. Thus, we may set P(·,A) = A − I,
|A| ∈ [0,M), where M is large (to mimic the Oldroyd-B model, for example)

and then extend this function continuously so that (3.7) holds with some large q,

see (1.20).

A priori estimates

Let us now motivate the definition of the weak solution to (1.1)–(1.13) by an

informal derivation of the available a priori estimates. This clarifies the need for

(3.11) and highlights the main idea of the existence proof. The starting points are

the assumptions on the data

E0 ∈ L1(Ω;R≥0), η0 ∈ L1(Ω;R), B0 ∈ Lq(Ω;Rd×d>0 ), g ∈ L2(Q;Rd). (3.12)
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In addition, we may suppose that

θ ≥ 0 and Bx · x ≥ 0 for all x ∈ Rd, (3.13)

which is due to a suitable construction of the solution (cf. (5.62)).

In what follows, the basic relations (1.4)–(1.7) and also (2.9)–(2.10) will be

used without further reference. Moreover, the symbol C will be used to denote

a positive constant that can change from line to line and can depend only on

the data, the domain Ω, the time T > 0 and other constants appearing in (3.2)–

(3.10).

Integrating (1.12) over Ω and applying the boundary conditions (1.14) and

(1.16) annihilates the divergence terms, which, together with Young’s inequality

and (3.13)1, leads to

d

dt

∫
Ω

E =

∫
Ω

g · v ≤ 1

2

∫
Ω

|g|2 +

∫
Ω

E.

Hence, using (3.12)1, we see that E ∈ L∞(0, T ;L1(Ω;R)), therefore also

θ ∈ L∞(0, T ;L1(Ω;R≥0)) and v ∈ L∞(0, T ;L2(Ω;Rd)). (3.14)

Next, integrating the entropy inequality (1.13), and again applying the boundary

conditions in the divergence terms, gives

d

dt

∫
Ω

η(t) ≥ 0.

Applying (3.12)2 and (3.13)2 (trB ≥ 0, to be precise), the last inequality yields∫
Ω

(ln θ(t) + ln detB(t)) > −C,

which is a very important inequality as it ensures that θ > 0 and B is positive

definite almost everywhere. Although one also gets ξ ∈ L1(0, T ;L1(Ω)) after inte-

grating (1.13) and using (3.14)1, this information turns out to be too weak. Instead,

we can get better estimates directly from (1.10) and (1.11).

Due to the positive definiteness of B, Eq. (1.10) can be tested by the matrix

power Bq−1. (Though here one can also use |B|q−2B since q ≥ 1 and the stress

diffusion term is actually not important for the estimate itself.) Then, using (3.4),

(3.7), Young’s inequality and Lemma A.3, we eventually get

d

dt

∫
Ω

trBq +

∫
Ω

|B|2q +

∫
Ω

|∇B
q
2 |2 ≤ C

∫
Ω

|B|q|Dv|+ C ≤ C
∫

Ω

|Dv|2 + C.

(3.15)

Hence, integrating over (0, T ) and thanks to (3.12)3, we have

‖B‖L2qL2q ≤ C‖Dv‖
1
q

L2L2 + C. (3.16)

Clearly, we need control over Dv, but it has to be obtained differently than for

the Navier–Stokes–Fourier systems, as we pointed out in the introduction.
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Thanks to θ > 0, we may test (1.11) by the function −θ−β with β ≥ 0. Eventu-

ally, applying (3.14)1, (3.2) and (3.3), this leads to the estimate

β

∫
Q

θr−β−1|∇θ|2 +

∫
Q

|Dv|2 ≤ C
∫
Q

θ|B||Dv|+ C. (3.17)

Using (3.14), (3.16) and the Hölder inequality, the above inequality gives

β‖θ
r−β+1

2 ‖2L2W 1,2 + ‖Dv‖2L2L2 ≤ C‖θ‖L2q′L2q′‖B‖L2qL2q‖Dv‖L2L2 + C

≤ C‖θ‖2q
′

L2q′L2q′ +
1

2
‖Dv‖2L2L2 + C. (3.18)

The penultimate term is absorbed into the left-hand side and for the first term we

use the interpolation inequality

‖θ‖2q
′

2q′ ≤ ‖θ‖
2q′− d(r−β+1)(2q′−1)

d(r−β)+2

1 ‖θ‖
d(r−β+1)(2q′−1)

d(r−β)+2

d(r−β+1)
d−2

,

and (3.14) to deduce

β‖θ
r−β+1

2 ‖2L2W 1,2 + ‖Dv‖2L2L2 ≤ C

∫ T

0

‖θ‖
d(r−β+1)(2q′−1)

d(r−β)+2

d(r−β+1)
d−2

+ C

= C

∫ T

0

‖θ
r−β+1

2 ‖
2d(2q′−1)
d(r−β)+2

2d
d−2

+ C

≤ C

∫ T

0

‖θ
r−β+1

2 ‖
2d(2q′−1)
d(r−β)+2

1,2 + C. (3.19)

Hence, if

2d(2q′ − 1)

d(r − β) + 2
< 2, (3.20)

the first term on the right-hand side can be absorbed into the left-hand side and

thus, we get

β‖θ
r−β+1

2 ‖2L2W 1,2 + ‖Dv‖2L2L2 + ‖B‖2qL2qL2q ≤ C. (3.21)

Finally, the inequality (3.20) can be made true by choosing β > 0 sufficiently small

if and only if q and r satisfy (3.11). Note that, in this case, we were able to estimate

the right-hand side of (3.17), i.e. the “critical” term θB · Dv appearing in (1.11).

It is easy to verify, using estimates (3.14) and (3.21) that all the other nonlinear

terms appearing in the system (1.1)–(1.13) are integrable as well.

Definition of weak solution

Motivated by the above estimates, we now state the exact definition of a weak

solution to (1.1)–(1.17).

Definition 3.1. Let T > 0 and let Ω ⊂ Rd, d ≥ 2, be a Lipschitz domain. Assume

that the constants a ∈ R, α ≥ 0, cv, µ > 0 and the functions ν, κ, λ,P fulfill
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the assumptions (3.1)–(3.9) with the parameters q and r satisfying (3.11) and let

m := min{2, 4q
q+2}. Suppose that the initial data satisfy

v0 ∈ L2
n,div(Ω;Rd), B0 ∈ Lq(Ω;Rd×d>0 ), θ0 ∈ L1(Ω;R>0), (3.22)

η0 := cv ln θ0 − f(B0) ∈ L1(Ω;R), (3.23)

where f is given by (2.9), and that

g ∈ L2(Q;Rd). (3.24)

Then, we say that the sextuplet (v,B, θ, e, E, η) : Q→ Rd×Rd×d>0 ×R>0×R>0×
R>0×R is a weak solution of the initial–boundary-value problem (1.1)–(1.17) if all

of the following conditions (i)–(iv) are satisfied:

(I) The functions v, B, θ and η fulfill the properties

v ∈ L2(0, T ;W 1,2
n,div) ∩ Cw([0, T ];L2(Ω;Rd)), (3.25)

∂tv ∈ L
d+2
d (0, T ;W

−1, d+2
d

n,div ), (3.26)

B ∈ Lm(0, T ;W 1,m(Ω;Rd×d>0 )) ∩ Cw([0, T ];Lq(Ω;Rd×d>0 )), (3.27)

B ∈ L2q(Q;Rd×d>0 ), (3.28)

B
q
2 ∈ L2(0, T ;W 1,2(Ω;Rd×d>0 )), (3.29)

∂tB ∈
(
L2q′(0, T ;W 1,2q′(Ω;Rd×d))

)∗
, (3.30)

B−
1
2∇BB− 1

2 ∈ L2(Q;Rd × Rd×dsym), (3.31)

ln detB ∈ L2(0, T ;W 1,2(Ω;R)) ∩ L∞(0, T ;L1(Ω;R)), (3.32)

θ ∈ L∞(0, T ;L1(Ω;R>0)) ∩ Lr+ 2
d+1−ε(Q;R>0), (3.33)

θ
r+1−ε

2 ∈ L2(0, T ;W 1,2(Ω;R>0)), (3.34)

ln θ ∈ L2(0, T ;W 1,2(Ω;R)) ∩ L∞(0, T ;L1(Ω;R)), (3.35)

η ∈ Lm(0, T ;W 1,m(Ω;R)) ∩ L∞(0, T ;L1(Ω;R)), (3.36)

for every ε ∈ (0, 1).

(II) The relations (1.1)–(1.7) hold almost everywhere in Q.

(III) Equations (1.9)–(1.13) are satisfied in the following sense:

〈∂tv,ϕ〉 − (v ⊗ v,∇ϕ)Q + (S,∇ϕ)Q + (αvτ ,ϕτ )Σ

= (g,ϕ)Q for all ϕ ∈ L d
2 +1(0, T ;W

1, d2 +1

n,div ), (3.37)

〈∂tB,A〉 − (B⊗ v,∇A)Q + (P(θ,B),A)Q + (λ(θ)∇B,∇A)Q

= ((aDv + Wv)B,A + AT )Q for all A ∈ L2q′(0, T ;W 1,2q′(Ω;Rd×d)),
(3.38)
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−(cvθ0, φϕ(0))− (cvθ, φ∂tϕ)Q − (cvθv,∇φϕ)Q + (κ(θ)∇θ,∇φϕ)Q

≥ (S · Dv, φϕ)Q for all ϕ ∈W 1,∞((0, T );R≥0), ϕ(T ) = 0,

and all φ ∈W 1,∞(Ω;R≥0), (3.39)

−(η0, φϕ(0))− (η, φ∂tϕ)Q− (ηv,∇φϕ)Q +
(
κ(θ)∇ ln θ − λ(θ)∇f(B),∇φϕ

)
Q

≥ (ξ, φϕ)Q for all ϕ ∈W 1,∞((0, T );R≥0), ϕ(T ) = 0,

and all φ ∈W 1,∞(Ω;R≥0), (3.40)

d

dt

∫
Ω

E + α

∫
∂Ω

|v|2 =

∫
Ω

g · v a.e. in [0, T ]. (3.41)

(IV) The initial data are attained in the following way:

lim
t→0+

‖v(t)− v0‖2 = 0, (3.42)

lim
t→0+

‖B(t)− B0‖q−ε = 0 for every ε ∈ (0, q − 1], (3.43)

lim
t→0+

‖θ(t)− θ0‖1 = 0, (3.44)

lim inf
t→0+

(η(t), φ) ≥ (η0, φ) for all 0 ≤ φ ∈W 1,∞(Ω). (3.45)

With this definition in hand, we now formulate our main result.

Theorem 3.1. Suppose that all of the assumptions of Definition 3.1 are fulfilled.

Then, there exists a weak solution to the system (1.1)–(1.17) in the sense of Defi-

nition 3.1.

In addition, if d ≤ 3 and Ω ∈ C1,1, then there is a pressure p ∈ L d+2
d (Q;R) such

that the local balance of total energy (1.12) holds in the sense that

−
(

1

2
|v0|2 + cvθ0, φϕ(0)

)
− (E, φ∂tϕ)Q + (α|vτ |2, φϕ)Σ + (κ(θ)∇θ,∇φϕ)Q

= (Ev + pv − Sv,∇φϕ)Q for all ϕ ∈W 1,∞((0, T );R), ϕ(T ) = 0,

and every φ ∈W 1,∞(Ω;R), (3.46)

and also (3.37) can be generalized to

〈∂tv,ϕ〉 − (v ⊗ v,∇ϕ)Q + (−pI + S,∇ϕ)Q + (αvτ ,ϕτ )Σ

= (g,ϕ)Q for all ϕ ∈ L d
2 +1(0, T ;W

1, d2 +1
n ). (3.47)

We remark that if a weak solution admits sufficient regularity so that (3.37) can

be tested by v and (3.39) can be localized in space, then (3.39) holds as an equality.

Indeed, the localized version of (3.39) reads

cv∂tθ + cvv · ∇θ − div(κ(θ)∇θ)− S · Dv ≥ 0. (3.48)
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On the other hand, subtracting (3.37) tested by v from (3.41) yields∫
Ω

(cv∂tθ − S · Dv) = 0.

Since also ∫
Ω

(cvv · ∇θ − div(κ(θ)∇θ)) = 0,

due to the boundary conditions v · n = 0 and ∇θ · n = 0 on ∂Ω, we conclude

from the above that (3.48) must be an equality. Consequently, the entropy inequal-

ity (3.40) also becomes an equality, provided that one is able to justify B−1 and θ−1

as test functions in (3.38) and (3.39). These considerations imply that a weak solu-

tion that admits sufficient regularity is also a solution of (1.1)–(1.17) in the classical

sense.

The existence proof below is done only for d ≥ 3 (the case d = 2 is simpler).

Also, it is clearly sufficient to focus on the case α > 0. In the simpler case α = 0

(corresponding to the free-slip boundary condition), one just has to use a different

Korn–Poincaré inequality in case Ω is axially symmetric.

The general strategy of the proof is to approximate the system (1.9), (1.10),

(1.11) using several parameters to obtain a proper Galerkin approximation gener-

ated by a smooth basis of eigenvectors and to show that the resulting (ordinary

differential equation (ODE)) system has a solution. After that, our aim is to derive

the entropy equation. At this point, possibly irregular terms containing θ and B are

cut-off and v is smooth; hence, we easily obtain uniform estimates for the Galerkin

approximations of B and θ, which might not be positive definite or positive, respec-

tively. However, after taking the limit with these approximations and then proving

certain maximum principles, we prove invertibility of θ and B, which, in turn,

enables us to derive the entropy equation. From this we read that the positivity

of detB and θ is preserved uniformly, which then enables us to remove the cut-off

from the system. The proof of this is presented in Sec. 4. Note that at this point,

the velocity is still kept in a finite-dimensional space of dimension `. To the equation

for the internal energy we add the regularization −ω∆r+2θ (the so-called (r + 2)-

Laplacian) in order to avoid weighted Sobolev spaces, where the density of smooth

functions is not available in general.

Next, in Sec. 5, we first improve the uniform estimates by considering appropri-

ate test functions in the equations for θ and B. At this point such a procedure is

rigorous. Finally, we let ω → 0 and ` → ∞ and we pass to the final limit, identify

the nonlinear terms and initial conditions, thereby obtaining a solution of the orig-

inal problem. Finally, in Sec. 6, we prove the validity of the local energy equality

provided d ≤ 3.

4. Existence of a Weak Solution: The Approximative Problem

First, we introduce a truncation, which is essential for the proof. We also pre-

pare some simple estimates corresponding to this truncation that are used later in
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the proof. Recalling that ωP is introduced in (3.10), we define, for any ω ∈ (0, ωP),

the “cut-off” function gω in the following way:

gω(A, τ) :=
max{0,Λ(A)− ω}max{0, τ − ω}

(|Λ(A)|+ ω)(1 + ω|A|2)(|τ |+ ω)(1 + ωτ2)
, A ∈ Rd×dsym , τ ∈ R,

where Λ(A) denotes the smallest eigenvalue of A, i.e.

Λ(A) := min{λ : det(A− λI) = 0}.

Note that gω is a continuous function on Rd×dsym × R and satisfies 0 ≤ gω(A, τ) < 1

for every (A, τ) ∈ Rd×dsym × R. Moreover, if Λ(A) ≤ ω or τ ≤ ω, then gω(A, τ) = 0,

whereas if Λ(A) > 0 and τ > 0, then gω(A, τ) → 1 as ω → 0+. Furthermore, we

remark that

gω(A, τ)(1 + |A|+ |A|2)(1 + τ + τ2) ≤ C(ω). (4.1)

The function gω is used below in the system (4.11)–(4.13) to control irregular terms

of the original problem. We also truncate the initial functions B0 and θ0 and set

Bω0 (x) :=

{
B0(x) if Λ(B0(x)) > ω and |B0(x)| <

√
dω−1,

I elsewhere;
(4.2)

θω0 (x) :=

{
θ0(x) if ω < θ0(x) < ω−1,

1 elsewhere.
(4.3)

With such definitions, these functions satisfy (a.e. in Ω)

Λ(Bω0 ) > ω, θω0 > ω, (4.4)

|Bω0 | <
√
dω−1, |θω0 | < ω−1, (4.5)

|Bω0 | ≤
√
d+ |B0|, θω0 ≤ 1 + θ0, (4.6)

and, since ln 1 = 0

|ln detBω0 | ≤ |ln detB0|, |lnθω0 | ≤ |lnθ0|. (4.7)

Since B0 ∈ Lq(Ω;Rd×d>0 ), we also observe that the Lebesgue measure of the sets

{Λ(B0) ≤ ω} and {|B0| ≥ ω−1} tends to zero as ω → 0+, and thus

‖Bω0 − B0‖qq =

∫
Λ(B0)≤ω

|I− B0|q +

∫
|B0|≥ω−1

|I− B0|q → 0. (4.8)

Analogously, relying on θ0 ∈ L1(Ω;R>0), we also obtain

‖θω0 − θ0‖1 → 0, ω → 0+. (4.9)

Next, we discretize the ω-truncated system in space by the Galerkin method.a

Let {wi}∞i=1, {Wj}∞j=1 and {wk}∞k=1 be bases of the spaces WN,2(Ω;Rd) ∩W 1,2
n,div,

aWith this approach, we do not need the positive definiteness of the basis functions for B.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
24

.3
4:

41
7-

47
6.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
85

.1
40

.2
46

.8
1 

on
 0

3/
22

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 21, 2024 10:55 WSPC/103-M3AS 2450006

Analysis of thermoviscoelastic fluids 437

WN,2(Ω;Rd×dsym) and WN,2(Ω;R), respectively, with the following properties:

• The bases are L2-orthonormal and WN,2-orthogonal.

• The number N ∈ N is chosen so large that the elements of the bases are Lipschitz

on Ω (due to embedding of Sobolev spaces).

• w1 = |Ω|− 1
2 .

• For any `, n ∈ N, there exist L2-orthogonal projections

P` : L2(Ω;Rd)→ span{wi}`i=1,

Qn : L2(Ω;Rd×d)→ span{Wj}nj=1,

Rn : L2(Ω;R)→ span{wk}nk=1.

• P`, Qn, Rn are L2- and WN,2-bounded, uniformly with respect to `, n.

Existence of these bases and corresponding projections follows from standard results

(see Appendix 4 in Ref. 40) using the eigenvectors of the generalized Laplace or

Stokes operators.

We fix `, n ∈ N and consider the problem of finding the functions αi`n, βj`n, γk`n
of time, where i = 1, . . . , ` and j, k = 1, . . . , n, such that the functions v`n, B`n, θ`n
and Sω`n defined as

v`n(t, x) =
∑̀
i=1

αi`n(t)wi(x), B`n(t, x) =

n∑
j=1

βj`n(t)Wj(x), θ`n =

n∑
k=1

γk`n(t)wk(x),

and

Sω`n := 2ν(θ`n)Dv`n + 2aµgω(B`n, θ`n)θ`nB`n, (4.10)

satisfy the following equations a.e. in (0, T0), T0 > 0:

(∂tv`n,wi)− (v`n ⊗ v`n,∇wi) + (Sω`n,∇wi) + α(v`n,ϕ)∂Ω = (g,wi), (4.11)

(∂tB`n,Wj)− (B`n ⊗ v`,∇Wj) + (P(θ`n,B`n),Wj) + (λ(θ`n)∇B`n,∇Wj)

= (2gω(B`n, θ`n)(aDv`n + Wv`n)B`n,Wj), (4.12)

(cv∂tθ`n, wk)− (cvθ`v`n,∇wk) + ((κ(θ`n) + ω|∇θ`n|r)∇θ`n,∇wk)

= (Sω`n · Dv`n, wk), (4.13)

for all 1 ≤ i ≤ `, 1 ≤ j, k ≤ n and with the initial conditions

v`n(0) = P`v0, B`n(0) = QnBω0 , θ`n(0) = Rnθ
ω
0 in Ω. (4.14)

By the L2-orthonormality of the bases, we have

(∂tv`n,wi) =
∑̀
m=1

∂tα
m
`n(wm,wi) = (αi`n)′,

and similarly

(∂tB`n,Wj) = (βj`n)′ and (∂tθ`n, wk) = (γk`n)′.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
24

.3
4:

41
7-

47
6.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
85

.1
40

.2
46

.8
1 

on
 0

3/
22

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 21, 2024 10:55 WSPC/103-M3AS 2450006

438 M. Bathory, M. Buĺıček & J. Málek

Thus, (4.11)–(4.13) is a system of `+ 2n ODEs of the form

(αi`n)′ = F1(t, α1
`n, . . . , α

`
`n), i = 1, . . . , `,

(βj`n)′ = F2(β1
`n, . . . , β

n
`n), j = 1, . . . , n,

(γk`n)′ = F3(γ1
`n, . . . , γ

n
`n), k = 1, . . . , n.

 (4.15)

It is easy to see, using (3.1), that F1, F2 and F3 are continuous with respect to

the variables αi`n, βj`n and γk`n and measurable with respect to t, respectively. More-

over, the explicit dependence of F1 on time is controlled by

|(g,wi)| ≤ ‖g‖2‖wi‖2 ∈ L2(0, T ;R).

Thus, we can apply the Carathéodory existence theorem (see Theorem 1 in Chap. 2

in Ref. 19 or Chap. 30 in Ref. 60) and hereby obtain absolutely continuous functions

αi`n, βj`n, γk`n, 1 ≤ i ≤ `, 1 ≤ j, k ≤ n, solving (4.15) on (0, T0), where T0 < T is

the time of the first potential blow-up. In view of the a priori estimates derived

below (see e.g. (4.18)), we are able to prove that

sup
t∈(0,T0)

∑̀
i=1

(αi`n(t))2 +

n∑
j=1

(βj`n(t))2 +

n∑
k=1

(γk`n(t))2

 <∞,

hence, there can be no blow-up and the functions vkl,Bkl, θkl are defined on an

arbitrary time interval, in particular on [0, T ].

Estimates uniform with respect to n

By multiplying the ith equation in (4.11) by αi`n, summing the result over all

i = 1, . . . , `, integrating by parts and using the facts that the basis functions satisfy

v`n · n = 0 on ∂Ω and div v`n = 0 in Ω (hence, the convective term vanishes), we

obtain (a.e. in (0, T ))

1

2

d

dt
‖v`n‖22 + ‖

√
2ν(θ`n)Dv`n‖22 + α‖v`n‖2L2(∂Ω;Rd)

= −(2aµgω(B`n, θ`n)θ`nB`n,Dv`n) + (g,v`n). (4.16)

Then, we use (3.2), (4.1), Korn’s and Young’s inequality, and deduce that

d

dt
‖v`n‖22 + ‖∇v`n‖22 + α‖v`n‖2L2(∂Ω;Rd) ≤ C(ω)

∫
Ω

|Dv`n|+ C‖g‖2‖∇v`n‖2

≤ C(ω) + C‖g‖22 +
1

2
‖∇v`n‖22.

Integration with respect to time and the use of (4.14) and (3.22) directly leads to

sup
t∈(0,T )

‖v`n(t)‖22 +

∫ T

0

‖∇v`n‖22 + α

∫ T

0

‖v`n‖2L2(∂Ω;Rd) ≤ C(ω). (4.17)
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the dependence of the constant C on the data is omitted as g, v0, θ0, or B0 are

fixed functions in our setting). Utilizing the L2-orthonormality of the basis vectors

{wi}`i=1, estimate (4.17) yields

sup
t∈(0,T )

∑̀
i=1

(αi`n(t))2 = sup
t∈(0,T )

‖v`n(t)‖22 ≤ C(ω). (4.18)

Hence, recalling that wi ∈ W 1,∞(Ω;Rd), i = 1, . . . , `, and then also the definition

(4.10) and the estimate (4.1), we obtain

‖v`n‖L∞W 1,∞ + ‖Sω`n‖L∞L∞ ≤ C(ω, `). (4.19)

Using (4.19) in (4.11), we see that

‖(αi`n)′‖L2(0,T ;R) = ‖(∂tv`n,wi)‖L2(0,T ;R)

= ‖(v`n ⊗ v`n − Sω`n,∇wi)− α(v`n,wi)∂Ω + (g,wi)‖L2(0,T ;R)

≤ C(ω, `) + C(`)‖g‖L2L2 . (4.20)

Thus, we get

‖∂tv`n‖L2W 1,∞ =

∥∥∥∥∥∑̀
i=1

(αi`n)′wi

∥∥∥∥∥
L2W 1,∞

≤ C(ω, `), (4.21)

and, using the fundamental theorem of calculus, (4.20) and Hölder’s inequality, also

that

|αi`n(t)− αi`n(s)| ≤
∫ t

s

|(αi`n)′| ≤ C(ω, `)|t− s| 12 for every t, s ∈ [0, T ], (4.22)

and any i = 1, . . . , `.

Next, we multiply the jth equation in (4.12) by βj`n and sum the result over

j = 1, . . . , n. Note that the convective term vanishes after integration by parts and

use of (1.14)1 and (1.8). Also the term including Wv`n vanishes due to symmetry

of B2
`n. Thus, we obtain

1

2

d

dt
‖B`n‖22 + (P(θ`n,B`n),B`n) + ‖

√
λ(θ`n)∇B`n‖22

= (2agω(B`n, θ`n)Dv`nB`n,B`n) a.e. in (0, T ). (4.23)

Then, using (4.14), (3.7), (3.4) and (4.1) we obtain, after integration over (0, t),

t ∈ (0, T ), that

‖B`n(t)‖22 +

∫ t

0

‖B`n‖2+q
2+q +

∫ t

0

‖∇B`n‖22 ≤ ‖QnBω0 ‖22 + C(ω, `).

From this, using properties of Qn and (4.5), we easily deduce that

‖B`n‖L∞L2 + ‖B`n‖L2+qL2+q + ‖∇B`n‖L2L2 ≤ C(ω, `). (4.24)
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To estimate the time derivative of B`n, we take A ∈ Lq+2(0, T ;WN,2(Ω)) with

‖A‖Lq+2WN,2 ≤ 1 and use (4.12), Hölder’s inequality, (4.24), (4.19), (3.4), (3.6),

(4.1), properties of Qn and (min{2, q+2
q+1})

′ = q + 2 to get

〈∂tB`n,A〉 = (∂tB`n, QnA)Q

= (B`n ⊗ v`n − λ(θ`n)∇B`n,∇QnA)Q − (P(θ`n,B`n), QnA)Q

+ (2gω(B`n, θ`n)(aDv`n + Wv`n)B`n, QnA)Q

≤ C(ω, `)

∫
Q

(
(|B`n|+ |∇B`n|)|∇QnA|+ (|B`n|q+1 + 1)|QnA|

)
≤ C(ω, `)

∫ T

0

(‖∇B`n‖1 + ‖B`n‖q+1
q+1 + 1)‖QnA‖1,∞

≤ C(ω, `)

∫ T

0

(‖∇B`n‖2 + ‖B`n‖q+1
q+2 + 1)‖QnA‖N,2

≤ C(ω, `)‖A‖Lq+2WN,2 ≤ C(ω, `).

Hence, we can conclude

‖∂tB`n‖
L
q+2
q+1W−N,2

≤ C(ω, `). (4.25)

Next, we multiply the kth equation in (4.13) by γk`n, sum the result over k =

1, . . . , n, use (1.14)1, (1.8) and integration by parts in the convective term to get

cv
2

d

dt
‖θ`n‖22 + ‖

√
κ(θ`n)∇θ`n‖22 + ω‖∇θ`n‖r+2

r+2 = (Sω`n · Dv`n, θ`n), (4.26)

a.e. in (0, T ). Thus, integrating this inequality over time, using (4.19) and Young’s,

Grönwall’s and Poincaré’s inequalities, properties of Rn and (4.5), we deduce that

‖θ`n(t)‖L∞L2 + ‖
√
κ(θ`n)∇θ`n‖L2L2 + ‖θ`n‖Lr+2W 1,r+2 ≤ C(ω, `). (4.27)

Furthermore, taking τ ∈ Lr+2(0, T ;WN,2(Ω)) with ‖τ‖Lr+2WN,2 ≤ 1 and using

(4.13), Young’s inequality, Hölder’s inequality, (3.3), (4.19), (4.27) and properties

of Rn, we obtain

〈∂tθ`n, τ〉

= (∂tθ`n, Rnτ)Q

= (cvθ`nv`n − κ(θ`n)∇θ`n − ω|∇θ`n|r∇θ`n,∇Rnτ)Q + (Sω`n · Dv`n, Rnτ)Q

≤ C(ω, `)

∫
Q

((
|θ`n|+ |θ`n|

r
2

∣∣√κ(θ`n)∇θ`n
∣∣+ |∇θ`n|r+1

)
|∇Rnτ |+ |Rnτ |

)
≤ C(ω, `)

∫ T

0

∫
Ω

(
|θ`n|r+1 + |

√
κ(θ`n)∇θ`n|

2r+2
r+2 + |∇θ`n|r+1 + 1

)
‖Rnτ‖1,∞
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≤ C(ω, `)

∫ T

0

(
‖θ`n‖r+1

r+2 + ‖
√
κ(θ`n)∇θ`n‖

2r+2
r+2

2 + ‖∇θ`n‖r+1
r+2 + 1

)
‖Rnτ‖N,2

≤ C(ω, `)‖τ‖Lr+2WN,2 ≤ C(ω, `),

hence

‖∂tθ`n‖
L
r+2
r+1W−N,2

≤ C(ω, `). (4.28)

The limit n→∞

For every i = 1, . . . , `, the sequence {αi`n}∞n=1 ⊂ C([0, T ];R) is bounded due to (4.18)

and uniformly equicontinuous by (4.22). Hence, using the Arzelà–Ascoli theorem,

for every i = 1, . . . , `, we obtain αi` ∈ C([0, T ];R) and a subsequence (not relabeled)

such that

αi`n → αi` strongly in C([0, T ];R), (4.29)

as n→∞. Then, we define

v` :=
∑̀
i=1

αi`wi ∈ C([0, T ];W 1,∞(Ω;Rd) ∩W 1,2
n,div),

and note that

v`n → v` strongly in C([0, T ];W 1,∞(Ω;Rd)). (4.30)

According to estimates (4.21), (4.24), (4.25), (4.27), (4.28) and using reflexivity

of the underlying spaces and the Aubin–Lions lemma, there exist subsequences

{v`n}∞n=1, {B`n}∞n=1, {θ`n}∞n=1 and their limits v`, B`, θ`, such that

∂tv`n
∗
⇀ ∂tv` weakly* in L2(0, T ;W 1,∞(Ω;Rd)), (4.31)

v`n ⇀ v` weakly in L2(0, T ;L2(∂Ω;Rd)), (4.32)

B`n ⇀ B` weakly in L2(0, T,W 1,2(Ω;Rd×dsym)), (4.33)

B`n → B` strongly in L2+q−ε(Q;Rd×dsym) and a.e. in Q, (4.34)

∂tB`n ⇀ ∂tB` weakly in L
q+2
q+1 (0, T ;W−N,2(Ω;Rd×dsym)), (4.35)

θ`n ⇀ θ` weakly in Lr+2(0, T,W 1,r+2(Ω;R)), (4.36)

θ`n → θ` strongly in Lr+2+ 4
d−ε(Q;Rd×dsym) and a.e. in Q, (4.37)

∂tθ`n ⇀ ∂tθ` weakly in L
r+2
r+1 (0, T ;W−N,2(Ω;R)) (4.38)

for any ε ∈ (0, 1). Now, we explain how to take the limit in the nonlinear terms

appearing in (4.11)–(4.13). To handle most of the terms, namely

v`n ⊗ v`n, ν(θ`n)Dv`n, Sω`n, P(θ`n,B`n), λ(θ`n)∇B`n,

gω(B`n, θ`n)(aDv`n + Wv`n)B`n, v`n · ∇θ`n, Sω`n · Dv`n,
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we use the following standard argument: all these terms can be seen as a product

of a weakly converging sequence with a strongly converging sequence, obtained via

Vitali’s theorem, (3.1), continuity of gω and pointwise convergence of v`n, B`n and

θ`n. This argument is sufficient to take the limit n→∞ in Eqs. (4.11) and (4.12). In

(4.12), we first multiply the equation by a function ϕ ∈ C1([0, T ];R), integrate over

(0, T ), then take the limit and finally use the density of functions of the form ϕA,

A ∈ span{Wj}∞j=1, in the space L(q+2)′(0, T ;WN,2(Ω;Rd×dsym)). This way, defining

also

Sω` := 2ν(θ`)|Dv`|2 + 2aµgω(B`, θ`)θ`B`,

we obtain

(∂tv`,wi)− (v` ⊗ v`,∇wi) + (Sω` ,∇wi) + α(v`,wi)∂Ω

= (g,wi) for every i = 1, . . . , `, and a.e. in (0, T ), (4.39)

and

〈∂tB`,A〉 − (B` ⊗ v`,∇A)Q + (P(θ`,B`),A)Q + (λ(θ`)∇B`,∇A)Q

= (2gω(B`, θ`)(aDv` + Wv`)B`,A)Q for all A ∈ Lq+2(0, T ;WN,2(Ω;Rd×dsym)).

(4.40)

However, the space of test functions in (4.40) can be enlarged using a standard

density argument. Indeed, using Hölder’s inequality, it is easy to see that every

term of (4.40) (taking aside the time derivative) is well defined provided that

A ∈ L2(0, T ;W 1,2(Ω;Rd×dsym)) ∩ Lq+2(Q;Rd×dsym),

and thus, we can read from (4.40) that

∂tB` ∈ (L2(0, T ;W 1,2(Ω;Rd×dsym)) ∩ Lq+2(Q;Rd×dsym))∗.

Since we also have that

B` ∈ L2(0, T ;W 1,2(Ω;Rd×dsym)) ∩ Lq+2(Q;Rd×dsym), (4.41)

it follows from Lemma A.1 that

B` ∈ C([0, T ];L2(Ω;Rd×dsym)). (4.42)

The value of B`(0) can be identified by a standard argument, which we briefly

outline here. Using A(t, x) = ψ(t)P(x) in (4.40), where ψ ∈ C1([0, T ];R), ψ(0) = 1,

ψ(T ) = 0, and P ∈WN,2(Ω;Rd×dsym), one gets, after integration by parts, that

(B`(0),P) = −(B`,P∂tψ)Q + (v` · ∇B`,Pψ)Q + (P(θ`,B`),Pψ)Q

− (λ(θ`)∇B`,∇Pψ)Q − (2gω(B`, θ`)(aDv` + Wv`)B`,Pψ)Q. (4.43)

On the other hand, exactly the same expression can be obtained also for (Bω0 ,P) if

one multiplies (4.12) by ψ, integrate over (0, T ) and by parts in the time derivative

using (4.14) and uses completeness of {Wj}∞j=1 in WN,2(Ω;Rd×dsym) and the same
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arguments as before to take the limit n → ∞. But since P was arbitrary and

WN,2(Ω;Rd×dsym) is dense in L2(Ω;Rd×dsym), we conclude

B`(0) = Bω0 . (4.44)

We can use an analogous procedure to identify v`(0), but here the situation is

simpler since (4.30) directly implies v` ∈ C([0, T ];W 1,∞(Ω;Rd)) and we obtain

v`(0) = P`v0. (4.45)

Our aim is now to take the limit in Eq. (4.13), where we need to justify the limit

in the terms κ(θ`n)∇θ`n and |∇θ`n|r∇θ`n (the term 2ν(θ`n)|Dv`n|2 is easy due to

(4.30)). For the first one, we use (3.3), (4.37) and Vitali’s theorem to get√
κ(θ`n) →

√
κ(θ`) strongly in L2+ 4

r (Q;R), (4.46)

and then we combine this with (4.36), to obtain√
κ(θ`n)∇θ`n ⇀

√
κ(θ`)∇θ` weakly in L1(Q;Rd). (4.47)

However, by (4.27) we know that (4.47) is valid also in L2(Q;Rd) up to a subse-

quence, and hence, using again (4.46), we obtain

κ(θ`n)∇θ`n =
√
κ(θ`n)

√
κ(θ`n)∇θ`n ⇀

√
κ(θ`)

√
κ(θ`)∇θ` = κ(θ`)∇θ`, (4.48)

weakly in L
r+2
r+1 (Q;Rd).

Finally, due to (4.27), there exists K ∈ L(r+2)′(Q;Rd) such that

|∇θ`n|r∇θ`n ⇀ K weakly in L(r+2)′(Q;Rd). (4.49)

Then, using also (4.48) and previous convergence results, we can take the limit

in (4.13) and obtain, for all τ ∈ Lr+2(0, T ;WN,2(Ω;R)), that

〈cv∂tθ`, τ〉 − (cvθ`v`,∇τ)Q + (κ(θ`)∇θ`,∇τ)Q + ω(K,∇τ)Q = (Sω` · Dv`, τ)Q.

(4.50)

Recalling (4.38), (4.48) and (4.49), we easily conclude, using a density argument,

that (4.50) is valid for all τ ∈ Lr+2(0, T ;W 1,r+2(Ω;R)) and that the time deriva-

tive extends to the functional ∂tθ` ∈ L(r+2)′(0, T ;W−1,(r+2)′(Ω;R)). Thus, using

Lemma A.1, we also see that

θ` ∈ C([0, T ];L2(Ω;R)). (4.51)

Furthermore, choosing τ = θ` in (4.50), rewriting the time derivative term and

integrating by parts in the convective term leads to

ω(K,∇θ`)Q =
cv
2

(‖θ`(0)‖22 − ‖θ`(T )‖22)−
∫
Q

κ(θ`)|∇θ`|2 + (Sω` · Dv`, θ`)Q.

(4.52)
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We use this information to identify K as follows. We note that weak lower semi-

continuity and (4.47) (which is valid in L2(Q;Rd)) imply∫
Q

κ(θ`)|∇θ`|2 ≤ lim inf
n→∞

∫
Q

κ(θ`n)|∇θ`n|2. (4.53)

Thus, if we integrate (4.26) over (0, T ) and use (4.53), (4.30), weak lower semi-

continuity of ‖·‖2 and the convergence results above to take the limit superior

n→∞ and then apply (4.52), we get

ω lim sup
n→∞

∫
Q

|∇θ`n|r+2

= − lim inf
n→∞

cv
2
‖θ`n(T )‖22 +

cv
2
‖θω0 ‖22 − lim inf

n→∞

∫
Q

κ(θ`n)|∇θ`n|2

+ lim
n→∞

(Sω`n · Dv`n, θ`n)Q

≤ −cv
2
‖θ`(T )‖22 +

cv
2
‖θω0 ‖22 −

∫
Q

κ(θ`)|∇θ`|2 + (Sω` · Dv`, θ`)Q

=
cv
2
‖θω0 ‖22 −

cv
2
‖θ`(0)‖22 + ω(K,∇θ`)Q. (4.54)

To identify the initial condition for θ`(0), it is enough to show that

θ`(t) ⇀ θω0 weakly in L2(Ω;R), (4.55)

as t→ 0+ since then we can use (4.51) to conclude

θ`(0) = θω0 a.e. in Ω (4.56)

by the uniqueness of a (weak) limit. To prove (4.55), we return to (4.13), which we

multiply by ϕ ∈W 1,∞(0, T ;R) fulfilling ϕ(0) = 1, ϕ(T ) = 0 and integrate the result

over (0, T ) to get

−(cvθ
ω
0 , wk)−

∫ T

0

(cvθ`n, wk)∂tϕ =

∫ T

0

hnϕ, (4.57)

for all k = 1, . . . , n, where we integrated by parts and abbreviated

hn = (cvθ`nv`n,∇wk)− (κ(θ`n)∇θ`n + ω|∇θ`n|r∇θ`n,∇wk) + (Sω`n · Dv`n, wk).

It follows from the results above (cf. the derivation of (4.50)) that

hn ⇀ h weakly in L(r+2)′(0, T ;R),

where

h = (cvθ`v`,∇wk)− (κ(θ`)∇θ`,∇wk)− ω(K,∇wk) + (Sω` · Dv`, wk).

Thus, by taking the limit n→∞ in (4.57), we arrive at

−(cvθ
ω
0 , wk)−

∫ T

0

(cvθ`, wk)∂tϕ =

∫ T

0

hϕ.
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Making now a special choice

ϕε(s) =


1 s ≤ t,

1− s− t
ε

s ∈ (t, t+ ε),

0 s ≥ t+ ε,

where t ∈ (0, T ) and 0 < ε < T − t, leads to

−(cvθ
ω
0 , wk) +

1

ε

∫ t+ε

t

(cvθ`, wk) =

∫ t+ε

0

hϕε.

Furthermore, we can take the limit ε→ 0+ in this equation using (4.51) on the left-

hand side and absolute continuity of integral on the right-hand side to get

−(cvθ
ω
0 , wk) + (cvθ`(t), wk) =

∫ t

0

f.

Finally, taking the limit t→ 0+ yields

lim
t→0+

(θ`(t), wk) = (θω0 , wk),

for all k = 1, . . . , n, from which (4.55) follows by exploiting the density of the set

span{wk}∞k=1 in L2(Ω;R). Hence, the identity (4.56) is proved and (4.54) hereby

simplifies to

lim sup
n→∞

∫
Q

|∇θ`n|r+2 ≤
∫
Q

K · ∇θ`. (4.58)

Since the operator u 7→ |u|ru is monotone and continuous, it is standard to show,

using (4.58) and the Minty method, that

K = |∇θ`|r∇θ` a.e. in Q.

Hence, we proved that

〈cv∂tθ`, τ〉 − (cvθ`v`∇τ)Q + (κ(θ`)∇θ` + ω|∇θ`|r∇θ`,∇τ)Q = (Sω` · Dv`, τ)Q,

(4.59)

for all τ ∈ Lr+2(0, T ;W 1,r+2(Ω;R)).

Positive definiteness of B` and positivity of θ`

Here we follow the method developed in Ref. 4. We shall use the notation

h+ = max{0, h}, h− = min{0, h}.

We choose a fixed vector x ∈ Rd with |x| = 1, and t ∈ (0, T ). The idea is to use

Ax = χ(0,t)(b− ω)−x⊗ x, where b := B`x · x,

in (4.40). The function Ax belongs to L2(0, T ;W 1,2(Ω;Rd×dsym))∩Lq+2(Q;Rd×dsym) and

is thus a valid test function in (4.40). The key property of Ax is that it vanishes
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whenever the smallest eigenvalue of B` is greater than ω. Thus, we have

(Λ(B`)− ω)+(b− ω)− = 0,

which implies

gω(B`, θ`)Ax = 0 a.e. in Q. (4.60)

Let us now evaluate separately the terms arising from the choice A = Ax in (4.40).

For the time derivative, we write

〈∂tB`,Ax〉 =

∫ t

0

〈∂t(b− ω), (b− ω)−〉 =
1

2
‖(b− ω)−(t)‖22, (4.61)

where we applied Lemma A.2 for the Lipschitz function s 7→ s− and also (4.44)

and (4.4) to eliminate the value at t = 0. Furthermore, using integration by parts,

v` · n = 0 and div v` = 0, we get

(B` ⊗ v`,∇Ax)Q =

∫ t

0

((b− ω)v`,∇(b− ω)−) =
1

2

∫ t

0

∫
∂Ω

((b− ω)−)2v` · n = 0,

and also

(λ(θ`)∇B`,∇Ax)Q =

∫ t

0

‖
√
λ(θ`)∇(b− ω)−‖22 ≥ 0.

Moreover, we have b− ωP < b− ω and thus, the assumption (3.10) yields

(P(θ`,B`),Ax)Q =

∫ t

0

∫
Ω

(b− ω)−P(θ`,B`)x · x

=

∫ t

0

∫
{b<ω}

(b− ω)P(θ`, (B` − ωPI) + ωPI)x · x ≥ 0.

In addition, the right-hand side of (4.40) vanishes due to (4.60). Thus, using

the above computation in (4.40), we obtain

‖(b− ω)−(t)‖22 ≤ 0,

for all t ∈ (0, T ) (recall (4.42)), whence

B`(t)x · x ≥ ω|x|2 a.e. in Ω, for all t ∈ (0, T ) and for every x ∈ Rd. (4.62)

Note that this immediately yields B` ∈ Rd×d>0 , B−1
` ∈ Rd×d>0 a.e. in Q, and thus

|B−1
` | = |B

− 1
2

` B−
1
2

` | ≤ |B
− 1

2

` |
2 = trB−1

` ≤
d

ω
. (4.63)

Also, using the identity

∇B−1
` = −B−1

` ∇B`B
−1
` ,

(which is standard for continuously differentiable functions and in general we can

approximate B` by smooth mappings and pass to the limit) and (4.24) we conclude

that B−1
` exists a.e. in Q and satisfies

B−1
` ∈ L

∞(0, T ;L∞(Ω;Rd×d>0 )) ∩ L2(0, T ;W 1,2(Ω;Rd×d>0 )). (4.64)
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Moreover, recalling f from (2.9) and using the simple inequalities

detB` ≥ ωd and |lnx| ≤ x+
1

x
, x > 0,

it is easy to see that also

f(B`) ∈ L2(0, T ;W 1,2(Ω;R≥0)) ∩ Lq+2(Q;R≥0).

Next, we prove positivity of θ`. Since θ` ∈ Lr+2(0, T ;W 1,r+2(Ω;R)), we can use

the analogous method as before. Indeed, we start by choosing

τ = χ(0,t)(θ` − ω)− ∈ Lr+2(0, T ;W 1,r+2(Ω;R)),

as a test function in (4.59) to get (using div v` = 0)

cv
2
‖(θ` − ω)−(t)‖22 −

cv
2
‖(θ` − ω)−(0)‖22

+

∫ t

0

‖
√
κ(θ`)∇(θ` − ω)−‖22 +

∫ t

0

‖∇(θ` − ω)−‖r+2
r+2

=

∫ t

0

(
Sω` · Dv`, (θ` − ω)−

)
≤ 0. (4.65)

Hence, using θ`(0) = θω0 ≥ ω in Ω and (4.51), we obtain that ‖(θ`(t) − ω)−‖2 = 0

for all t ∈ (0, T ), which means that

θ`(t) ≥ ω a.e. in Ω and for all t ∈ (0, T ). (4.66)

Consequently, since ∇θ−1
` = θ−2

` ∇θ`, we also obtain

θ−1
` ∈ L

∞(0, T ;L∞(Ω;R>0)) ∩ Lr+2(0, T ;W 1,r+2(Ω;R>0)). (4.67)

From these findings we also easily deduce that

|ln θ`| ≤ θ` +
1

θ`
≤ θ` +

1

ω
and |∇ ln θ`| =

|∇θ`|
θ`
≤ 1

ω
|∇θ`|,

hence also

ln θ` ∈ Lr+2(0, T ;W 1,r+2(Ω;R)).

Entropy equation

In order to take the remaining limits ` → ∞ and ω → 0+, we need to derive

the entropy (in)equality from which we then deduce that detB` and θ` remain

strictly positive a.e. in Q. First, we rewrite (4.59) in the form

〈cv∂tθ`, τ〉+ (cvv` · ∇θ`, τ) + (κ(θ`)∇θ` + ω|∇θ`|r∇θ`,∇τ) = (Sω` · Dv`, τ),

(4.68)
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for all τ ∈W 1,r+2(Ω;R) and a.e. in (0, T ). Then, we take φ ∈W 1,∞(Ω;R) and note

that τ = θ−1
` φ can be used as a test function in (4.68) thanks to (4.67). This way,

we get

〈cv∂tθ`, θ−1
` φ〉+ (cvv` · ∇ ln θ`, φ) + (κ(θ`)∇ ln θ`,∇φ)− (κ(θ`)|∇ ln θ`|2, φ)

+ω(|∇θ`|r∇ ln θ`,∇φ)− ω(|∇θ`|r|∇ ln θ`|2, φ)

= (2ν(θ`)θ
−1
` |Dv`|

2 + 2aµgω(B`, θ`)B` · Dv`, φ), (4.69)

a.e. in (0, T ). Similarly, we observe that f ′(B`)φ = µ(I−B−1
` )φ (recall (2.14), (2.15))

is a valid test function in (4.40) due to (4.64). Thus, we obtain

〈∂tB`, f ′(B`)φ〉+ (v` · ∇f(B`), φ)

+ (µP(θ`,B`) · (I− B−1
` ), φ) + (µλ(θ`)|B

− 1
2

` ∇B`B
− 1

2

` |
2, φ)

= −(λ(θ`)∇f(B`),∇φ) + (2aµgω(B`, θ`)B` · Dv`, φ), (4.70)

a.e. in (0, T ). If we define

η` := cv ln θ` − f(B`), (4.71)

and

ξ` := 2ν(θ`)θ
−1
` |Dv`|

2 + κ(θ`)|∇ ln θ`|2 + ω|∇θ`|r|∇ ln θ`|2

+µP(θ`,B`) · (I− B−1
` ) + µλ(θ`)|B

− 1
2

` ∇B`B
− 1

2

` |
2, (4.72)

and subtract (4.70) from (4.69), we get

〈cv∂tθ`, θ−1
` φ〉 − 〈∂tB`, f ′(B`)φ〉+ (v` · ∇η`, φ)

+
(
(κ(θ`) + ω|∇θ`|r)∇ ln θ` − λ(θ`)∇f(B`),∇φ

)
= (ξ`, φ), (4.73)

a.e. in (0, T ) and for all φ ∈W 1,∞(Ω;R). It remains to rewrite the time derivative

accordingly. Concerning the term containing ∂tθ`, note that ψ(s) = max{|s|, ω}−1,

s ∈ R, is a bounded Lipschitz function. Since θ` ≥ ω a.e. in Q by (4.66), we get∫ θ`

1

ψ(s) ds =

∫ θ`

1

1

s
ds = ln θ`.

Thus, Lemma A.2 yields

〈cv∂tθ`, θ−1
` φ〉 =

d

dt
(cv ln θ`, φ).

If we multiply this by ϕ ∈W 1,∞((0, T );R) with ϕ(T ) = 0, integrate over (0, T ) and

by parts, we are led to

〈cv∂tθ`, θ−1
` φϕ〉 = −(cv ln θ`, φ∂tϕ)Q − (cv ln θω0 , φϕ(0)), (4.74)

where we also used (4.56). Analogous ideas can be used to rewrite the second

term of (4.73). However, since the duality 〈∂tB`, f ′(B`)φ〉 cannot be interpreted
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entrywise, let us proceed more carefully. We apply Lemma A.1 to obtain functions

Bε` ∈ C1([0, T ];W 1,2(Ω;Rd×d>0 ) ∩ Lq+2(Ω;Rd×d>0 )), ε > 0, such that

‖Bε` − B`‖L2W 1,2∩Lq+2Lq+2 + ‖∂tBε` − ∂tB`‖(L2W 1,2∩Lq+2Lq+2)∗ → 0, (4.75)

as ε→ 0+ and also Λ(Bε`) ≥ ω a.e. in Q. For such regularization, we have

〈∂tBε` , f ′(Bε`)φϕ〉 = −(f(Bε`(0)), φϕ(0))− (f(Bε`), φ∂tϕ)Q, (4.76)

by standard calculus and it remains to justify the limit ε → 0+ on both sides of

(4.75). Since B` ∈ C([0, T ];L2(Ω)) (cf. (4.42)), we know that

‖Bε` − B`‖2 ⇒ 0 uniformly in [0, T ]. (4.77)

Now it is important to observe that since we have Λ(Bs) ≥ ω for all s ∈ [0, 1], where

Bs := (1− s)B` + sBε` ,

the convergence result (4.77) actually also implies

‖f(Bε`)− f(B`)‖2 + ‖(Bε`)−1 − B−1
` ‖2 ⇒ 0 uniformly in [0, T ]. (4.78)

Indeed, this is a simple consequence of the identities

f(Bε`)− f(B`) =

∫ 1

0

d

ds
f(Bs) ds =

∫ 1

0

µ(I− B−1
s ) · (Bε` − B`) ds,

(Bε`)−1 − B−1
` =

∫ 1

0

d

ds
B−1
s ds = −

∫ 1

0

B−1
s (Bε` − B`)B−1

s ds,

(4.79)

the convergence result (4.77) and the estimate

|B−1
s | ≤ trB−1

s ≤
d

Λ(Bs)
≤ d

ω
.

Using the same scheme as in (4.79), we also deduce from (4.42) and (4.44) that

f(B`) ∈ C(0, T ;L2(Ω;R)), f(B`(0)) = f(Bω0 ). (4.80)

This and (4.78)1 allow us to pass to the desired limit on the right-hand side of

(4.76). Next, using (4.63), we can estimate, for any φ ∈W 1,∞(Ω;R), that

|∇(f ′(Bε`)φ)| = |(Bε`)−1∇Bε`(Bε`)−1φ+ (I− (Bε`)−1)∇φ|

≤ Cω−2|∇Bε` ||φ|+ (1 + Cω−1)|∇φ|.

Using the second line of this estimate to show boundedness and the first line to

identify the weak ε-limit using (4.78)2 and (4.75), we eventually obtain

f ′(Bε`)φ ⇀ f ′(B`)φ weakly in L2(0, T ;W 1,2(Ω;Rd×dsym)) ∩ Lq+2(Q;Rd×dsym).

If we apply this with (4.75), we get, for all ϕ ∈W 1,∞((0, T );R), ϕ(T ) = 0, that

|〈∂tBε` , f ′(Bε`)φϕ〉 − 〈∂tB`, f ′(B`)φϕ〉|

≤ |〈∂tBε` − ∂tB`, f ′(Bε`)φϕ〉|+ |〈∂tB`ϕ, f ′(Bε`)φ− f ′(B`)φ〉| → 0,
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as ε→ 0+. This validates the limit on the left-hand side of (4.76), and thus

〈∂tB`, f ′(B`)φϕ〉 = −(f(Bω0 ), φϕ(0))− (f(B`), φ∂tϕ)Q, (4.81)

for all ϕ ∈ W 1,∞(Ω;R), ϕ(T ) = 0, and every φ ∈ W 1,∞(Ω;R). Therefore, after

application of (4.74) and (4.81), the entropy equation (4.73) becomes

−(η`, φ∂tϕ)Q − (ηω0 , φ)ϕ(0)− (v`η`,∇φϕ)Q

+
(
(κ(θ`) + ω|∇θ`|r)∇ ln θ` − λ(θ`)∇f(B`),∇φϕ

)
Q

= (ξ`, φϕ)Q, (4.82)

for all ϕ ∈W 1,∞(0, T ;R), ϕ(T ) = 0, and φ ∈W 1,∞(Ω;R), where

ηω0 := cv ln θω0 − f(Bω0 ).

Moreover, since ln θ` ∈ C([0, T ];L2(Ω;R)) and (4.80) holds, we easily deduce that

η` ∈ C([0, T ];L2(Ω;R)), η`(0) = ηω0 . (4.83)

Total energy equality

The integrated version of the total energy equality is important in the derivation

of the a priori estimates below. We multiply the ith equation in (4.39) by (v`,wi),

sum up the result over i = 1, . . . , ` and then we add (4.59) with τ = 1. This way,

after several cancelations using also (1.14)1, we obtain

d

dt

∫
Ω

E` + α

∫
∂Ω

|v`|2 = (g,v`) a.e. in (0, T ), (4.84)

where E` := 1
2 |v`|

2 + cvθ`.

5. Existence of a Weak Solution: Limits ω → 0, `→∞

This is the most essential part of the paper. Here, we first rigorously derive

the required estimates independent of ω and ` and then let ω → 0+ and `→∞ (in

fact, we take these two limits simultaneously by setting ω = 1
` ). Due to the linearity

of the leading differential operators, the limit passage is then relatively straight-

forward. On the other hand, to obtain the attainment of the initial condition in

the strong topology, we need to develop a new technique based on the combination

of the entropy inequality and the global energy inequality.

Estimates independent of `, ω based on global energy and entropy

Let us first show that the total energy of the fluid remains bounded. In (4.84), we

apply Young’s inequality, (3.22) and θ` > 0, to estimate

d

dt

∫
Ω

E` ≤
1

2

∫
Ω

|v`|2 +
1

2

∫
Ω

|g|2 ≤
∫

Ω

E` +
1

2

∫
Ω

|g|2,

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
24

.3
4:

41
7-

47
6.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
85

.1
40

.2
46

.8
1 

on
 0

3/
22

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 21, 2024 10:55 WSPC/103-M3AS 2450006

Analysis of thermoviscoelastic fluids 451

a.e. in (0, T ). Hence, by the Grönwall inequality, we get∫
Ω

E`(t) ≤ et
(∫

Ω

E`(0) +
1

2

∫ t

0

‖g‖22
)

for all t ∈ [0, T ].

Then, we apply (4.45) and (4.56) to identify that

E`(0) =
1

2
|P`v0|2 + cvθ

ω
0 ,

and if we use the properties of P`, (4.6) and (3.22), we arrive at

‖θ`‖L∞L1 + ‖v`‖L∞L2 ≤ C‖E`‖L∞L1 ≤ C. (5.1)

Now we turn our attention to (4.82), which we localize in time by choosingb

ϕ = χ(0,t), leading to∫
Ω

η`(t)φ+

∫ t

0

∫
Ω

j` · ∇φ =

∫
Ω

ηω0 φ+

∫ t

0

∫
Ω

ξ`φ for all φ ∈W 1,∞(Ω;R),

(5.2)

and all t ∈ (0, T ) (in fact, for all t ∈ [0, T ] due to continuity), where

j` := −v`η` + (κ(θ`) + ω|∇θ`|r)∇ ln θ` − λ(θ`)∇f(B`) ∈ L1(Q;Rd).

In particular, taking φ = 1, we deduce, using ξ` ≥ 0, that the function t 7→
∫

Ω
η`(t)

is nondecreasing, and thus∫
Q

ξ` = max
t∈[0,T ]

∫ t

0

∫
Ω

ξ` = max
t∈[0,T ]

∫
Ω

η`(t)−
∫

Ω

ηω0 =

∫
Ω

η`(T )−
∫

Ω

ηω0 . (5.3)

Then, using (4.71), the inequalities

lnx ≤ x− 1 for all x > 0 and f(B`) ≥ 0, (5.4)

assumption (3.23) and (5.1) (recall also (4.51)), we obtain∫
Q

ξ` ≤
∫

Ω

(cv ln θ`(T )− f(B`(T ))) + C ≤ C
∫

Ω

(θ`(T )− 1) + C ≤ C, (5.5)

and hence

‖ξ`‖L1L1 ≤ C. (5.6)

Also, it is easy to see using (3.22), (3.23), (4.6), (4.7) and (5.3) that

‖η`‖L∞L1 ≤ C. (5.7)

Estimate (5.6) implies, using (3.2) and (3.9), that

‖θ−
1
2

` Dv`‖L2L2 + ‖
√
κ(θ`)∇ ln θ`‖L2L2 +

√
ω‖|∇θ`|

r
2∇ ln θ`‖L2L2

+ ‖B−
1
2

` ∇B`B
− 1

2

` ‖L2L2 ≤ C. (5.8)

bStrictly speaking, as χ(0,t) is not Lipschitz, we cannot use it directly in (4.82). However, a stan-

dard argument using a piecewise linear approximation of χ(0,t) with the Lebesgue differentiation
theorem and absolute continuity of integral shows that χ(0,t) is a legitimate test function.
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Improved `, ω estimates

In what follows, we improve the uniform estimate (5.8) considerably by choosing

appropriate test functions in (4.40) and (4.59) and then using (3.11). In fact, we

repeat the scheme of estimates presented in (3.16)–(3.21), but now, we prove it fully

rigorously.

Our aim is to set A := Bq−1
` in (4.40). To verify that this is a valid test function,

we show first that B` is actually essentially bounded. Indeed, setting first A =

χ(0,t)φI, t ∈ (0, T ), φ ∈ Lq+2(0, T ;Lq+2(Ω;R)) ∩ L2(0, T ;W 1,2(Ω;R)), in (4.40)

yields∫ t

0

〈∂t trB`, φ〉+

∫ t

0

(v · ∇ trB`, φ) +

∫ t

0

(P(θ`,B`) · I, φ) +

∫ t

0

(λ(θ`)∇ trB`,∇φ)

=

∫ t

0

(2agω(B`, θ`)B` · Dv`, φ).

Hence, recalling (3.8) to bound the third term on the left-hand side and using

(4.1) and (4.30) to estimate the right-hand side, we see that there exists a constant

C(`, ω) > 0, such that∫ t

0

〈∂t trB`, φ〉+

∫ t

0

(v · ∇ trB`, φ) +

∫ t

0

(λ(θ`)∇ trB`,∇φ) ≤ C(`, ω)

∫ t

0

∫
Ω

|φ|.

Substituting u(x, t) := trB`(x, t)− C(`, ω)t leads to∫ t

0

〈∂tu, φ〉+

∫ t

0

(v · ∇u, φ) +

∫ t

0

(λ(θ`)∇u,∇φ) ≤ C(`, ω)

∫ t

0

∫
Ω

(|φ| − φ).

If we choose φ = (u−K)+ and use (1.8), (1.14)1 to eliminate the convective term,

we obtain

1

2
‖(u(t)−K)+‖22 +

∫ t

0

‖
√
λ(θ`)∇(u−K)+‖22 ≤

1

2
‖(u(0)−K)+‖22.

If we let K := d
ω , then (4.44) and (4.5) imply

0 ≤ (u(0)−K)+ =

(
trBω0 −

d

ω

)
+

≤
(√

d|Bω0 | −
d

ω

)
+

= 0 in Ω.

Thus, we get ‖(u(t)− d
ω )+‖22 = 0, hence

|B`| ≤ trB` ≤
d

ω
+ C0t ≤

d

ω
+ C0T,

and we see that indeed

B` ∈ L∞(0, T ;L∞(Ω;Rd×d>0 )) ∩ L2(0, T ;W 1,2(Ω;Rd×d>0 )). (5.9)

Due to the fact that B` is strictly positive definite, we can use the above property

to show that the same holds also for Bq−1
` , which is essential for showing that

A := Bq−1
` can be used in (4.40) as a test function. Indeed, the boundedness of
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Bq−1
` is a direct consequence of (5.9) and the spectral decomposition. To show that

the gradient of Bq−1
` is square-integrable, we recall the identity

∇Bq−1
`

q − 1
=

∫ 1

0

∫ 1

0

B(1−s)(q−1)
` ((1− t)I + tB`)−1∇B`((1− t)I + tB`)−1Bs(q−1)

` dsdt,

which is a consequence of the well-known identities for ∇ expA and ∇ logA, see

e.g. Ref. 57, 58 and 3 and references therein for details. Then, using also (4.62) to

estimate

|((1− t)I + tB`)−1| ≤
√
d

Λ((1− t)I + tB`)
≤
√
d

ω
,

and also (5.9), we see that ∇Bq−1
` ∈ L2(0, T ;L2(R× Rd×dsym)) and consequently

Bq−1
` ∈ L∞(0, T ;L∞(Ω;Rd×d>0 )) ∩ L2(0, T ;W 1,2(Ω;Rd×d>0 )).

Hence, setting A := χ[0,t]Bq−1
` in (4.40), using (3.7) and the identitiesc

〈∂tB`,Bq−1
` 〉 =

1

q

∫
Ω

∂t trBq` ,

(v · ∇B`,Bq−1
` ) =

1

q

∫
Ω

v · ∇ trBq` = 0,

and the estimate (see (iv) and (v) in Lemma A.3)

∇B` · ∇Bq−1
` ≥ 4(q − 1)

q2
|∇B

q
2

` |
2,

we get

1

q

∫
Ω

(trBq`(t)− trBq`(0)) + Cq−1

∫ t

0

∫
Ω

|B|2q +
4(q − 1)

q2

∫ t

0

∫
Ω

λ(θ`)|∇B
q
2

` |
2

≤ 2a

∫ t

0

∫
Ω

g(B`, θ`)Dv` · Bq` + C.

If we apply (4.44), (3.4), gω ≤ 1 and |Bq` | ≤ max{1, d
1−q
2 }|B`|q (see Ref. 3), we

deduce ∫
Ω

trBq`(t) +

∫ t

0

∫
Ω

|B`|2q +

∫ t

0

∫
Ω

|∇B
q
2

` |
2

≤
∫

Ω

(trBω0 )q + C

(∫ t

0

∫
Ω

|Dv`||B`|q + 1

)
. (5.10)

Then, to estimate the term with trBω0 , we use (4.6) and (3.22). On the last term

on the right-hand side, we apply Young’s inequality, leading to

‖B`‖qL∞Lq + ‖B`‖2qL2qL2q + ‖∇B
q
2

` ‖
2
L2L2 ≤ C(1 + ‖Dv`‖2L2L2), (5.11)

cTo interpret the duality pairing in the first identity, one has to approximate B` similarly as before
when dealing with 〈∂tB`, (I− B−1

` )φ〉.
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where the right-hand side is finite due to (4.30), but we do not have a uniform

bound yet. To obtain it, we combine the estimate (5.11) with the temperature

equation (4.59) and improve the information about θ` and Dv`.
Let β ∈ [0, 1

2 ] be arbitrary. We define

τβ := −θ−β` .

Using Lemma A.2 with ψ(s) = −max(s, ω)−β to rewrite the time derivative,

the a priori bound (5.1) with Young’s inequality, (1.14)1 and (3.3), we obtain

the estimate

〈cv∂tθ`, τβ〉+ (κ(θ`)∇θ`,∇τβ)Q + ω(|∇θ`|r∇θ`,∇τβ)Q

≥ −cv
1− β

∫
Ω

θ1−β
` (T ) + β

∫
Q

θ−1−β
` κ(θ`)|∇θ`|2 + ωβ

∫
Q

θ−1−β
` |∇θ`|r+2

≥ Cβ
∫
Q

∣∣∇θ r+1−β
2

`

∣∣2 + ωβ

∫
Q

θ−1−β
` |∇θ`|r+2 − C. (5.12)

The function τβ evidently satisfies τβ ∈ Lr+2(0, T ;W 1,r+2(Ω)) ∩ L∞(0, T ;L∞(Ω))

(cf. (4.67)), and is thus an admissible test function in (4.59). This way, noting

that the convective term (cvv` · ∇θ`, τβ)Q disappears since div v` = 0, and having

the estimate (5.12) and using also gω ≤ 1, we deduce that

β

∫
Q

(∣∣∇θ r+1−β
2

`

∣∣2 + ωθ−1−β
` |∇θ`|r+2

)
+

∫
Q

θ−β` |Dv`|
2

≤ C
(∫

Q

θ1−β
` |B`||Dv`|+ 1

)
.

Note that since β ∈ [0, 1
2 ] is arbitrary, we can reduce the above inequality to

β

∫
Q

(∣∣∇θ r+1−β
2

`

∣∣2 + ωθ−1−β
` |∇θ`|r+2

)
+

∫
Q

|Dv`|2

≤ C
(∫

Q

(θ` + 1)|B`||Dv`|+ 1

)
,

which is very similar to (3.17), while the estimate (5.11) mimics (3.16). Hence,

applying the Young and the Hölder inequality, and using (5.11), we deduce similarly

as in (3.18) that

β

∫
Q

(∣∣∇θ r+1−β
2

`

∣∣2 + ωθ−1−β
` |∇θ`|r+2

)
+

∫
Q

|Dv`|2 ≤ C
(

1 +

∫
Q

|θ`|2q
′
)
. (5.13)

Next, we continue as after (3.18). We recall the interpolation inequality

‖θ`‖2q
′

2q′ ≤ C‖θ`‖
2q′− d(r−β+1)(2q′−1)

d(r−β)+2

1 ‖θ
r+1−β

2

` ‖
2d(2q′−1)
d(r−β)+2

1,2 . (5.14)
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Thus, using the uniform bound (5.1), the estimate (5.13) and the interpolation

inequality (5.14), we deduce that

β

∫ T

0

‖θ
r+1−β

2

` ‖21,2 ≤ Cβ

∫ T

0

(
‖∇θ

r+1−β
2

` ‖22 + ‖θ`‖r+1−β
1

)
≤ C

(
1 +

∫
Q

|θ`|2q
′
)
≤ C + C

∫ T

0

‖θ
r+1−β

2

` ‖
2d(2q′−1)
d(r−β)+2

1,2 . (5.15)

Finally, thanks to (3.11), we can find β0 > 0 such that for all β ∈ (0, β0) we have

2d(2q′ − 1)

d(r − β) + 2
< 2.

Consequently, we can use the Young inequality in (5.15) and conclude that

‖θ
r+1−β

2

` ‖L2W 1,2 ≤ C(β), (5.16)

for all β ∈ (0, β0) (which can be however easily extended via (5.8) to deduce

the validity of (5.16) for all β ∈ (0, 1)). Furthermore, from the interpolation

inequality

‖θ`‖
r+1+ 2

d−β
r+1+ 2

d−β
≤ C‖θ`‖

2
d
1 ‖θ

r+1−β
2

` ‖21,2, (5.17)

(5.1) and (5.16), we conclude that

‖θ`‖
Lr+1+ 2

d
−βLr+1+ 2

d
−β ≤ C(β). (5.18)

Summary of all uniform estimates

To summarize the estimates proved up to this point, we recall (5.1) and (5.6)–(5.8)

based on the use of total energy and entropy estimates. Next, having (5.16), we

can choose β := β0

2 and go backward in the computation in the previous part and

obtain further a priori estimates. Namely, using (5.16) and (5.14), we see that

the right-hand side of (5.13) is uniformly bounded. Then, using (5.13) in (5.11) we

deduce also the a priori bound for B`. Thus, we can conclude with the following

set of estimates:

‖v`‖L∞L2 + ‖Dv`‖L2L2 ≤ C, (5.19)

‖B`‖L∞Lq + ‖B`‖L2qL2q + ‖∇B
q
2

` ‖L2L2 ≤ C, (5.20)

‖θ`‖L∞L1 + ‖∇θ
r+1−ε

2

` ‖L2L2 + ‖θ`‖
Lr+1+ 2

d
−εLr+1+ 2

d
−ε ≤ C(ε), (5.21)

for all ε ∈ (0, 1). Next, in order to obtain bounds on ∇B`, we distinguish two cases.

If 1 < q < 2, we use (A.23) and Hölder’s inequality, (A.20) and (5.20) to estimate

‖∇B`‖ 4q
q+2
≤ 2‖B1− q2

` ‖ 4q
2−q
‖∇B

q
2

` ‖2 ≤ C.
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On the other hand, if q ≥ 2, the optimal estimate on ∇B` is obtained simply by

testing (4.40) with B` (instead of Bq−1
` ). Indeed, using (5.9), we eventually obtain

(5.11), but with q = 2. Combination of these two cases leads to

‖∇B`‖LmLm ≤ C. (5.22)

Uniform time derivatives estimates

We end this part by the derivation of the uniform estimates for the time derivatives.

To this end, we need to determine integrability of the nonlinear terms in (4.39),

(4.40) and (4.82). It follows from an interpolation inequality, Korn’s inequality,

(5.1) and (5.19) that

‖v`‖
L2 d+2

d L2 d+2
d
≤ C‖v`‖

2
d+2

L∞L2‖Dv`‖
d
d+2

L2L2 ≤ C. (5.23)

Furthermore, the Hölder inequality, (5.21) and (5.11) yield

‖θ`B`‖L2L2 ≤ C. (5.24)

Hence, as d ≥ 2, we deduce from (4.39) that

‖∂tv`‖
L
d+2
d W

−1, d+2
d

n,div

≤ C. (5.25)

Next, we focus on the nonlinear terms in (4.40). Using Hölder’s inequality and

(5.11), (5.23), we observe that

‖B` ⊗ v`‖Ls1Ls1 ≤ C, (5.26)

with

s1 :=

(
1

2q
+

d

2(d+ 2)

)−1

>

(
1

2q
+

1

2

)−1

=
2q

q + 1
. (5.27)

Moreover, making use of (5.20) and (3.6), we obtain

‖P(θ`,B`)‖
L

2q
q+1 L

2q
q+1
≤ C. (5.28)

Furthermore, using (5.20), (5.19) and Hölder’s inequality, we also get

‖(aDv` + Wv`)B`‖
L

2q
q+1 L

2q
q+1
≤ C. (5.29)

Thus, we deduce from (4.40) using (5.22) (where we note that m > 2q
q+1 ), (5.26),

(5.27) and (5.28), (5.29) that

‖∂tB`‖
L

2q
q+1W

−1,
2q
q+1
≤ C. (5.30)

Next, we examine the nonlinearities related to (4.82). Since ξ` is controlled

by (5.6), the problematic terms could be only on the left-hand side. To establish

appropriate uniform control over the convective term, we estimate

η` ≤ η` + f(B`) = cv ln θ` ≤ cv(θ` − 1).
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This, together with (5.1) and (5.7), yields

‖ln θ`‖L∞L1 ≤ C. (5.31)

Then, since (5.8) and (3.3) give

‖∇ ln θ`‖L2L2 ≤ C, (5.32)

we can use Sobolev’s inequality, Poincaré’s inequality and an interpolation inequal-

ity to obtain

‖ln θ`‖
L2+ 2

d L2+ 2
d
≤ C‖ln θ`‖

1
d+1

L∞L1‖ln θ`‖
d
d+1

L2W 1,2 ≤ C. (5.33)

Now we observe that a similar reasoning applies also for the quantity ln detB`.
Indeed, using (5.7), (5.31), (5.11) and (4.71) in the form

ln detB` =
1

µ
(η` − cv ln θ`) + trB` − d,

it is clear that

‖ln detB`‖L∞L1 ≤ C. (5.34)

Further, the estimate of its derivative follows from a version of Jacobi’s formula

(see Lemma A.3) and (5.8) as

‖∇ ln detB`‖L2L2 = ‖tr(B−
1
2

` ∇B`B
− 1

2

` )‖L2L2 ≤ C. (5.35)

Hence, using again the Sobolev, the Poincaré and interpolation inequalities, we get

‖ln detB`‖
L2+ 2

d L2+ 2
d
≤ C. (5.36)

From (5.33), (5.36), (5.11) and (4.71), we deduce that

‖η`‖Ls2Ls2 ≤ C, where s2 := min

{
2 +

2

d
, 2q

}
> 2, (5.37)

and thus

‖v`η`‖Ls3Ls3 ≤ C, where s3 :=

(
d

2(d+ 2)
+

1

s2

)−1

> 1. (5.38)

We remark that, since

∇η` = cv∇ ln θ` − µ(tr∇B` − tr(B−
1
2

` ∇B`B
− 1

2

` )),

we also have, using (5.35), (5.32), (5.22), (5.8) and Poincaré’s inequality that

‖η`‖LmW 1,m ≤ C. (5.39)

Looking at (4.82), we still need to verify that the flux terms are controlled. For

the term κ(θ`)∇ ln θ`, we first use (3.3) and (5.21) to estimate

‖
√
κ(θ`)‖

L
2d(r+1)+4

dr (Q;R)
≤ C‖1 + θ‖

r
2

Lr+1+ 2
d (Q;R)

≤ C,
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and then, by Hölder’s inequality and (5.8), we get

‖κ(θ`)∇ ln θ`‖
L

2d(r+1)+4
2d(r+1)+2−d (Q;Rd)

≤ ‖
√
κ(θ`)‖

L
2d(r+1)+4

dr (Q;R)
‖
√
κ(θ`)∇ ln θ`‖L2(Q;Rd) ≤ C. (5.40)

Further, let us derive a bound on ω|∇θ`|r∇ ln θ`, from which it follows that this

term vanishes as ω → 0+. Hölder’s inequality, (5.8) and (5.21) yield

ω

∫
Q

|∇θ`|r|∇ ln θ`| = ω
1
r+2

∫
Q

(
ωθ−2

` |∇θ`|
r+2
) r+1
r+2 θ

2 r+1
r+2−1

`

≤ Cω
1
r+2

(∫
Q

θr`

) 1
r+2

≤ Cω
1
r+2 . (5.41)

From this and from (5.40), (5.32), (5.35), (5.38), (5.8), (4.82), we see, using the def-

inition of the weak time derivative, that

‖∂tη`‖L1W−M,2 ≤ C, (5.42)

where M is so large that WM,2(Ω;R) ↪→W 1,∞(Ω;R).

Finally, we focus on the terms appearing in the temperature equation (4.68).

First, we note that it is a consequence of assumption (3.11), the a priori estimates

(5.19)–(5.21) and Hölder’s inequality, that∫
Q

|θ`v`|+
∫
Q

|Sω` · Dv`| ≤ C. (5.43)

In the terms involving the temperature gradient, we use (3.3), (5.8), (5.21) and

the inequality max{2, r+1+ε} < r+1+ 2
d−ε for ε small (recall (3.11)) to estimate∫

Q

|κ(θ`)∇θ`| ≤ C

∫
Q

(θ`|∇ ln θ`|+ θ
r+1+ε

2

` |∇θ
r+1−ε

2 |)

≤ C

∫
Q

(θ2
` + θr+1+ε

` ) ≤ C. (5.44)

Proceeding similarly as in (5.41), but now using (5.13) instead of (5.8), we also find

that ∫
Q

ω|∇θ`|r+1 = ω
1
r+2

∫
Q

(
ωθ−1−β

` |∇θ`|r+2
) r+1
r+2 θ

(β+1)(r+1)
r+2

`

≤ Cω
1
r+2

(∫
Q

θ
(β+1)(r+1)
`

) 1
r+2

≤ Cω
1
r+2 , (5.45)

where β > 0 is chosen so small that (β + 1)(r + 1) < r + 1 + 2
d . Using the above

estimates in (4.59), we deduce that

‖∂tθ`‖L1W−M,2 ≤ C, (5.46)
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for sufficiently large M . Very similarly, choosing θ
− 1

2

` φ in (4.59) and repeating

the method for estimating ∂tη`, we find that

‖∂tθ
1
2

` ‖L1W−M,2 ≤ C. (5.47)

Finally, returning to (4.70) with (4.81) and using the uniform estimates proved so

far, it is easy to see that also

‖∂tf(B`)‖L1W−M,2 ≤ C. (5.48)

The last two properties will be useful in the identification of the initial condition

identification.

Limits ω → 0, `→∞

Let us note that the estimates above are independent not only of `, but also of ω.

Hence, we can set ω := `−1 and thereby, it remains to take the limit `→∞ only.

By collecting the estimates (5.1), (5.21)–(5.20), (5.22), (5.30), (5.25), (5.37),

(5.39), (5.42), (5.44), (5.46), (5.47) and using the Aubin–Lions lemma and Vitali’s

convergence theorem, we get the following results:

v` ⇀ v weakly in L2(0, T ;W 1,2
n,div), (5.49)

v` → v strongly in L2 d+2
d −ε(Q;Rd) and a.e. in Q, (5.50)

∂tv` ⇀ ∂tv weakly in L
d+2
d (0, T ;W

−1, d+2
d

n,div ), (5.51)

B` ⇀ B weakly in Lm(0, T ;W 1,m(Ω;Rd×dsym)), (5.52)

B` → B strongly in L2q−ε(Q;Rd×dsym) and a.e. in Q, (5.53)

∂tB` ⇀ ∂tB weakly in L
2q
q+1 (0, T ;W−1, 2q

q+1 (Ω;Rd×dsym)), (5.54)

η` ⇀ η weakly in Lm(0, T ;W 1,m(Ω;R)), (5.55)

η` → η strongly in Ls2−ε(Q;R) and a.e. in Q, (5.56)

η`
∗
⇀ η weakly∗ in BV (0, T ;W−M,2(Ω;R)), (5.57)

θ
r+1−ε

2

` ⇀ θ
r+1−ε

2 weakly in L2(0, T ;W 1,2(Ω;R)), (5.58)

θ` → θ strongly in Lr+1+ 2
d−ε(Q;R), (5.59)

θ
1
2

`
∗
⇀ θ

1
2 weakly∗ in BV (0, T ;W−M,2(Ω;R)), (5.60)

θ`
∗
⇀ θ weakly∗ in BV (0, T ;W−M,2(Ω;R)), (5.61)

for any ε ∈ (0, 1). Using these properties, we shall now explain how to take the limit

in Eqs. (4.39), (4.40), (4.82), (4.84) and (4.59).

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
24

.3
4:

41
7-

47
6.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
85

.1
40

.2
46

.8
1 

on
 0

3/
22

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 21, 2024 10:55 WSPC/103-M3AS 2450006

460 M. Bathory, M. Buĺıček & J. Málek

First, we focus on taking the limit in the function g 1
`
. From (4.62), (4.66) and

(5.49), (5.52) (or (5.50), (5.53)), we obtain

Bx · x ≥ 0 for all x ∈ Rd and θ ≥ 0 a.e. in Q, (5.62)

however, we need these properties with strict inequalities. To this end, we use

Fatou’s lemma, (5.53) and (5.34) to get∫
Ω

|ln detB| ≤ lim inf
`→∞

∫
Ω

|ln detB`| ≤ C a.e. in (0, T ).

Thus, by taking the essential supremum over (0, T ), we obtain

‖ln detB‖L∞L1 <∞, (5.63)

which, together with (5.62) implies

Bx · x > 0 for all x ∈ Rd a.e. in Q. (5.64)

An analogous argument, using now (5.59) and (5.31), shows that

θ > 0 a.e. in Q. (5.65)

With this in hand, note that the property (1.6) follows from (4.71) and the pointwise

a.e. convergence of η`, θ` and B`. Also, from (5.64), (5.65) and the pointwise con-

vergence we deduce that, at almost every point (t, x) ∈ Q, we can find an Mt,x ∈ N
such that for all ` > Mt,x we have

Λ(B`(t, x)) >
1

2
Λ(B(t, x)) >

1

`
and θ`(t, x) >

1

2
θ(t, x) >

1

`
.

Then, looking at the definition of gλ, we see that at almost every point (t, x) ∈ Q
and for ` > Mt,x, the positive parts max{0, ·} can be removed and thus, it is clear

that g 1
`
(B`, θ`) converges pointwise a.e. in Q to 1. Hence, Vitali’s theorem and

0 ≤ g 1
`
< 1, imply that

g 1
`
(B`, θ`)→ 1 strongly in Lp(Q;R) for any 1 ≤ p <∞. (5.66)

Therefore, regarding the first two equations (4.39) and (4.40), we can take the limit

in the same way as we did in the limit n→∞. Indeed, the integrability of the result-

ing nonlinear limits was already verified when estimating ∂tv` and ∂tB` ((5.23)–

(5.29)). This way, taking (5.66) into account, using the density of span{wi}∞i=1 in

W
1, d2 +1

n,div and extending the functional ∂tB to the space stated in (3.30) using (5.30),

we obtain precisely (3.37) and (3.38).

Next, we show how to take the limit in (4.82). Regarding the initial condition,

using (4.7) and (4.6), we estimate

|ηω0 | ≤ cv|ln θω0 |+ µ(|trBω0 |+ d+ |ln detBω0 |)

≤ C(|ln θ0|+ |B0|+ |ln detB0|+ 1),
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where the right-hand side is integrable by assumptions (3.22) and (3.23). Moreover,

the function ηω0 converges pointwise a.e. in Ω due to (4.8) and (4.9) as ω := 1/`→
0+, i.e. for `→∞. Thus, by the dominated convergence theorem, the function ηω0
converges to η0 in L1(Ω;R) as `→∞. In order to take the limit in the convective

term, we use (5.50), (5.56) and (5.38). Next, the properties (5.33), (5.36), (5.59),

(5.53) and (5.35), (5.32) imply that

ln θ` ⇀ ln θ weakly in L2(0, T ;W 1,2(Ω;R)), (5.67)

ln detB` ⇀ ln detB weakly in L2(0, T ;W 1,2(Ω;R)). (5.68)

Further, we use (3.1), (3.3), (5.21) and Vitali’s theorem to find that√
κ(θ`) ⇀

√
κ(θ) strongly in L

2(r+1)
r (Q;R). (5.69)

As a consequence of this, (5.67) and (5.8), we get√
κ(θ`)∇ ln θ` ⇀

√
κ(θ)∇ ln θ weakly in L2(Q;Rd). (5.70)

Therefore, using again (5.69), we obtain

κ(θ`)∇ ln θ` ⇀ κ(θ)∇ ln θ weakly in L1(Q;Rd).

Next, in the term µλ(θ`)∇ trB`, we use (3.1), (3.4), (5.59), Vitali’s theorem and

(5.52). Analogously, we take the limit in the term µλ(θ`)∇ ln detB`, only we use

(5.68) instead of (5.52). The term containing ω|∇θ`|r∇ ln θ` tends to zero by (5.41).

Now we take the limit in the terms on the right-hand side of (4.82), i.e. the func-

tion ξ` defined in (4.72). Note that we just need to pass to the limit with possi-

ble inequality sign (selecting nonnegative test functions φ, ϕ). To take the limit

in the term P(θ`,B`) · (I − B−1
` )φϕ ≥ 0, we use (5.59), (5.53) and apply Fatou’s

lemma. Next, in the term κ(θ`)|∇ ln θ`|2φϕ, we use (5.70) and the weak lower semi-

continuity. Moreover, the auxiliary term ω|∇θ`|r|∇ ln θ`|2φϕ is simply estimated

from below by zero. Thus, in order to let `→∞ in (4.82), it remains to show that

lim inf
`→∞

∫
Q

(
2ν(θ`)

θ`
|Dv`|2 + λ(θ`)|B

− 1
2

` ∇B`B
− 1

2

` |
2

)
φϕ

≥
∫
Q

(
2ν(θ)

θ
|Dv|2 + λ(θ)|B− 1

2∇BB− 1
2 |2
)
φϕ.

The above inequality is however a consequence of the weak lower semi-continuity

and the following claim:√
λ(θ`)B

− 1
2

` ∇B`B
− 1

2

` ⇀
√
λ(θ)B−

1
2∇BB− 1

2 weakly in L2(Q;Rd × Rd×dsym),√
2ν(θ`)

θ`
Dv` ⇀

√
2ν(θ)

θ
Dv weakly in L2(Q;Rd×dsym),

(5.71)
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which we need to obtain. To do so, we start with (5.8) and therefore we have (for

a proper subsequence) that√
λ(θ`)B

− 1
2

` ∇B`B
− 1

2

` ⇀ G weakly in L2(Q;Rd × Rd×dsym), (5.72)√
2ν(θ`)

θ`
Dv` ⇀ K weakly in L2(Q;Rd×dsym). (5.73)

Thus, it remains to show that√
λ(θ)B−

1
2∇BB− 1

2 = G,

√
2ν(θ)

θ
Dv = K. (5.74)

First, we use Egorov’s theorem and then it follows from (5.34), (5.53), (5.63), (5.65)

and (5.59) that for any ε > 0 there exists measurable Qε ⊂ Q fulfilling |Q\Qε| ≤ ε
such that

B−
1
2

` ⇒ B−
1
2 ,

√
λ(θ`) ⇒

√
λ(θ),

√
2ν(θ`)

θ`
⇒

√
2ν(θ)

θ
,

uniformly in Qε. Combining the above uniform convergence results with the weak

convergence results (5.49) and (5.52), we deduce√
λ(θ`)B

− 1
2

` ∇B`B
− 1

2

` ⇀
√
λ(θ)B−

1
2∇BB− 1

2 weakly in L1(Qε;Rd × Rd×dsym),√
2ν(θ`)

θ`
Dv` ⇀

√
2ν(θ)

θ
Dv weakly in L1(Qε;Rd×dsym).

(5.75)

Thus, the uniqueness of weak limit implies that (5.74) is satisfied a.e. in Qε. Since

ε > 0 was arbitrary, we can let ε→ 0+ and conclude that (5.74) holds true a.e. in

Q. Consequently, we deduced (5.71) and therefore we proved (3.40).

In addition, in a very similar manner we can let `→∞ in (4.59) to obtain (3.39).

Note that contrary to the entropy inequality, we use here in addition the estimates

(5.43)–(5.45). Otherwise, the proof is almost identical.

To take the limit in (4.84), we first note, using (4.45) and (4.56), that it implies

−(E`, ∂tφ)Q + α(|v`|2, φ)Σ =

(
1

2
|P`v0|2 + cvθ

1
`
0 , φ(0)

)
+ (g,v`φ)Q, (5.76)

for all φ ∈ C1([0, T ];R) with φ(T ) = 0. Then, recalling (5.50) and (5.59), we see

that E` = 1
2 |v`|

2 + cvθ` converges strongly to E and thus, using also the properties

of P` and (4.9), we can take the limit in (5.76) to conclude that

−(E, ∂tφ)Q + α(|v|2, φ)Σ = (E0, φ(0)) + (g,vφ)Q, (5.77)

where we set E0 := 1
2 |v0|2+cvθ0. In particular, by choosing an appropriate sequence

of test functions φ, we obtain (3.41).
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Attainment of initial conditions

To finish the existence proof, it remains to identify the initial conditions and show

that they are attained strongly. Let us start by observing that v and B are weakly

continuous in time. Indeed, first of all, we recall that

v ∈ L∞(0, T ;L2(Ω;Rd)), ∂tv ∈ L
d+2
d (0, T ;W

−1, d+2
d

n,div (Ω;Rd)),

B ∈ L∞(0, T ;Lq(Ω;Rd×d>0 )), ∂tB ∈ L
2q
q+1 (0, T ;W−1, 2q

q+1 (Ω;Rd×dsym)),

(5.78)

cf. (5.20) and (5.30). From this we obtain, by a standard argument known from

the theory of Navier–Stokes equations (see e.g. Sec. 3.8. in Ref. 43), that

v ∈ Cw([0, T ];L2(Ω;Rd)) and B ∈ Cw([0, T ];Lq(Ω;Rd)). (5.79)

Then, to identify the corresponding weak limits, we can use an analogous idea as

in the part where the limit n → ∞ was taken together with (4.8). This way, we

obtain

lim
t→0+

(v(t),w) = (v0,w) for all w ∈ L2(Ω;Rd), (5.80)

and

lim
t→0+

(B(t),W) = (B0,W) for all W ∈ Lq
′
(Ω;Rd×dsym). (5.81)

Next, we use a similar procedure for entropy and temperature. Recalling (5.57)

and (5.60), we can define for all t0 ∈ [0, T ] the values
√
θ(t0±), η(t0±) such that

lim
t→t0±

(∥∥√θ(t)−√θ(t0±)
∥∥
W−M,2(Ω;R)

+ ‖η(t)− η(t0±)‖W−M,2(Ω;R)

)
= 0. (5.82)

Therefore, using the density of Lw(Ω;R) in W−M,2(Ω;R), which is valid for all w ∈
(1,∞) and M sufficiently large, and recalling the fact that θ ∈ L∞(0, T ;L1(Ω;R)),

we can deduce that there is a nonnegative θ∗0 ∈ L1(Ω;R) fulfilling

lim
t→0+

(
√
θ(t), ζ) = (

√
θ∗0 , ζ) for all ζ ∈ L2(Ω;R). (5.83)

Our aim is to show that θ∗0 = θ0 and that it is attained strongly.

Unlike in the theory of Navier–Stokes(–Fourier) systems, we cannot draw

information about lim supt→0+‖v(t)‖22 from the (kinetic) energy estimate directly

because of the presence of θB in (3.37). Instead, we need first to combine the total

energy and entropy balances to obtain the initial condition for θ. In (5.77) we choose

a sequence of test functions φ approximating the function χ[0,t), t ∈ (0, T ). This

way, after taking the appropriate limit, we arrive at∫
Ω

E(t) + α

∫ t

0

∫
Ω

|v|2 =

∫
Ω

E0 +

∫ t

0

∫
Ω

g · v for a.a. t ∈ (0, T ). (5.84)

Next, we strengthen the above relation to be valid for all t ∈ (0, T ) with possibly

an inequality sign. Due to the weak continuity of v, see (5.79), we see that v(τ) is

uniquely defined for all τ ∈ (0, T ) and

lim
t→τ

(v(t),w) = (v(τ),w) for all w ∈ L2(Ω;Rd). (5.85)
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The same is however not true for θ since it is not weakly continuous with respect

to t ∈ (0, T ). Nevertheless, we can define one-side values for every t ∈ (0, T ) with

the help of (5.60), i.e. using similar arguments as in (5.83), we have the one-sided

uniquely defined weak limit

lim
t→τ±

(
√
θ(t), ζ) = (

√
θ(τ±), ζ) for all ζ ∈ L2(Ω;R). (5.86)

Next, we use the above weak convergence results in (5.84). Integrating it with

respect to t ∈ (τ, τ + δ), we get∫ τ+δ

τ

∫
Ω

E(t) dt =

∫ τ+δ

τ

∫ t

0

(∫
Ω

g · v − α
∫

Ω

|v|2
)

dt+ δ

∫
Ω

E0.

Thus, dividing by δ, letting first δ → 0+ and then τ → 0+, we get

lim
τ→0+

lim
δ→0+

δ−1

∫ τ+δ

τ

∫
Ω

E(t)dt =

∫
Ω

E0 =

∫
Ω

(
1

2
|v0|2 + cvθ0

)
, (5.87)

and in a very similar manner, we obtain

lim
τ→0+

lim
δ→0+

δ−1

∫ τ

τ−δ

∫
Ω

E(t)dt =

∫
Ω

E0 =

∫
Ω

(
1

2
|v0|2 + cvθ0

)
. (5.88)

We focus on the term on the left-hand side. Using convexity, we have

δ−1

∫ τ+δ

τ

∫
Ω

E(t)dt

= δ−1

∫ τ+δ

τ

∫
Ω

(
1

2
|v(t)|2 + cvθ(t)

)
dt

≥ δ−1

∫ τ+δ

τ

∫
Ω

(
1

2
|v(τ)|2 + cvθ(τ+)

)
+ v(τ) · (v(t)− v(τ))

+ 2cv
√
θ(τ+)

(√
θ(t)−

√
θ(τ+)

)
dt

≥
∫

Ω

(
1

2
|v(τ)|2 + cvθ(τ+)

)
− sup
t∈(τ,τ+δ)

∣∣∣∣∫
Ω

v(τ) · (v(t)− v(τ)) + 2cv
√
θ(τ+)

(√
θ(t)−

√
θ(τ+)

)∣∣∣∣.
Then, it follows from the weak continuity results (5.85) and (5.86) and also from

the above inequality that

lim
δ→0+

δ−1

∫ τ+δ

τ

∫
Ω

E(t)dt ≥
∫

Ω

(
1

2
|v(τ)|2 + cvθ(τ+)

)
.

Repeating the same procedure we also get

lim
δ→0+

δ−1

∫ τ

τ−δ

∫
Ω

E(t) dt ≥
∫

Ω

(
1

2
|v(τ)|2 + cvθ(τ−)

)
.
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Consequently, combining these with (5.87) and (5.88), and also with (3.22), (5.80),

(5.83) and weak lower semi-continuity, we get∫
Ω

(
1

2
|v0|2 + cvθ0

)
≥ lim sup

t→0+

∫
Ω

(
1

2
|v(t)|2 + cvθ(t±)

)
≥ lim inf

t→0+

∫
Ω

1

2
|v(t)|2 + lim sup

t→0+

∫
Ω

cvθ(t±)

≥
∫

Ω

1

2
|v0|2 + lim sup

t→0+

∫
Ω

cvθ(t±),

hence, due to (5.83) and the convexity of the second power, we have∫
Ω

θ∗0 ≤ lim sup
t→0+

∫
Ω

θ(t±) ≤
∫

Ω

θ0. (5.89)

In what follows we will not distinguish “±” in θ(t±) and η(t±) and simply

write θ(t) and η(t). To obtain also the corresponding lower estimate, we need to

extract the available information from the entropy inequality (3.40). To this end,

we localize (3.40) in time, using a sequence of nonnegative functions approximating

χ[0,t). This way, we eventually obtain∫
Ω

η(t)φ+

∫ t

0

∫
Ω

j · ∇φ ≥
∫

Ω

η0φ+

∫ t

0

∫
Ω

ξφ, (5.90)

a.e. in (0, T ) and for all φ ∈WM,2(Ω;R≥0), where

j := −vη + κ(θ)∇ ln θ − µλ(θ)∇(trB− d− ln detB) ∈ L1(Q;Rd).

Hence, using (5.82) and taking lim inft→0+ of (5.90) (which surely exists due to

(5.82)), we deduce (3.45). Let us now fix ϕ ∈ CM (Ω;R≥0) such that
∫

Ω
ϕ = 1. Since

f is convex, we get from (3.45) and (5.81) (or (3.43)) that∫
Ω

cv ln θ0 ϕ =

∫
Ω

η0ϕ+

∫
Ω

f(B0)ϕ

≤ lim inf
t→0+

∫
Ω

η(t)ϕ+ lim inf
t→0+

∫
Ω

f(B(t))ϕ

≤ lim inf
t→0+

∫
Ω

cv ln θ(t)ϕ.

If we use this information together with Jensen’s inequality and the fact that

the function s 7→ exp(s/2), is increasing and convex in R, we are led to

exp

(
1

2

∫
Ω

ln θ0ϕ

)
≤ exp

(
1

2
lim inf
t→0+

∫
Ω

ln θ(t)ϕ

)
= lim inf

t→0+
exp

(∫
Ω

ln
√
θ(t)ϕ

)
≤ lim inf

t→0+

∫
Ω

√
θ(t)ϕ

=

∫
Ω

√
θ∗0ϕ. (5.91)
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In every Lebesgue point x0 ∈ Ω of both ln θ0 and θ∗0 , we can localize the inequal-

ity (5.91) in Ω by choosing a sequence of functions ϕ that approximates the Dirac

delta distribution at x0 ∈ Ω. Indeed, appealing to the Lebesgue differentiation

theorem, we get this way that√
θ0(x0) = exp

(
1

2
ln θ(x0)

)
≤
√
θ∗0(x0),

and hence, θ0 ≤ θ∗0 a.e. in Ω, which together with (5.89) implies that θ∗0 = θ0 a.e. in

Ω. To show strong convergence, we use (5.83) with ζ :=
√
θ0 and also (5.89), to

deduce that

lim sup
t→0+

∥∥√θ(t)−√θ0

∥∥2

2
= lim sup

t→0+

∫
Ω

θ(t) +

∫
Ω

θ0 − 2 lim
t→0+

∫
Ω

√
θ(t)

√
θ0 ≤ 0.

Hence, the above inequality implies that√
θ(t)→

√
θ0 strongly in L2(Ω;R),

which implies (3.44).

Using the information above, we can now improve the attainment of the initial

condition for v as well. Indeed, from (5.84), (3.44) and (3.22), we obtain

lim sup
t→0+

∫
Ω

1

2
|v(t)|2 ≤ lim sup

t→0+

∫
Ω

E(t)− lim inf
t→0+

∫
Ω

cvθ(t)

≤
∫

Ω

E0 + lim
t→0+

∫ t

0

(g,v)−
∫

Ω

cvθ0 =

∫
Ω

1

2
|v0|2.

Thus, using also (5.80), we conclude that

lim sup
t→0+

‖v(t)− v0‖22 = lim sup
t→0+

∫
Ω

|v(t)|2 +

∫
Ω

|v0|2 − 2 lim
t→0+

∫
Ω

v(t) · v0 ≤ 0,

which implies (3.42).

Finally, since f is strictly convex on Rd×d>0 as

f ′′(B)A · A = µB−1AB−1 · A = µ|B− 1
2AB−

1
2 |2, B ∈ Rd×d>0 , A ∈ Rd×d,

the strong attainment of the initial condition for B (3.43) follows readily from (5.81),

the classical result stated in Ref. 55 in Theorem 3(i) and Vitali’s theorem once we

show the property

lim sup
t→0+

∫
Ω

f(B(t)) ≤
∫

Ω

f(B0). (5.92)

To this end, we make an observation that in (4.70) (with (4.81) in place), we can

choose φ = 1, drop the nonnegative terms, integrate over (0, t) and then estimate

the right-hand side using Hölder’s inequality, (5.20) and (5.19) to obtain∫
Ω

f(B`(t))−
∫

Ω

f(B
1
`
0 ) ≤

∫ t

0

∫
Ω

2aµg 1
`
(B`, θ`)B` · Dv` ≤ Ct

1
2q′ . (5.93)
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Note that again we rely on (5.48) to give a proper meaning to the left-hand side of

(5.93) for all t ∈ (0, T ). Utilizing now the convexity and continuity of f on Rd×d>0

and (4.8), taking the limit `→∞ in (5.93) leads to∫
Ω

f(B(t))−
∫

Ω

f(B0) ≤ lim inf
`→∞

(∫
Ω

f(B`(t))−
∫

Ω

f(B
1
`
0 )

)
≤ Ct

1
2q′ ,

from which (5.92) immediately follows.

6. Global Energy Equality for d ≤ 3

To derive (3.46) (which is a weak version of (1.12)), we need to construct the pres-

sure p and ensure that every term appearing (3.46) is integrable. To this end, we

apply the conditions (3.11). Moreover, we need to be able to test the momentum

equation with vφ, where φ is some smooth function on Q. Unfortunately, we cannot

do this operation in (3.37) nor at any stage of our approximation scheme. The rem-

edy is to truncate the convection term in the balance of momentum. However, then

we are just mimicking the existence proof that is done in Ref. 8 for a different

nonlinear fluid. Thus, let us only verify the weak compactness of weak solutions

(vδ, pδ,Bδ, θδ, ηδ) to the system div vδ = 0, (3.38), (3.40)

〈∂tvδ,ϕ〉 − (Tδvδ ⊗ vδ,∇ϕ)Q + (Sδ,∇ϕ)Q + α(vδϕ)Σ = (pδ,divϕ)Q + (g,ϕ)Q,

(6.1)

for all ϕ ∈ L∞(0, T ;W 1,∞
n ), with Tδvδ = ((vδsδ) ∗ rδ)div, where sδ is a trunca-

tion near ∂Ω, rδ is a standard mollifier and (·)div is a Helmholtz projection onto

divergence-free functions, and

−(E0, φ)ϕ(0)− (Eδ, φ∂tϕ)Q + α(|vδ|2, φϕ)Σ + (κ(θδ)∇θδ,∇φϕ)Q

= (Eδvδ + pδvδ − Sδvδ,∇φϕ)Q, (6.2)

for all ϕ ∈W 1,∞((0, T );R), ϕ(T ) = 0, and every φ ∈W 1,∞(Ω;R). The existence of

such solutions follows by combining the approximation scheme from Sec. 4 together

with the one in Ref. 8. In view of the uniform estimates derived in Secs. 4 and 5,

we may suppose that the sequence {(vδ, pδ,Bδ, θδ, ηδ)}δ>0 is uniformly bounded in

the spaces appearing in (3.25)–(3.36) and that we have the same convergence results

as in (5.49)–(5.59) and so forth (with ` replaced by δ). We may also suppose that, say

pδ ∈ L2(Q;R) with
∫

Ω
pδ = 0. Then, since we have ν(θδ)Dvδ, θδBδ ∈ L2(Q;Rd×dsym)

and the convection term is truncated, Eq. (6.1) is valid for all ϕ ∈ L2(0, T ;W 1,2
n ),

in fact. What is missing is the uniform estimate of the pressure. By localizing (6.1)

in time, choosing ϕ = ∇u and using div vδ = 0, we obtain

−(pδ,∆u) = (Tδvδ ⊗ vδ − Sδ,∇∇u)− α(vδ,∇u)∂Ω + (g,∇u),

a.e. in (0, T ). There the convective term, if not truncated, is the most irregular

one (recall that ‖vδ ⊗ vδ‖
L
d+2
d L

d+2
d
≤ C). Thus, expecting pδ to have the same
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integrability, we may choose u ∈W 2,( d+2
d )′(Ω;R) to be the solution to the Neumann

problem

−∆u = |p0|
d+2
d −2p0 −

1

|Ω|

∫
Ω

|p0|
d+2
d −2p0 in Ω,

∇u · n = 0 on ∂Ω,

a.e. in (0, T ), where p0 = pδ− 1
|Ω|
∫

Ω
pδ. Since ‖u‖2,( d+2

d )′ ≤ C‖p0‖ d+2
d

by the corre-

sponding Lq-theory (here we used Ω ∈ C1,1), the test function u eventually leads to

‖pδ‖
L
d+2
d L

d+2
d
≤ C,

see Ref. 8 for details.

Taking the limit δ → 0+ in (6.1), (3.38) and (3.40) can be done analogously as

when we considered the limit `→∞. Indeed, in the additional term
∫ T

0
(pδ,divϕ),

we simply use the fact that pδ ⇀ p weakly in L
d+2
d (Q;R). It remains to take

the limit δ → 0+ in (6.2). Since vδ converges strongly in L2 d+2
d −ε(Q;Rd) and

d ≤ 3, we deduce that the terms pδvδ and |vδ|2vδ converge weakly to their limits.

The limits in the other terms were already discussed and we omit them here. Thus,

the proof of Theorem 3.1 is complete.

Appendix A. Auxiliary Results

In this additional section, we prove those auxiliary results which were used above

but are not completely standard in the existing literature. On the other hand, they

are not new and serve only to clarify certain arguments used in the proof.

For the purposes of this section, we replace the interval (0, T ) (or [0, T ]) by

an arbitrary bounded interval I ⊂ R and set Q = I × Ω. The set Ω is always

assumed to be a bounded Lipschitz domain in Rd, d ∈ N.

Intersections of Sobolev–Bochner spaces

If a Banach space X and a Hilbert space H form a Gelfand triple, i.e. X
dense
↪→

H
dense
↪→ X∗, it is well known that

C1(I;X)
dense
↪→ Wp

X ↪→ C(I;H), (A.1)

where

Wp
X :=

(
{u ∈ Lp(I;X); ∂tu ∈ (Lp(I;X))∗}, ‖·‖LpX + ‖∂t·‖Lp′X∗

)
, 1 < p <∞.

The first embedding in (A.1) is useful to manipulate certain duality pairings involv-

ing time derivatives, while the second embedding is important for the identification

of boundary values (i.e. initial conditions) and the corresponding integration by

parts formulas. We would like to generalize (A.1) to the space

Wp,q
X,Y :=

(
{u ∈ Lp(I;X) ∩ Lq(I;Y ); ∂tu ∈ (Lp(I;X) ∩ Lq(I;Y ))∗},

‖·‖LpX∩LqY + ‖∂t·‖(LpX∩LqY )∗
)
, 1 < p, q <∞.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
24

.3
4:

41
7-

47
6.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
85

.1
40

.2
46

.8
1 

on
 0

3/
22

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 21, 2024 10:55 WSPC/103-M3AS 2450006

Analysis of thermoviscoelastic fluids 469

The primary application which we have in mind is the case where X = W 1,2(Ω),

Y = Lω(Ω) and ω > 2d
d−2 (i.e. we know better integrability than what follows from

the Sobolev embedding, recall the function B`). Thus, we may assume that both X

and Y admit the Gelfand triplet structure with a common Hilbert space H.

Lemma A.1. Let 1 < p, q < ∞ and suppose that X, Y are separable reflexive

Banach spaces and H is separable Hilbert space forming Gelfand triples in the sense

that

X
dense
↪→ H

dense
↪→ X∗ and Y

dense
↪→ H

dense
↪→ Y ∗. (A.2)

Then, we have the embeddings

C1(I;X ∩ Y )
dense
↪→ Wp,q

X,Y ↪→ C(I;H). (A.3)

Moreover, the integration by parts formula

(u(t2), v(t2))H − (u(t1), v(t1))H =

∫ t2

t1

〈∂tu, v〉+

∫ t2

t1

〈∂tv, u〉, (A.4)

holds for any u, v ∈ Wp,q
X,Y and any t1, t2 ∈ I.

Proof. The proof of the first embedding in (A.3) can be done in a standard way

by extending u outside I evenly, taking the convolution with a smooth kernel and

then estimating the difference from u and ∂tu in the respective norms. See Ref. 27

or Ref. 60 for details.

If u, v ∈ C1(I;X ∩ Y ) ↪→ C(I;H), then ∂tu, ∂tv ∈ C(I;X ∩ Y ) ↪→ C(I;H) and,

using density of the embeddings in (A.2), the duality in (A.4) can be represented as

〈∂tu, v〉+ 〈∂tv, u〉 = (∂tu, v)H + (∂tv, u)H = ∂t(u, v)H a.e. in I,

hence, (A.4) is obvious in that case. Next, we can proceed as in Lemma 7.3. in

Ref. 53 to prove that

‖u(t)‖H ≤ C(‖u‖L1H + ‖u‖Wp,q
X,Y

), (A.5)

for all t ∈ I and every u ∈ C1(I;X ∩ Y ). Moreover, by (A.2), we have

Wp,q
X,Y ↪→ Lp(I;X) ∩ Lq(I;Y ) ↪→ L1(I;X) ∩ L1(I;Y )

↪→ L1(I;X + Y ) ↪→ L1(I;H),

and thus, (A.5) yields

‖u‖C(I;H) ≤ C‖u‖Wp,q
X,Y

. (A.6)

Since C1(I;X ∩ Y ) is dense in Wp,q
X,Y , the estimate (A.6) and identity (A.4) remain

valid for all u ∈ Wp,q
X,Y . Moreover, if u ∈ Wp,q

X,Y , then we can take v = u and t2 → t1
in (A.4) to deduce that u ∈ C(I;H). Thus, the embedding Wp,q

X,Y ↪→ C(I;H) holds

and the proof is finished.

SinceWp,p
X,X =Wp

X , the classical result (A.1) can be seen as an obvious corollary.
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Fundamental theorem of calculus in the Sobolev–Bochner setting

Let H = L2(Ω). The formula (A.4) can be used to identify that

〈∂tu, u〉 =
1

2

d

dt

∫
Ω

u2, (A.7)

a.e. in I. However, in certain situations we would like to generalize (A.7) to

〈∂tu, ψ(u)〉 =
d

dt

∫
Ω

∫ u

w

ψ(s) ds.

Whether this is possible depends on what kind of function ψ is and also on the choice

of X. The next lemma characterizes one such situation.

Lemma A.2. Let 1 < p, q < ∞. Suppose that ψ : R → R is a Lipschitz function.

For w ∈ R, we define

Ψ(x) =

∫ x

w

ψ(s) ds, x ∈ R.

Then, for any u ∈ Wp
W 1,q(Ω), there holds

Ψ(u) ∈ C(I;L1(Ω)), (A.8)

and ∫ t2

t1

〈∂tu, ψ(u)〉 =

∫
Ω

Ψ(u(t2))−
∫

Ω

Ψ(u(t1)) for all t1, t2 ∈ I. (A.9)

Moreover, if ψ is bounded, then

Ψ(u) ∈ C(I;L2(Ω)).

Proof. First of all, we remark that ψ(u) ∈ W 1,q(Ω) a.e. in I, by a classical result

(see e.g. Theorem 2.1.11. in Ref. 61), and thus, the duality in (A.9) is well defined.

Next, we apply Lemma A.1 to find uε ∈ C1(I;W 1,q(Ω)) satisfying

‖uε − u‖LpW 1,q + ‖∂tuε − ∂tu‖Lp′W−1,q′ → 0 as ε→ 0+. (A.10)

Then, using standard calculus, it is easy to see that the identity∫ t2

t1

〈∂tuε, ψ(uε)〉 =

∫ t2

t1

∫
Ω

ψ(uε)∂tuε

=

∫ t2

t1

∫
Ω

∂tΨ(uε) =

∫
Ω

Ψ(uε(t2))−
∫

Ω

Ψ(uε(t1)), (A.11)

holds for any t1, t2 ∈ I. Denoting the Lipschitz constant of ψ by L ≥ 0, we estimate

|ψ(uε)| ≤ |ψ(uε)− ψ(0)|+ |ψ(0)| ≤ L|uε|+ |ψ(0)|,

and

|∇ψ(uε)| ≤ |ψ′(uε)||∇uε| ≤ L|∇uε|.
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Hence, the sequence ψ(uε) is bounded in Lp(I;W 1,q(Ω)). As 1 < p, q < ∞, this

is a separable reflexive space, and thus, there exist a subsequence and its limit

ψ(u) ∈ Lp(I;W 1,q(Ω)) such that

ψ(uε) ⇀ ψ(u) weakly in Lp(I;W 1,q(Ω)). (A.12)

Since p > 1, a subsequence of uε converges pointwise a.e. in Q to u, and thus,

ψ(u) = ψ(u) using the continuity of ψ. Hence, by (A.10) and (A.12), we obtain∫ t2

t1

〈∂tuε, ψ(uε)〉 =

∫ t2

t1

〈∂tuε − ∂tu, ψ(uε)〉+

∫ t2

t1

〈∂tu, ψ(uε)〉

→
∫ t2

t1

〈∂tu, ψ(u)〉, (A.13)

as ε → 0+. Next, using the embedding Wp
W 1,q(Ω) ↪→ C(I;L2(Ω)) and (A.10), we

get, for any t0 ∈ I, that

‖u(t)− u(t0)‖2 → 0 as t→ t0, (A.14)

and

‖uε(t0)− u(t0)‖2 → 0 as ε→ 0+. (A.15)

Then, the Lipschitz continuity of ψ, Hölder’s inequality and (A.14) yield∫
Ω

|Ψ(u(t))−Ψ(u(t0))| =
∫

Ω

∣∣∣∣∣
∫ u(t)

u(t0)

ψ(s) ds

∣∣∣∣∣ ≤
∫

Ω

∫ u(t)

u(t0)

(|ψ(0)|+ L|s|) ds

≤
∫

Ω

∫ u(t)

u(t0)

C(1 + |u(t0)|+ |u(t)|)

≤ C

∫
Ω

(1 + |u(t0)|+ |u(t)|)|u(t)− u(t0)|

≤ C‖1 + |u(t0)|+ |u(t)|‖2‖u(t)− u(t0)‖2

≤ C‖u(t)− u(t0)‖2 → 0, (A.16)

as t→ t0, which proves (A.8) (and thus, the values Φ(u(t)), t ∈ I, are well defined).

By an analogous estimate, using (A.15) instead of (A.14), we can prove that∫
Ω

|Ψ(uε(t0))−Ψ(u(t0))| → 0 as ε→ 0+,

for any t ∈ I. This and (A.13) used in (A.11) to take the limit ε→ 0+ prove (A.9).

If ψ is bounded, we replace (A.16) by∫
Ω

|Ψ(u(t))−Ψ(u(t0))|2 =

∫
Ω

∣∣∣∣∣
∫ u(t)

u(t0)

ψ(s) ds

∣∣∣∣∣
2

≤ C
∫

Ω

|u(t)− u(t0)|2,

and the rest of the proof remains the same.
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Clearly, we can also replace ψ by ψφ, where φ ∈W 1,∞(Ω;R), leading to∫ t

0

〈∂tu, ψ(u)φ〉 =

∫
Ω

∫ u(t)

w

ψ(s) ds φ−
∫

Ω

∫ u(0)

w

ψ(s) ds φ for all t ∈ I. (A.17)

Then, since φ is a Lipschitz (time-independent) function, the proof is basically

the same as the one presented above.

Calculus for positive definite matrices

We recall that the operations “·” and | · | on matrices are defined by

A1 · A2 =

d∑
i=1

d∑
j=1

(A1)ij(A2)ij and |A| =
√
A · A,

respectively. Then, the object |A| coincides, in fact, with the Frobenius matrix norm

of A.

The next lemma is formulated for a function A : Q→ Rd×d>0 and for simplicity, we

shall assume that A is continuously differentiable with respect to all variables, i.e.

A ∈ C1(Q;Rd×d>0 ). In particular situations, this assumption can be of course removed

by an appropriate approximation (convolution smoothing) and the assertions of

the following lemma thereby extend to the setting of weakly differentiable functions.

Let us also denote any of the space-time derivatives by the generic symbol ∂.

Lemma A.3. Let A ∈ C1(Q;Rd×d>0 ). Then

(i) 0 ≤ trA− d− ln detA, (A.18)

(ii) |A| ≤ trA ≤
√
d|A|, (A.19)

(iii) min{1, d
1−α
2 }|A|α ≤ |Aα| ≤ max{1, d

1−α
2 }|A|α for any α ≥ 0, (A.20)

(iv) ∂A · Aα =


1

α+ 1
∂ trAα+1 if α 6= −1,

∂ ln detA = ∂ tr logA if α = −1,

(A.21)

(v) (signα)∂A · ∂Aα ≥


4|α|

(α+ 1)2
|∂A

α+1
2 |2 if α 6= −1,

|∂ logA|2 if α = −1,

(A.22)

(vi) |∂A| ≤ 2|A1−α∂Aα| for all α ∈
[

1

2
, 1

)
. (A.23)

Proof. Property (i) follows by passing to the spectral decomposition of A and from

the fact that x 7→ x − 1 − lnx attains its minimum at x = 1. Estimate (ii) is

a consequence of the Cauchy–Schwarz inequality since

|A| = |(A 1
2 )TA

1
2 | ≤ |A 1

2 |2 = trA = I · A ≤ |I||A| =
√
d|A|.
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For (iii), we refer to Proposition 1 in Ref. 3 and for (iv), (v) to Theorem 1 in Ref. 3.

The relation (iv) with α = −1 is also known as the Jacobi identity.

Finally, property (A.23) can be shown using the idea from the proof of Theo-

rem 3 in Ref. 3, which we briefly sketch here. For any natural numbers p, q satisfying

q − p ≤ p < q (so that α = p
q ∈ [ 1

2 , 1)), we may use the Young inequality to write

|∂Bq|2 = |∂Bq−pBp + Bq−p∂Bp|2 ≤ 2|∂Bq−pBp|2 + 2|Bq−p∂Bp|2 =: 2A+ 2B.

(A.24)

Now we simply expand the derivative and rearrange the terms to get

A =

∣∣∣∣∣
q−p−1∑
i=0

Bi∂BBq−1−i

∣∣∣∣∣
2

=

q−p−1∑
i=0

q−p−1∑
j=0

∣∣B i+j
2 ∂BBq−1− i+j2

∣∣2

=

2(q−p−1)∑
s=0

(1 + min{s, 2(q − p− 1)− s})
∣∣B s

2 ∂BBq−1− s2
∣∣2, (A.25)

whereas for B, a completely analogous computation yields

B =

2(p−1)∑
s=0

(1 + min{s, 2(p− 1)− s})
∣∣B s

2 ∂BBq−1− s2
∣∣2.

Then, using that q−p ≤ p first inside the minimum in (A.25) and then in the num-

ber of terms of the sum (relying on the nonnegativity of each term), we see that

A ≤ B. Returning with this information to (A.24) and setting B = A
1
q , we easily

conclude (A.23) for rational powers α. The general case follows by a density argu-

ment (the continuity of the mapping α 7→ A1−α follows immediately from the spec-

tral decomposition, while continuity of α 7→ ∂Aα is a consequence of the integral

representation formula for ∂ expX, see Ref. 57 or Ref. 3 for more details).
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