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Abstract. We study a nonlinear elliptic system with prescribed inner interface conditions. These models are frequently used
in physical system where the ion transfer plays the important role, for example, in modeling of nano-layer growth or Li-on
batteries. The key difficulty of the model consists of the rapid or very slow growth of nonlinearity in the constitutive equation
inside the domain or on the interface. While on the interface, one can avoid the difficulty by proving a kind of maximum
principle of a solution, inside the domain such regularity for the flux is not available in principle since the constitutive law
is discontinuous with respect to the spatial variable. The key result of the paper is the existence theory for these problems,
where we require that the leading functional satisfies either the delta-two or the nabla-two condition. This assumption is
applicable in case of fast (exponential) growth as well as in the case of very slow (logarithmically superlinear) growth.

Mathematics Subject Classification. Primary 35J66; Secondary 35M32.

Keywords. Nonlinear elliptic systems, Interface condition, Orlicz spaces, Metal oxidation, Nano-layer.

1. Introduction

This paper focuses on the existence and uniqueness analysis of nonlinear elliptic systems with general
growth conditions that may have discontinuity on an inner interface which describes the transfer of a
certain quantity through this interface. To describe such problem mathematically, we consider a domain
Ω ⊂ R

d, d ≥ 2, with Lipschitz boundary ∂Ω and with an inner interface Γ. The considered domain and
the interface are shown in Fig. 1, and we always have in mind a similar situation. We could also consider
more interfaces inside of the domain Ω, but it would not bring any additional mathematical difficulties,
so we restrict ourselves only to the situation depicted in Fig. 1. Thus, the domain Ω is decomposed into
two parts Ω1 and Ω2 by the interface Γ such that Ωi is also Lipschitz for i = 1, 2. Further, we assume that
there is the Dirichlet part of the boundary ΓD ⊂ ∂Ω and the Neumann part ΓN ⊂ ∂Ω, and we denote
by n the unit normal vector on Γ, which is understood always as the unit normal outward vector to Ω1

at Γ. (Note that then −n is the unit outward normal vector to Ω2 on Γ.) We also use the symbol n to
denote the unit outward normal vector to Ω on ∂Ω.

The problem reads as follows: For given mappings h : Ω × R
d×N → R

d×N , b : Γ × R
N → R

N , given
Dirichlet data φ0 : ΓD → R

N and Neumann data j0 : ΓN → R
d×N , to find φ : Ω → R

N (here N ∈ N is a
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Fig. 1. Prototypical domain Ω

number of unknowns) solving the following system

−div h(x,∇φ(x)) = 0 in Ω,

h(x,∇φ(x)) · n(x) = b(x, [φ](x)) on Γ,

h(x,∇φ(x)) · n(x) = j0(x) · n(x) on ΓN,

φ(x) = φ0(x) on ΓD.

(1.1)

Here, the symbol [φ] denotes the jump of φ on Γ. More precisely, for x ∈ Γ we define

[φ](x) := lim
h→0+

φ(x + hn(x)) − φ(x − hn(x)).

Consequently, we also cannot assume that φ has derivatives in the whole Ω and therefore the symbol ∇φ
appearing in (1.1) is considered only in Ω1 and Ω2. Further, as we shall always assume that φ is a Sobolev
function on Ω1 as well as on Ω2, it makes sense to talk about the trace of φ on ∂Ω1 and ∂Ω2 and thus
the definition of [φ] is meaningful, see Sect. 2 for precise definitions and notations.

The model (1.1) is frequently used when modeling the transfer of ions (or other particles) through the
interface Γ between two different materials with possibly different relevant properties represented by sets
Ω1 and Ω2. The first prototypic example, we have in mind, is the process of charging and discharging of
lithium-ion batteries. The model of the form (1.1) with N = 1 and h being linear with respect to ∇φ but
being discontinuous with respect to x when crossing the interface Γ was derived and used for modeling
of this phenomenon. Note that in this setting, the growth or behavior of the function b is very fast/wild,
which may cause additional difficulties. We refer to [14–16] for physical justification of such a model and
to [4,6] for the mathematical and numerical analysis of such model with zero j0. The second prototypic
example is the modeling of porous metal oxide layer growth in the anodization process. The unknown
function φ then represents an electrochemical potential. It has been experimentally observed that under
some special conditions, the titanium oxide forms a nanostructure which resembles pores. In the thesis
[10], it is confirmed numerically that the model (1.1) (or rather its appropriate unsteady version) is
able to capture this phenomenon if the nonlinearities h and b are chosen accordingly. For this particular
application, the mapping h models the high field conduction law in Ω2, while in Ω1, it corresponds to the
standard Ohm law, and b models the Butler–Volmer relation, see, e.g., [5,10,12] and references therein for
more details. After some unimportant simplifications and by setting all electrochemical constants equal
to one, these electrochemical laws take the following form:

h(x,v) =

⎧
⎪⎨

⎪⎩

sinh |v|
|v| v for x ∈ Ω1, v ∈ R

d×N ,

v for x ∈ Ω2, v ∈ R
d×N ,

b(x, z) =
exp |z| − 1

|z| z for z ∈ R
N .

(1.2)
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Thus, it turns out that in some applications, the nonlinearities h and b exhibit a very fast growth
(exponential-like) with respect to the gradient of unknown and even worse due to the discontinuity with
respect to the spatial variable the growth can oscillate between linear or exponential. Therefore, our aim
is to obtain a reasonable mathematical theory for (1.1) under minimal assumptions on the smoothness
with respect to the spatial variable x and on the growth with respect to the gradient of unknown required
for h and b.

Without the interface condition on Γ, the system (1.1) is a nonlinear elliptic system (provided that
h is a monotone mapping), for which the existence theory can be obtained in a relatively standard
way if h has polynomial growth and leads to the direct application of the standard monotone operator
theory. Recently, this theory was further generalized in [1,2] also into the framework of Orlicz spaces with
h having a general (possibly exponential) growth and being discontinuous with respect to the spatial
variable. The problem (1.1) with the interface condition was also recently studied in [4] for the scalar
setting, i.e., with N = 1 and only for h being linear with respect to ∇φ and having discontinuity with
respect to the spatial variable on Γ. The authors in [4] established the existence of a weak solution for
rather general class of functions b describing the jump on the interface by proving the maximum principle
for φ. Note that such a procedure heavily relies on the scalar structure of the problem, the linearity of h
is used in the proof and it also requires the zero flux j0.

To give the complete picture of the problem (1.1), we would like to point out that in case that h and
b are strictly monotone (and consequently invertible), we can set f := h−1 and g := b−1. Further, we
denote j := h(∇φ), which in the electrochemical interpretation represents the current density flux. Then,
the system (1.1) can be rewritten as

−div j(x) = 0 in Ω,

f(x, j(x)) = ∇φ(x) in Ω\Γ,

g(x, j(x) · n(x)) = [φ](x) on Γ,

j(x) · n(x) = j0(x) · n(x) on ΓN,

φ(x) = φ0(x) on ΓD.

(1.3)

and j : Ω → R
d×N can be seen as an unknown. This is the first step to the so-called mixed formula-

tion which seems to be advantageous from the computational viewpoint, see the numerical experiments
in [10].

The key result of the paper is that we provide a complete existence theory for model (1.1) assuming
very few assumptions on the structure, on the growth of nonlinearities h and b, on the data φ0 and j0,
and we also provide its equivalence to (1.3). Furthermore, we present a constructive proof based on the
Galerkin approximation for both formulations (1.1) and (1.3), which may serve as a starting point for the
numerical analysis. Moreover, in case that the nonlinearities are just derivatives of some convex potentials
[(which is, e.g., the case of (1.2))], we show that the solution can be sought as a minimizer to certain
functional. Finally, we would like to emphasize that we aim to build a robust mathematical theory for a
very general class of problems allowing fast/slow growths of nonlinearities, minimal assumptions on data
and being able to cover also general systems of elliptic PDE’s, not only the scalar problem.

To end this introductory part, we just formulate a meta-theorem for the prototypic model (1.2) and
refer to Sect. 2 for the precise statement of our result.

Theorem 1.1. (Meta-theorem) Let the nonlinearities h and b satisfy (1.2). Then for any reasonable data
φ0 and j0, there exist a unique solution φ to (1.1) and a unique solution j to (1.3). Moreover, these
solutions can be found as minimizers of certain functionals.
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2. Notations and assumptions and results

In this part, we formulate precisely the main result of the paper. To do so rigorously, we first need to
introduce certain function spaces that are capable to capture the very general behavior of nonlineari-
ties h and b. Therefore, we first shortly introduce the Musielak–Orlicz spaces; then, we formulate the
assumptions on nonlinearities h and b, the geometry of Ω and the data φ0 and j0 and finally state the
main results of the paper. Also we simply write the symbol “·” to denote the scalar product on R

d or
just to say that the product has d-summands, whenever there is no possible confusion. Similarly, the
symbol “�” denotes the scalar product on R

N or the fact that the product has N -summands, and finally,
the symbol “:” is reserved for the scalar product on R

d×N , or just for emphasizing that the product has
(d × N)-summands.

2.1. The Musielak–Orlicz spaces

We recall here basic definitions and facts about Musielak–Orlicz spaces, and the interested reader can
find proofs, e.g., in [13] or in a book [11].

We say that Υ : Ω × R
m → [0,∞) with m ∈ N, is an N -function if it is Carathéodory,1 even and

convex with respect to the second variable z ∈ R
m and satisfies for almost all x ∈ Ω (note that this is a

general definition, but in our setting, the number m will correspond either to N or to d × N depending
on the context):

lim
|z |→0

Υ(x,z)
|z| = 0 and lim

|z |→∞
Υ(x,z)

|z| = ∞. (2.1)

Further, the N -function Υ is said to satisfy the Δ2 condition if there exist constants c,K ∈ (0,∞) such
that for almost all x ∈ Ω and all z ∈ R

m fulfilling |z| > K, there holds

Υ(x, 2z) ≤ cΥ(x,z). (2.2)

The complementary (convex conjugate) function to Υ is defined for all (x,z) ∈ Ω × R
m by (within this

section, the symbol “·” is also used for the scalar product on R
m):

Υ∗(x,z) = sup
y∈Rm

(z · y − Υ(x,y)),

and it is also an N -function. This definition directly leads to the Young inequality

z1 · z2 ≤ Υ(x,z1) + Υ∗(x,z2) for all z1,z2 ∈ R
m,

and thanks to the convexity of Υ and the fact Υ(x, 0) = 0 (it follows from (2.1)), we have that for all
(x,z) ∈ Ω × R

m and 0 < ε < 1, there holds

Υ(x, εz) ≤ εΥ(x,z).

This allows us to introduce the ε-Young inequality (with ε ∈ (0, 1)):

z1 · z2 ≤ εΥ(x,z1) + Υ∗
(
x,

z2

ε

)
.

Having the notion of N -function, we can now define the Musielak–Orlicz spaces. Recall that Ω ⊂ R
d

is an open set and for arbitrary m ∈ N define the set

MΥ(Ω) := {v ∈ L1(Ω; Rm) :
∫

Ω

Υ(x,v(x)) dx < ∞}.

1The function g(x, z) is called Carathéodory if it is for almost all x ∈ Ω continuous with respect to z and also for all
z ∈ R

m measurable with respect to x.
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Since the set M does not form necessarily a vector space, we define the Orlicz space LΥ(Ω) as the linear
hull of MΥ(Ω) and equip it with the Luxembourg norm

‖v‖Υ;Ω := inf{λ > 0 :
∫

Ω

Υ
(

x,
v(x)

λ

)

dx ≤ 1} for all v ∈ LΥ(Ω).

We will often omit writing the subscript Ω whenever it is clear from the context. It also directly follows
from the Young inequality that we have the Hölder inequality in the form

∫

Ω

v(x) · u(x) dx ≤ 2‖v‖Υ‖u‖Υ∗ for all v ∈ LΥ(Ω) and all u ∈ LΥ∗
(Ω).

Note that the equality MΥ(Ω) = LΥ(Ω) holds if and only if Υ satisfies the Δ2 condition (2.2). Further,
by EΥ(Ω) we denote the closure of L∞(Ω; Rm) in the norm ‖·‖Υ. The purpose of this definition is that
the space EΥ(Ω) is separable, since the set of all polynomials on Ω is dense in EΥ(Ω). In addition, if Υ
satisfies the Δ2 condition, we have the following identities:

EΥ(Ω) = MΥ(Ω) = LΥ(Ω), (2.3)

while if the Δ2 condition is not satisfied, there holds

EΥ(Ω) � MΥ(Ω) � LΥ(Ω). (2.4)

Furthermore, since EΥ(Ω) is a linear space, we have for arbitrary v ∈ EΥ(Ω) and K ∈ R that Kv ∈
EΥ(Ω). Consequently, it follows from (2.3)–(2.4) that

∫

Ω

Υ(x,Kv(x)) dx < ∞ for all v ∈ EΥ(Ω) and all K ∈ R. (2.5)

Finally, for any N -function Υ, we have the following identification of dual spaces:

LΥ(Ω) = (EΥ∗
(Ω))∗. (2.6)

Thus, although the space LΥ(Ω) is not reflexive2 in general, the property (2.6) and the separability of
EΥ∗

still ensure at least the weak∗ sequential compactness of bounded sets in LΥ(Ω) by the Banach
theorem. Finally, the space LΥ(Ω) coincides with the weak∗ closure of L∞(Ω; Rm).

The very similar definitions can be made for the spaces defined on Γ (the (d−1)-dimensional subset of
Ω), and we have the spaces EΥ(Γ), MΥ(Γ) and LΥ(Γ) with exactly the same characterizations as above.

2.2. Assumptions on the domain and nonlinearities

We start this part by precise specification of the domain Ω, whose prototype is depicted in Fig. 1, where
one can see Ω with its boundary ∂Ω = ΓD∪ΓN and the interface Γ. Below, we state precisely the necessary
assumptions on Ω; however, the reader should always keep in mind the “topology” of the set from Fig. 1.
Domain Ω: We assume the following:
(O1) The set Ω ⊂ R

d, d ≥ 2, is open, bounded, connected and Lipschitz.
(O2) The boundary ∂Ω can be written as a union of the closures of two relatively (in (d − 1) topology)

open disjoint sets ΓN and ΓD, where ΓD consists of two separated components Γ1
D and Γ2

D of nonzero
surface measure.

(O3) The interface Γ is a connected component of the set Ω that separates Γ1
D from Γ2

D such that the set
Ω is bisected by Γ into Ω1 and Ω2 and both Ω1 and Ω2 are Lipschitz sets.

2It is evident consequence of (2.3), (2.4) and (2.6) that LΥ(Ω) is reflexive if and only if both functions Υ and Υ∗
satisfy the Δ2 condition.
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We recall that the outward normal vector n on Γ is chosen to point outwards Ω1.
Next, we introduce the assumptions on nonlinearities. We split them into two parts. The first one deals

with the standard minimal assumption on the smoothness, growth and monotonicity, and the second one
is an additional assumption that will be used for the existence theorem.
Assumptions on h and b: We assume that h : Ω×R

d×N → R
d×N and b : Γ×R

N → R
N are Carathéodory

mappings and satisfy:

(A1) The mappings h and b are monotone with respect to the second variable and zero at zero, i.e., for
all v1,v2 ∈ R

d×N , all z1, z2 ∈ R
N and almost all x ∈ Ω, there holds

(h(x,v1) − h(x,v2)) : (h1 − h2) ≥ 0,

(b(x, z1) − b(x, z2)) � (z1 − z2) ≥ 0,

h(x, 0) = b(x, 0) = 0.
(2.7)

(A2) There exist N -functions Φ and Ψ, a nonnegative constant C and positive constants 0 < αh , αb ≤ 1
such that for all v ∈ R

d×N , all z ∈ R
N and almost all x ∈ Ω, there holds

h(x,v) : v ≥ αh(Φ∗(x,h(x,v)) + Φ(x,v)) − C, (2.8)

b(x, z) � z ≥ αb(Ψ∗(x, b(x, z)) + Ψ(x, z)) − C. (2.9)

In case we are more interested in the formulation for fluxes, i.e., for (1.3), we have the following
assumptions on f and g.
Assumptions on f and g: We assume that f : Ω×R

d×N → R
d×N and g : Γ×R

N → R
N are Carathéodory

mappings and satisfy:

(A1)∗ The mappings f and g are monotone with respect to the second variable and zero at zero, i.e., for
all v1,v2 ∈ R

d×N , all z1, z2 ∈ R
N and almost all x ∈ Ω, there holds

(f(x,v1) − f(x,v2)) : (v1 − v2) ≥ 0,

(g(x, z1) − g(x, z2)) � (z1 − z2) ≥ 0,

f(x, 0) = g(x, 0) = 0.

(A2)∗ There exist N -functions Φ and Ψ, a nonnegative constant C and positive constants 0 < αh , αb ≤ 1
such that for all v ∈ R

d×N , all z ∈ R
N and almost all x ∈ Ω, there holds

f(x,v) : v ≥ αf (Φ∗(x,v) + Φ(x,f(x,v))) − C, (2.10)

g(x, z) � z ≥ αg(Ψ∗(x, z) + Ψ(x, g(x, z))) − C. (2.11)

Note that if h and b are strictly monotone, i.e., (2.7)1 holds for all v1 �= v2 with the strict inequality
sign, then we can denote their inverses (with respect to the second variable) f := h−1, g := b−1 and
the assumptions (A1)–(A2) and (A1)∗–(A2)∗ are equivalent. Also the assumption h(0) = b(0) = 0 in
(A1) is not necessary, it just makes the proofs more transparent. If h(0) �= 0, we can always write
h(v) = (h(v) − h(0)) + h(0) and follow step by step all proofs in the paper.

Finally, we specify the assumptions that will guarantee the existence (and also the uniqueness) of the
solution to (1.1) and (1.3), respectively.

Key assumptions for the existence of solution: In what follows, we assume that at least one of the following
holds:

(Π) There exists Fh : Ω × R
d×N → R and Fb : Ω × R

N → R (potentials) such that h and b are their
Fréchet derivatives, i.e., for all v ∈ R

d×N , z ∈ R
N and almost all x ∈ Ω, there hold

∂Fh(x,v)
∂v

= h(x,v),
∂Fb(x, z)

∂z
= b(x, z).
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(Π)∗ There exists Ff : Ω × R
d×N → R and Fg : Ω × R

N → R (potentials) such that f and g are their
Fréchet derivatives, i.e., for all v ∈ R

d×N , z ∈ R
N and almost all x ∈ Ω, there holds

∂Ff (x,v)
∂v

= f(x,v),
∂Fg(x, z)

∂z
= g(x, z).

(Δ) At least one of the couples (Φ,Ψ) and (Φ∗,Ψ∗) satisfies3 the Δ2 condition.
From now, whenever we talk about Φ and Ψ, we always mean the N -functions from (2.8)–(2.9)

or (2.10)–(2.11), respectively. Also to shorten the notation, we will omit writing the dependence on
spatial variable x ∈ Ω, but it is always assumed implicitly, e.g., h(v) always means h(x,v) or h(x,v(x))
depending on the context, and similarly, we use the same abbreviations for other functions/mappings.

2.3. Notion of a weak solution

In this part, we define the precise notion of a weak solution to (1.1) and/or to (1.3). Since we deal with
functions that may have a jump across Γ, we use a slightly nonstandard definition of a weak gradient on
Ω, which however coincides with the standard definition on Ω1 and Ω2. Therefore for any q ∈ L1(Ω; RN ),
we say that w ∈ L1(Ω; Rd×N ) is a gradient of q if for all ϕ ∈ C∞

0 (Ω\Γ; Rd×N ), we have4

∫

Ω

w : ϕ = −
∫

Ω

q � (div ϕ) (2.12)

and we will denote ∇q := w as usual. This will be the default meaning of the symbol ∇ in the whole
paper. It is easy to see that if ∇q is integrable, then the restrictions q|Ω1

and q|Ω2
are Sobolev functions

on Ω1 and Ω2, respectively. Hence, since both sets are Lipschitz, we can define for such q’s the jump of q
across Γ as

[q] := trΩ2 q
∣
∣
Γ

− trΩ1 q
∣
∣
Γ
,

where trΩi
, i = 1, 2, is the trace operator acting upon functions defined on Ωi.

Function spaces related to problem (1.1). First, we focus on the definition of certain spaces that are
related to the problem (1.1). Thus, we introduce the following three spaces:

P := {q ∈ L1(Ω; RN ) : ∇q ∈ LΦ(Ω), [q] ∈ LΨ(Γ), trΩ1 q
∣
∣
ΓD

= 0, trΩ2 q
∣
∣
ΓD

= 0},

EP := {q ∈ P : ∇q ∈ EΦ(Ω), [q] ∈ EΨ(Γ)},

BP := {q ∈ P : ∃{qn}∞
n=1 ⊂ EP, ∇qn ⇀∗ ∇q in LΦ(Ω), [qn] ⇀∗ [q] in LΨ(Γ)}.

We equip these spaces with the norm

‖q‖P := ‖∇q‖Φ;Ω + ‖[q]‖Ψ,Γ, (2.13)

where the fact that it is a norm follows from the Poincaré inequality and from |ΓD| > 0. The motivation
for definition of such spaces are the properties of Musielak–Orlicz spaces stated in Sect. 2.1. Moreover,
we used the bold face to denote EΦ(Ω) and LΦ(Ω) to emphasize that the objects with values in R

d×N

are considered, while we used the normal font letters LΨ(Γ) and EΨ(Γ) to denote the space of mappings
with value in R

N . Furthermore, the space P equipped with the norm (2.13) is a Banach space since it

3We say that a couple (Φ, Ψ) satisfies the Δ2 condition if both functions Φ and Ψ satisfy the Δ2 condition.
4For sake of clarity, the identity (2.12) written in terms of components of w , ϕ and q has the following form

N∑

i=1

d∑

j=1

∫

Ω

w i,jϕi,j = −
N∑

i=1

∫

Ω

qi

⎛

⎝
d∑

j=1

∂ϕi,j

∂xj

⎞

⎠ .
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can be identified with a closed subspace of the Banach space LΦ(Ω) × Lψ(Γ) (see section Sect. 2.1 for
properties of underlying spaces). However, since it is not separable in general, we construct the space EP ,
which can be again identified with a closed subspace of EΦ(Ω) × EΨ(Γ), which is separable. Therefore,
the Banach space EP is separable as well. Finally, the fact, that the solution will be in most cases found
as a weak∗ limit of functions from EP , motivates the definition of BP , which is thus nothing else than
the weak∗ closure of EP . It is also evident that if Φ and Ψ satisfy Δ2 condition, then P = EP = BP .
Function spaces related to problem (1.3). In case we are more interested in solving (1.3), we set

X := {τ ∈ LΦ∗
(Ω), τ · n ∈ LΨ∗

(Γ) :
∫

Γ

(τ · n) � [ϕ] +
∫

Ω

∇ϕ : τ = 0 ∀ϕ ∈ EP},

EX := {τ ∈ X : τ ∈ EΦ∗
(Ω), τ · n ∈ EΨ∗

(Γ)},

BX := {τ ∈ X : ∃{τn}∞
n=1 ⊂ EX, τn ⇀∗ τ in LΦ∗

(Ω), τn · n ⇀∗ τ · n in LΨ∗
(Γ)}.

Since we assume just integrability of τ : Ω → R
d×N , we specify how the constraints from the definition

of X, EX and BX are understood. First, the meaning of divergence and the zero trace on the Neumann
part of the boundary is usually formulated as follows:

τ · n = 0 on ΓN

div τ = 0 in Ω

}
def⇔

∫

Ω

∇ϕ : τ = 0 ∀ϕ ∈ C0,1(Ω; RN ), ϕ|ΓD
= 0. (2.14)

Note that the right-hand side of (2.14) is fulfilled for τ ∈ X since Lipschitz functions vanishing on ΓD

belong to EP . Furthermore, these functions do not have a jump on Γ and therefore the corresponding
integral in the definition of X vanishes. Hence, (2.14) is just the distributional form of the operator div
(divergence) as well as the trace of τ · n. We just allow a broader class of test functions in the definition
of X. Second, we can specify the meaning of τ · n ∈ LΨ∗

(Γ) in the definition of X as follows:

τ · n ∈ LΨ∗
(Γ) def⇔ ∃w ∈ LΨ∗

(Γ),
∫

Γ

w � ϕ =
∫

Ω1

∇ϕ : τ ∀ϕ ∈ C0,1
0 (Ω; RN ). (2.15)

Note that (2.14) also implies that
∫

Ω1

∇ϕ : τ = −
∫

Ω2

∇ϕ : τ .

Hence, since we know that τ · n|Γ is well-defined distribution because div τ = 0, it follows from (2.15)
that w can be identified with τ · n|Γ, which is the meaning we use in the paper. However, also for the
trace of τ · n, we shall require a broader class of test functions than Lipschitz, which correspond to the
test function from EP in the definition of X. Finally, we equip X, EX and BX with the norm

‖τ‖X := ‖τ‖Φ∗;Ω + ‖τ · n‖Ψ∗;Γ.

Similarly as before, we have that X and EX are the Banach spaces, and in addition, since EX can be
identified with a closed subspace of EΦ∗

(Ω) × EΨ∗
(Γ), which is separable, we have that EX is separable

as well.
Assumptions on data φ0 and j0. The last set of assumptions is related to the given boundary and volume
data. To simplify the presentation, we assume that φ0 and j0 are defined in Ω and specify the assumptions5

on φ0 : Ω → R
N and j0 : Ω → R

d×N .

5The reason for such simplification is that we do not want to employ the trace and/or the inverse trace theorem in
Musielak–Orlicz spaces. But clearly, every φD ∈ W 1,∞(ΓD) can be extended to the whole Ω such that it satisfies the
assumption (D1).
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(D1) We assume that φ0 ∈ W 1,1(Ω; RN ) such that

∇φ0 ∈ EΦ(Ω). (2.16)

(D2) We assume that j0 : Ω → R
d×N is measurable and satisfies

j0 ∈ EΦ∗
(Ω), j0 · n = 0 on Γ, div j0 = 0 in Ω. (2.17)

It is worth noticing that we assume here better properties than we expect from solution. First, since
φ is a Sobolev function, it does not have any jump on Γ. Second, we assume that the flux j0 over the
surface Γ is also vanishing. (Since divergence is zero, we can talk about the normal component of the flux
on Γ, see (2.17).) The reason for such setting is that we just want to simplify the presentation of main
results and the proofs.
Definition of a weak solution. We shall define four notions of weak solution—two for each formulation
(1.1) and (1.3). We start with the motivation of a notion of weak solution to (1.1). We assume that we
have a sufficiently regular solution to (1.1) and we take the scalar product of the first equality (it has N
components) in (1.1) with arbitrary q ∈ EP . We integrate the result over Ω and, after using integration
by parts, we deduce that (recall our notation for ∇q in (2.12) and also our definition of n and [q] on Γ)

0 = −
∫

Ω1

div(h(∇φ) − j0) � q −
∫

Ω2

div(h(∇φ) − j0) � q

= −
∫

∂Ω1\Γ

(h(∇φ) − j0)n � q −
∫

∂Ω2\Γ

(h(∇φ) − j0)n � q +
∫

Γ

(h(∇φ) − j0)n � [q]

+
∫

Ω

(h(∇φ) − j0) : ∇q

(1.1)
=

(2.17)

∫

Γ

b([φ]) � [q] +
∫

Ω

h(∇φ) : ∇q −
∫

Ω

j0 : ∇q,

where we also used the facts that q vanishes on ΓD, that div j0 = 0 and that j0 · n = 0 on Γ. The above
identity can thus be understood as a weak formulation of (1.1), and we are led to the following definition.

Definition 2.1. Let Ω satisfy (O1)–(O3), let nonlinearities h and b satisfy (A1)–(A2), and let data φ0 and
j0 satisfy (D1)–(D2). We say that the function φ is a weak solution to (1.1) if

φ − φ0 ∈ P, h(∇φ) ∈ LΦ∗
(Ω), b([φ]) ∈ LΨ∗

(Γ)

and
∫

Ω

h(∇φ) : ∇q +
∫

Γ

b([φ]) � [q] =
∫

Ω

j0 : ∇q for all q ∈ EP. (2.18)

Using the Hölder inequality, we see that both integrals in (2.18) are well defined. In addition, we see
that for sufficiently regular φ, the computation above shows that the φ solving (2.18) solves (1.1) as well.
Further, we introduce another concept of solution, which a priori does not require any information on
h(∇φ) and b([φ]).

Definition 2.2. Let Ω satisfy (O1)–(O3), let nonlinearities h and b satisfy (A1)–(A2), and let data φ0 and
j0 satisfy (D1)–(D2). We say that the function φ is a variational weak solution to (1.1) if

φ − φ0 ∈ P

and
∫

Ω

(h(∇φ) − j0) : ∇(φ − φ0 − q) +
∫

Γ

b([φ]) � [φ − q] ≤ 0 for all q ∈ EP. (2.19)
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Although, we did not impose any assumptions on the integrability of h(∇φ) and b([φ]), this information
is included implicitly in (2.19) as it is shown in Lemma 3.5.

The next notion of a weak solution concerns the “dual” formulation (1.3) in terms of the flux j.
Formally, it can be again derived from (1.3), (2.16) and integration by parts as follows:

∫

Ω

(f(j) − ∇φ0) : τ =
∫

Ω1

∇(φ − φ0) : τ +
∫

Ω2

∇(φ − φ0) : τ

=
∫

∂Ω1

(φ − φ0) � (τ · n) +
∫

∂Ω2

(φ − φ0) � (τ · n)

= −
∫

Γ

[φ − φ0] � (τ · n) = −
∫

Γ

[φ] � (τ · n)

= −
∫

Γ

g(j · n) � (τ · n)

for any τ ∈ EX, where we used the fact that [φ0] = 0 on Γ since it is a Sobolev function.
Thus, we are led to the following definition.

Definition 2.3. Let Ω satisfy (O1)–(O3), let nonlinearities f and g satisfy (A1)∗–(A2)∗, and let data φ0

and j0 satisfy (D1)–(D2). We say that the function j is a weak solution to (1.3) if

j − j0 ∈ X, f(j) ∈ LΦ(Ω), g(j · n) ∈ LΨ(Γ)

and
∫

Ω

f(j) : τ +
∫

Γ

g(j · n) � (τ · n) =
∫

Ω

∇φ0 : τ for all τ ∈ EX. (2.20)

Analogously as for φ, we can define the variational weak solution also for j.

Definition 2.4. Let Ω satisfy (O1)–(O3), let nonlinearities f and g satisfy (A1)∗–(A2)∗, and let data φ0

and j0 satisfy (D1)–(D2). We say that the function j is a variational weak solution to (1.3) if

j − j0 ∈ X

and
∫

Ω

(f(j) − ∇φ0) : (j − j0 − τ ) +
∫

Γ

g(j · n) � ((j − τ ) · n) ≤ 0 for all τ ∈ EX. (2.21)

Note that in Definition 2.1, the boundary condition φ = φ0 on ΓD is imposed by φ − φ0 ∈ P , whereas
in Definition 2.3, the same boundary condition is encoded in (2.20) implicitly (this is shown later, see
part ii) of Theorem 3.4). The situation is reversed for the boundary condition j · n = j0 · n on ΓN.

3. Main results

We start this section with the first key result of the paper that focuses on the existence and uniqueness
of a solution to (1.1).

Theorem 3.1. Let Ω satisfy (O1)–(O3) and let ϕ0 fulfill (D1). Suppose that h and b satisfy (A1) and
(A2).

(i) Assume that (Δ) holds. Then, there exists a weak solution φ to (1.1). In addition, the weak solution
satisfies φ ∈ φ0 + BP and (2.18) and (2.19) are valid for any function q ∈ BP .
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(ii) Assume that (Π) holds. Then, there exists a variational weak solution φ ∈ φ0 + P to (1.1) and this
solution is also a weak solution.

If, in addition, the mapping h is strictly monotone, then the weak solution is unique in the class φ0 +BP .

As a direct consequence of the above theorem, we also obtain the result stated in meta-theorem 1.1,
which is now formulated as:

Corollary 3.2. Let Ω satisfy (O1)–(O3), let N = 1 and let φ0 and j0 fulfill (D1) and (D2) with Φ(v) :=
cosh(|v|)−1 and set Ψ(z) := exp(|z|)−|z|−1. Then, Φ and Ψ are N -functions, and there exists a unique
variational weak solution φ ∈ φ0 + BP to

div
(

sinh |∇φ|
|∇φ| ∇φ

)

= 0 in Ω\Γ,

sinh |∇φ|
|∇φ| ∇φ · n − exp(|[φ]|) − 1

|[φ]| [φ] = 0 on Γ,

∇φ · n = j0 · n on ΓN ,

φ = φ0 on ΓD.

To summarize, we can obtain the existence of a weak solution in two cases: either in case that there
exists a potential (in this case, the solution will be sought as a minimizer) or in case that (Δ) holds.
Note that (Δ) is quite a weak assumption as the N -functions Φ such that both Φ and Φ∗ do not satisfy
the Δ2 condition are not that easy to find, especially in the applications (see the example in [13, p. 28]).
Moreover, we would like to point out here that in case (Δ) holds, we obtained a better solution than just
φ ∈ φ0 + P and we even have φ ∈ φ0 + BP . Note that it is trivial if Φ and Ψ satisfy the Δ2 condition.
However, if it is not the case, it is a piece of new information. Second, we obtained the uniqueness in the
class φ0 + BP , which may be a smaller class than that introduced for weak solution. However, since we
know that there exists a weak solution in φ0 + BP , this class may be understood as a proper selector for
obtaining a uniqueness of a solution.

The second existence theorem uses the alternative weak formulation (1.3) in terms of the flux j.

Theorem 3.3. Let Ω satisfy (O1)–(O3) and let j0 fulfill (D2). Suppose that f and g satisfy (A1)∗ and
(A2)∗.

(i) Assume that (Δ) holds. Then, there exists a weak solution j to (1.3). In addition, the weak solution
fulfills j ∈ j0 + BX and (2.20) and (2.21) are valid for any function τ ∈ BX.

(ii) Assume that (Π∗) holds. Then, there exists a variational weak solution j ∈ j0 + X to (1.3), and
this solution is also a weak solution.

If, in addition, the mapping f is strictly monotone, then the weak solution is unique in the class j0+BX.

Also here, we would like to point out that in case (Δ) holds, we found a solution in BX and this is
also the class of solutions in which we obtained the uniqueness.

Finally, we state the result about the equivalence of Definitions 2.1 and 2.3.

Theorem 3.4. Let all assumptions of Definitions 2.1 and 2.3 be satisfied. In addition, assume that h, f ,
g and b are strictly monotone, satisfying h−1 = f and b−1 = g. Then,

(i) If φ is a weak solution in sense of Definition 2.1, then j := h(∇φ) satisfies j − j0 ∈ X with
j · n = b([φ]) on Γ and (2.20) holds for all τ ∈ EX ∩ C1(Ω; Rd×N ). In addition, if (Δ) holds and
φ ∈ φ0 + BP , then j is a weak solution in sense of Definition 2.3.

(ii) If j is a weak solution in sense of Definition 2.3, then there exists φ ∈ φ0 + P fulfilling ∇φ = f(j)
in Ω and [φ] = g(j · n) on Γ and φ is a weak solution in sense of Definition 2.1.
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This theorem shows the equivalence between the notions of solution if (Δ) holds. Furthermore, if (Δ)
is not satisfied, then we have at least the equivalence of solution in class of distributional solutions of
(1.1) and (1.3), respectively. Furthermore, it follows from the above theorem that we can choose the
formulation, which is more appropriate, e.g., for numerical purposes, and we still construct the unique
solution to the original problem. Moreover, we see that the existence of a weak solution j automatically
implies the existence of a weak solution φ even in the case when (Δ) is not satisfied. Therefore also from
the point of view of analysis of the problem, the dual formulation (1.3) seems to be preferable to the
weak formulation (1.1).

The last result states when a variational weak solution is also a weak solution and similarly when a
weak solution is also a variational weak solution.

Theorem 3.5. Let φ ∈ φ0 +P be a variational weak solution to (1.1). Then, φ is also a weak solution and
satisfies

∫

Ω

(
Φ(∇φ) + Φ∗(h(∇φ))

)
+

∫

Γ

(
Ψ([φ]) + Ψ∗(b([φ]))

)
< ∞. (3.1)

Similarly, let φ ∈ φ0 + BP be a weak solution to (1.1) and (Δ) hold. Then, φ is also a variational weak
solution.

Let j ∈ j0 + X be a variational weak solution to (1.3). Then, j is also a weak solution and satisfies
∫

Ω

(
Φ(f(j)) + Φ∗(j)

)
+

∫

Γ

(
Ψ(g(j · n)) + Ψ∗(j · n)

)
< ∞.

Similarly, let j ∈ j0 + BX be a weak solution to (1.3) and (Δ) hold. Then, j is also a variational weak
solution.

In the rest of the paper, we prove the results stated in this section and finally give also the proof of
meta-theorem 1.1.

4. Proofs of the main results

This key part is organized as follows: First, in Sect. 4.1, we show Theorem 3.5. Then in Sect. 4.2, we prove
Theorem 3.4. Sections 4.3 and 4.4 are devoted to the proofs of Theorems 3.1 and 3.3, respectively. Since
both proofs are almost identical, we prove Theorem 3.1 rigorously only for the case ii), i.e., if (Π) holds,
and Theorem 3.3 rigorously only for the case i), i.e., when (Δ) holds true. The corresponding counterparts
of the proofs can be done in the very same way, and therefore, we present here only sketch of these proofs
in Sects. 4.5 and 4.6. Finally the proof of Corollary 3.2 and consequently also of meta-theorem 1.1 is
presented in Sect. 4.7.

4.1. Proof of Theorem 3.5

We start the proof by showing that variational weak solution is also weak solution. Let φ ∈ φ0 + P be
a variational weak solution. Thanks to the Young inequality and the assumption (2.8) (coercivity of h),
we can write

(h(∇φ) − j0) · ∇(φ − φ0)

≥ αhΦ∗(h(∇φ)) + αhΦ(∇φ) − D − αhΦ∗(h(∇φ))
2

− αhΦ(∇φ)
2

− Φ( 2
αh

∇φ0) − Φ∗( 2
αh

j0) − Φ(∇φ0) − Φ∗(j0)
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≥ αhΦ∗(h(∇φ))
2

+
αhΦ(∇φ)

2
− 2Φ( 2

αh
∇φ0) − 2Φ∗( 2

αh
j0) − D.

Similarly, we also recall (2.9)

αbΨ([φ]) + αbΨ∗(b([φ])) ≤ D + b([φ])[φ].

Then, we set q := 0 in (2.19) and with the help of above estimates we deduce that
∫

Ω

Φ∗(h(∇φ)) + Φ(∇φ) +
∫

Γ

Ψ([φ]) + Ψ∗(b([φ]))

≤ C

⎛

⎝1 +
∫

Ω

Φ( 2
αh

∇φ0) + Φ∗( 2
αh

j0)

⎞

⎠ .

(4.1)

Since j0 ∈ EΦ∗
(Ω) and ∇φ0 ∈ EΦ(Ω), we can use (2.5) and obtain that the right-hand side of (4.1) is

finite. Hence, we obtain (3.1).
Thus, we just need to show that φ also satisfies (2.18). Note that thanks to (3.1), all integrals in (2.18)

and (2.19) are well defined and finite. Let us define for arbitrary q ∈ P :

J(q) :=
∫

Ω

(h(∇φ) − j0) : ∇q +
∫

Γ

b([φ]) � [q].

Then, because we already have (3.1), we can rewrite (2.19) as

−∞ < J(φ − φ0) ≤ J(q) < ∞ for all q ∈ EP,

which means that J is bounded from below. But since J is linear and EP is a linear space, this is possible
if and only if J(q) = 0 for all q ∈ EP , which is nothing else than (2.18).

Next, we show that if (Δ) holds and a weak solution satisfies in addition φ ∈ φ0 + BP , then it is
also a variational weak solution. Let us consider first the case when Ψ and Φ satisfy Δ2 condition. Then,
EP = P , and we can simply set q := φ − φ0 − q̃ in (2.18) with arbitrary q̃ ∈ EP to obtain (2.19) (where
we replace q by q̃). In the second case, i.e., if Ψ∗ and Φ∗ satisfy Δ2 condition, we use the fact that
φ − φ0 ∈ BP . Thus, we can find a sequence {φn − φ0}∞

n=1 ⊂ EP such that

∇φn − ∇φ0 ⇀∗ ∇φ − ∇φ0 weakly∗ in LΦ(Ω), (4.2)

[φn] ⇀∗ [φ] weakly∗ in LΨ(Γ). (4.3)

Then, we set q := φn − φ0 − q̃ in (2.18), which is now an admissible choice to obtain
∫

Ω

(h(∇φ) − j0) : ∇(φn − φ0 − q̃) +
∫

Γ

b([φ]) � [φn − q̃] = 0 for all q̃ ∈ EP. (4.4)

Since Ψ∗ and Φ∗ satisfy Δ2 condition, we see that h(∇φ) ∈ EΦ∗
(Ω) and b([φ]) ∈ EΨ∗

(Γ). Consequently,
we can use (4.2)–(4.3) and let n → ∞ in (4.4) to recover (2.19). Note that in both cases, we obtain (2.19)
even with the equality sign.

The second part of the proof, i.e., the part for j, is done analogously and therefore is omitted here.

4.2. Proof of Theorem 3.4

We start the proof with the claim i). If φ is a weak solution, then it directly follows from (2.18) that
j − j0 ∈ X with j · n = b([φ]) on Γ. Thus, it remains to check that (2.20) is satisfied. Hence, let τ ∈ EX
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be arbitrary. Then, using the definition of j, we have
∫

Ω

f(j) : τ +
∫

Γ

g(j · n) � (τ · n) −
∫

Ω

∇φ0 : τ =
∫

Ω

(∇φ − ∇φ0) : τ +
∫

Γ

[φ] � (τ · n). (4.5)

Thus, if τ is in addition C1, then we can directly integrate by parts and we see that the right-hand side
vanishes, which finishes the first part of i). Second, assume that (Δ) holds. In the first case, i.e., if Φ
and Ψ satisfy Δ2 condition, then we have that φ − φ0 ∈ EP and the right-hand side of (4.5) vanishes by
using the definition of the space EX. In the second case, we use the fact that we can approximate φ by
a proper sequence defined in (4.2)–(4.3) and we can write

∫

Ω

(∇φ − ∇φ0) : τ +
∫

Γ

[φ] � (τ · n) = lim
n→∞

∫

Ω

(∇φn − ∇φ0) : τ +
∫

Γ

[φn] � (τ · n) = 0,

where the second equality follows from the fact that for each n ∈ N, there holds φn − φ0 ∈ EP and from
the definition of the space EX. Hence, the integral in (4.5) vanishes, which is nothing else than (2.20).

Next, we focus on the part ii). Hence, let j ∈ j0 + X be a weak solution. Then, we can set τ := τ 1

in (2.20), where τ 1 ∈ C1(Ω; Rd×N ) ∩ EX is arbitrary fulfilling τ 1 ≡ 0 in Ω2 to obtain
∫

Ω1

(f(j) − ∇φ0) : τ 1 = 0. (4.6)

Consequently, the de Rham theorem implies that there exist φ1 ∈ W 1,1(Ω1; RN ), such that

f(j) = ∇φ1 ⇔ j = h(∇φ1) in Ω1.

In addition, since ∂Ω1 ∩ ΓD �= ∅, we have from (4.6) that φ1 must be chosen such that φ1 = φ0 on
∂Ω1 ∩ ΓD. Consequently, it is unique. Similarly, we can uniquely construct φ2 ∈ W 1,1(Ω2; RN ) fulfilling
φ2 = φ0 on ∂Ω2 ∩ ΓD and

f(j) = ∇φ2 ⇔ j = h(∇φ2) in Ω2.

Thus, defining finally

φ := φ1χΩ1 + φ2χΩ2

and using the definition of a weak solution j and the fact that h = f−1, we deduce that (recall here that
the notion of ∇ does not reflect the jump over Γ)

∫

Ω

Φ(∇φ) +
∫

Ω

Φ∗(h(∇φ)) =
∫

Ω

Φ(f(j)) +
∫

Ω

Φ∗(j) < ∞.

To identify also a jump [φ] on Γ, we first state the following result, which will be proven at the end of
this section.

Lemma 4.1. Let Ω satisfy (O1)–(O3) and let f ∈ L1(Γ) be given. Assume that for all τ ∈ C1(Ω1; Rd)
fulfilling div τ = 0 in Ω1 and τ · n = 0 on ΓN ∩ ∂Ω1, there holds

∫

Γ

fτ · n = 0. (4.7)

Then, f ≡ 0 almost everywhere on Γ.
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The above lemma is used in the following way. We set τ ∈ EX ∩ C1(Ω; Rd×N ) in (2.20) arbitrarily,
and using the definition of φ and integration by parts, we find that

0 =
∫

Ω

(f(j) − ∇φ0) : τ +
∫

Γ

g(j · n) � (τ · n)

=
∫

Ω

∇(φ − φ0) : τ +
∫

Γ

g(j · n) � (τ · n)

= −
∫

Γ

[φ − φ0] � (τ · n) +
∫

Γ

g(j · n) � (τ · n)

=
∫

Γ

(g(j · n) − [φ]) � (τ · n).

Since τ was arbitrary, we can use (4.7) to conclude

[φ] = g(j · n) ⇔ b([φ]) = j · n on Γ.

Consequently, we also have (by using the notion of weak solution and the fact that g = b−1)
∫

Γ

Ψ([φ]) +
∫

Ω

Ψ∗(b([φ])) =
∫

Γ

Ψ(g(j · n)) +
∫

Γ

Ψ∗(j · n) < ∞.

Finally, it directly follows from the definition of X and the identification of φ that it satisfies (2.18), and
thanks to the above estimates, φ is a weak solution. It just remains to prove Lemma 4.1.

Proof of Lemma 4.1. We start the proof by considering arbitrary Γi ⊂ Γ, where Γi can be described as
a graph of Lipschitz function depending on the first (d − 1) spatial variables, i.e., x1, . . . , xd−1 (here we
use the fact that Ω1 is Lipschitz) and fulfilling for some cube QRi

⊂ R
d, Γi ⊂ QRi

⊂ Q2Ri
⊂ Ω, where

QRi
:= x0 + (−Ri, Ri)d with some x0 ∈ R

d. Furthermore, we can require (this also follows from the
Lipschitz regularity of Ω1 and from proper orthogonal transformation) that for some ε > 0:

n · ( 0, . . . , 0
︸ ︷︷ ︸

(d−1)-times

, 1) ≥ ε on Γi.

Next, let ψ ∈ C∞
0 ({x0 + (−Ri, Ri)d−1}) be arbitrary function depending only on x1, . . . , xd−1 and

g ∈ C∞
0 (Q2Ri

) be arbitrary function fulfilling g ≡ 1 in QRi
. Then, we set

τ 1 := ( 0, . . . , 0
︸ ︷︷ ︸

(d−1)-times

, ψ(x1, . . . , xd−1)g(x1, . . . , xd)).

Note that τ 1 ∈ C∞
0 (Rd; Rd). Finally, since Ω1 is connected and ΓD has positive measure, we can find a

smooth open connected set G ⊂ R
d such that
{x ∈ Ω1; ψ(x)∂xd

g(x) �= 0} ⊂ G,

G ∩ ∂Ω1 ⊂ ΓD,

G\Ω1 �= ∅.

Finally, we find an arbitrary h ∈ C∞
0 (G\Ω1) such that

∫

G\Ω1

h = −
∫

G∩Ω1

ψ(x)∂xd
g(x). (4.8)

Next, we use the Bogovskii operator (see [7, Theorem III.3.3]) and we can find τ 2 ∈ C∞
0 (G; Rd) satisfying

div τ 2 = ψ∂xd
g + h in G.
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Note that such function can be found due to the compatibility assumption (4.8). Furthermore, we simply
extend τ 2 by zero outside G. Having prepared τ 1 and τ 2, we set τ := τ 1 − τ 2. Then, it follows from the
construction that in Ω1 (note that h is not supported in Ω1):

div τ = div τ 1 − div τ 2 = ψ∂xd
g − ψ,

and that τ = 0 on ΓN . Consequently, τ can be used in (4.7) and we have

0 =
∫

Γ

f(τ · n) =
∫

Γi

fψnd.

Since ψ is arbitrary, then fnd = 0 almost everywhere6 in Γi. Further, since nd > 0 everywhere on Γi,
then

f = 0 on Γi.

This statement holds true for arbitrary Γi and therefore can be extended to the whole Γ. The proof is
complete. �

4.3. Proof of Theorem 3.1

In this part, we assume that (Π) holds, i.e., there exists Fh and Fb such that for any v ∈ R
d×N and

z ∈ R
N :

∂Fh(v)
∂v

= h(v) and
∂Fb(z)

∂z
= b(z).

Furthermore, since h and b are coercive and monotone mappings (see (2.7)–(2.9)), it directly follows that
Fh and Fb are N -functions (nonnegative, even, convex mappings). In addition, we evidently have the
following identities for the Gâteaux derivatives of h and b:

∂uFh(v) ≡ lim
λ→0+

1
λ

(Fh(v + λu) − Fh(v)) = h(v) : u, v,u ∈ R
d×N , (4.9)

and analogously,

∂yFb(z) = b(z) � y, z, y ∈ R
N . (4.10)

In addition, it follows from the definition of the convex conjugate function that we can replace (2.8)–(2.9)
by sharper identities

h(v) : v = Fh(v) + F ∗
h (h(v)), (4.11)

b(z) � z = Fb(z) + F ∗
b (b(z)), (4.12)

and with the help of (4.11)–(4.12), we can identify Φ and Ψ from (2.8)–(2.9) with Fh and Fb, i.e., we set
in the rest of the proof Φ := Fh and Ψ := Fb. Finally, we define the following functional

I(p) :=
∫

Ω

Fh(∇(φ0 + p)) −
∫

Ω

j0 : ∇(φ0 + p) +
∫

Γ

Fb([p]) for all p ∈ P (4.13)

and look for the minimizer, i.e., we want to find p ∈ P such that for all q ∈ P , there holds

I(p) ≤ I(q) ⇔ I(p) = min
q∈P

I(q). (4.14)

6Here, in fact the function ψ depends only on the first (d − 1) variables, but since the set Γi is described as a graph of
a Lipschitz mapping depending on x1, . . . , xd−1, we can use the standard substitution and the fundamental theorem about

integrable functions.
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To prove the existence of p fulfilling (4.14), we define

m := inf
q∈P

I(q)

and find {pn}∞
n=1 as a minimizing sequence of I. It follows from the assumptions on φ0 and j0 that such

a sequence can be found and it fulfills for all n ∈ N:

I(pn) ≤ 2I(0) < ∞.

Hence, using the assumption on j0, the property (2.5) and the Young inequality, and defining φn :=
φ0 + pn, we find that

∫

Ω

Fh(∇φn) +
∫

Γ

Fb([φn])

≤ 2

⎛

⎝

∫

Ω

Fh(∇φn) −
∫

Ω

j0 : ∇φn +
∫

Γ

Fb([φn])

⎞

⎠ + 2
∫

Ω

F ∗
h (2j0)

≤ 4I(0) + 2
∫

Ω

F ∗
h (2j0) < ∞.

(4.15)

Having such uniform bound, we can use the Banach theorem, and find φ ∈ φ0 + P and a subsequence
that we do not relabel, such that

∇φn ⇀
∗ ∇φ in LΦ(Ω),

[φn] ⇀
∗ [φ] in LΨ(Γ).

(4.16)

(There is no need to identify the weak limits since the operators of trace, ∇ and [·] are linear.) Obviously,
these two convergence results hold in the weak-L1 topology as well (since Φ and Ψ are superlinear). Thus,
thanks to the convexity of Fh and Fb and by the fact that

Fh(∇(φ0 + p)) − j0 : ∇(φ0 + p) ≥ −F ∗
h (j0) ∈ L1(Ω),

we can use the weak lower semicontinuity of convex functionals to observe that

m = lim
n→∞ I(pn) ≥ I(p) ≥ m;

hence, I(p) = I(φ − φ0) = m is a minimum. Furthermore, it follows from (4.15) and the weak lower
semicontinuity that

∫

Ω

Fh(∇φ) +
∫

Γ

Fb([φ]) < ∞. (4.17)

Now, we will prove that φ is a variational weak solution. This will be done by deriving the Euler–
Lagrange equation corresponding to I. Let q ∈ EP be arbitrary and denote φq := φ0 + q. We set

Dh(λ) :=
Fh(∇φ + λ(∇φq − ∇φ)) − Fh(∇φ)

λ
,

Db(λ) :=
Fb([φ] + λ([φq] − [φ])) − Fb([φ])

λ
,

where λ ∈ (0, 1) is arbitrary. Then, we use the minimizing property (4.14) to get

I(p) ≤ I((1 − λ)p + λφq),

which in terms of Dh and Db can be rewritten by using (4.13) as

−
∫

Ω

j0 : (∇φ − ∇φ0 − ∇q) ≤
∫

Ω

Dh(λ) +
∫

Γ

Db(λ). (4.18)
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Next, (4.9) and (4.10) imply that (recall that [φ0] = 0 on Γ)

Dh(λ) → h(∇φ) : ∇(q − φ + φ0),

Db(λ) → b([φ]) � [q − φ]

almost everywhere in Ω and Γ, respectively, as λ → 0+. Our goal now is to let λ → 0+ in (4.18). Indeed,
if we justify the limit procedure in the term on the right-hand side and if we use the above point-wise
result, we directly obtain (2.19), i.e., φ is a variational weak solution. Then, we can use the already proven
Theorem 3.5 to conclude that φ is also a weak solution. Hence, to finish the proof, we need to justify the
limit procedure. Since we need to pass to the limit with the inequality sign, we use the Fatou lemma.
Therefore, we need to find I1 ∈ L1(Ω) and I2 ∈ L1(Γ) such that for all λ ∈ (0, 1), we have

Dh(λ) ≤ I1 in Ω and Db(λ) ≤ I2 on Γ (4.19)

and that for all λ ∈ (0, 1), we have (possibly non-uniformly)
∫

Ω

Dh(λ) > −∞,

∫

Γ

Db(λ) > −∞. (4.20)

Thanks to nonnegativity of Fh and Fb, and due to (4.16) and (4.17), we get
∫

Ω

Dh(λ) ≥ − 1
λ

∫

Ω

Fh(∇φ) > −∞,

∫

Γ

Db(λ) ≥ − 1
λ

∫

Γ

Fb([φ]) > −∞

for all λ ∈ (0, 1), which is (4.20). To show also (4.19), we use the convexity and the nonnegativity of Fh ,
which yields

Dh(λ) ≤ (1 − λ)Fh(∇φ) + λFh(∇φq) − Fh(∇φ)
λ

≤ Fh(∇q + ∇φ0)

for all λ ∈ (0, 1).
To see that I1 := Fh(∇q + ∇φ0) ∈ L1(Ω), we use the assumption on φ0 and q. Since both ∇q,∇φ0 ∈

EΦ(Ω), which is a linear space, we have that ∇q + ∇φ0 ∈ EΦ(Ω) as well. Consequently, we can use (2.5)
to conclude that

∫

Ω

I1 =
∫

Ω

Fh(∇q + ∇φ0) < ∞,

which leads to the first part of (4.19). The second part is however proven similarly. Hence, we are allowed
to use the Fatou lemma and to let λ → 0+ in (4.18) to obtain (2.19). This finishes the existence part of
the proof.

4.4. Proof of Theorem 3.3

We assume in this part that (Δ) holds. We proceed here as follows: First, we define the Galerkin approx-
imation, and then, we derive uniform estimates and pass to the limit. Finally, depending on what kind
of Δ2 condition is satisfied, we finish the proof.
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4.4.1. Galerkin approximation. Since EX is a separable space, we can find {wi}∞
i=1 ⊂ EX, whose linear

hull is dense in EX. Next, we construct an approximative sequence jn in the following way. For α =
(α1, . . . , αn) ∈ R

n, we denote wα = j0 +
∑n

i=1 αiw
i. Then, we define the i-th component, i ∈ {1, . . . , n},

of the mapping F by

F i(α) :=
∫

Ω

f(wα ) : wi +
∫

Γ

g(wα · n) � (wi · n) −
∫

Ω

∇φ0 : wi, α ∈ R
n. (4.21)

Our goal is to find α∗ ∈ R
n such that F (α∗) = 0. Indeed, having such α∗ is equivalent to have jn :=

j0 +
∑n

i=1 α∗
i w

i such that
∫

Ω

f(jn) : wi +
∫

Γ

g(jn · n) � (wi · n) =
∫

Ω

∇φ0 : wi for all i ∈ {1, . . . , n}. (4.22)

Hence, we focus now on finding the zero point of F defined in (4.21). Since we assume that f and g are
Carathéodory mappings and j0 ∈ EΦ∗

(Ω), we can use (2.5) to deduce that the mapping F is continuous
on R

n. Moreover, using the growth properties of f and g (assumption (A2)∗), the Young inequality, the
fact that j0 · n = 0 on Γ, j0 ∈ EΦ∗

(Ω) and also that ∇φ0 ∈ EΦ(Ω), we get

F (α) · α :=
n∑

i=1

F i(α)αi =
∫

Ω

f(wα ) : (wα − j0)

+
∫

Γ

g(wα · n) � (wα · n) −
∫

Ω

∇φ0 : (wα − j0)

≥ αf

∫

Ω

(Φ∗(wα ) + Φ(f(wα )) + αg

∫

Γ

(Ψ∗(wα · n) + Ψ(g(wα · n))

−αf

2

∫

Ω

(Φ∗(wα ) + Φ(f(wα ))

−2
∫

Ω

Φ
(

2
αα

∇φ0

)

+ Φ∗
(

2
αα

j0

)

− C

≥ αf

2

∫

Ω

(Φ∗(wα ) + Φ(f(wα )) +
αg

2

∫

Γ

(Ψ∗(wα · n) + Ψ(g(wα · n)) − C. (4.23)

Since the mapping α �→ wα is linear and since Φ∗, Ψ∗ satisfy (2.1), there exists R > 0 such that if
|α| > R, then F (α) ·α > 1. Hence, using a well- known modification of the Brouwer fixed-point theorem,
there exists a point α∗ ∈ R

n with F (α∗) = 0, which we wanted to show. Consequently, we also obtained
the existence of jn solving (4.22).

4.4.2. Uniform estimates and limit n → ∞. It follows from (4.22), see the computation in (4.23), that
the identity

∫

Ω

f(jn) : (jn − j0) +
∫

Γ

g(jn · n) � (jn · n) =
∫

Ω

∇φ0 : (jn − j0) (4.24)

is valid for all n ∈ N. Consequently, it follows by the same procedure as in (4.23) that we have the
following uniform bounds:

∫

Ω

(Φ∗(jn) + Φ(f(jn))) +
∫

Γ

(Ψ∗(jn · n) + Ψ(g(jn · n))) ≤ C. (4.25)
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Thus, using the Banach theorem, we find weakly∗ converging subsequences (that we do not relabel), so
that

jn ⇀
∗

j in LΦ∗
(Ω), (4.26)

f(jn) ⇀
∗

f in LΦ(Ω), (4.27)

jn · n ⇀
∗

j · n in LΨ∗
(Γ), (4.28)

g(jn · n) ⇀
∗

g in LΨ(Γ) (4.29)

as n → ∞. Furthermore, since jn−j0 ∈ EX, we have from the above convergence result that j−j0 ∈ BX.
Next, we pass to the limit also in (4.22). Since wi ∈ EΦ∗

(Ω) and wi · n ∈ EΨ∗
(Γ) for all i ∈ N, we can

use (4.27) and (4.29) to let n → ∞ in (4.22) for fixing i ∈ N and obtain
∫

Ω

f : wi +
∫

Γ

g � (wi · n) =
∫

Ω

∇φ0 : wi for all i ∈ {1, . . . , n}, (4.30)

and since the linear hull of {wi}i∈N is dense in EX, we obtain
∫

Ω

f : τ +
∫

Γ

g � (τ · n) =
∫

Ω

∇φ0 : τ for all τ ∈ EX. (4.31)

4.4.3. Identification of f and g and the energy (in)equality. To finish the proof, it remains to show that

f = f(j) a.e. in Ω and g = g(j · n) a.e. on Γ (4.32)

and also that we constructed the variational solution. We start the proof by claiming that
∫

Ω

f : (j − j0) +
∫

Γ

g � (j · n) =
∫

Ω

∇φ0 : (j − j0). (4.33)

The importance of (4.33) is not only that it will allow us to show (4.32) but also that having (4.32),
(4.33) and (4.31), we immediately get (2.21) even with the equality sign.

Hence, we prove (4.33) provided that (Δ) holds. First, in case that Φ∗ and Ψ∗ satisfy the Δ2 condition,
then EX = X and (4.31) can be tested by any τ ∈ X, in particular by j − j0, and (4.33) follows. In
the opposite case, i.e., if Φ and Ψ satisfy the Δ2 condition, then we have from (4.27) and (4.29) that
f ∈ EΦ(Ω) and g ∈ EΨ(Γ). Furthermore, it follows from (4.30) that for all i ∈ N:

∫

Ω

f : (ji − j0) +
∫

Γ

g � (ji · n) =
∫

Ω

∇φ0 : (ji − j0). (4.34)

But now, we can use the convergence results (4.26) and (4.28) (thanks to f ∈ EΦ(Ω) and g ∈ EΨ(Γ))
and let i → ∞ in (4.34) to obtain (4.33). Next, using the facts that ∇φ0 ∈ EΦ(Ω) and j0 ∈ EΦ∗

(Ω) and
(4.26)–(4.29), we can let n → ∞ in (4.24) to deduce

lim
n→∞

⎛

⎝

∫

Ω

f(jn) : jn +
∫

Γ

g(jn · n) � (jn · n)

⎞

⎠

= lim
n→∞

⎛

⎝

∫

Ω

∇φ0 : (jn − j0) +
∫

Ω

f(jn) : j0

⎞

⎠

=
∫

Ω

∇φ0 : (j − j0) +
∫

Ω

f : j0

(4.33)
=

∫

Ω

f : j +
∫

Γ

g � (j · n).

(4.35)
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Now, we follow [3], see also [1]. Let v ∈ L∞(Ω; Rd×N ) and z ∈ L∞(Γ; RN ) be arbitrary. Using the
monotonicity assumptions (A1)∗, we have

0 ≤ lim
n→∞

∫

Ω

(f(jn) − f(v)) : (jn − v) +
∫

Γ

(g(jn · n) − g(z)) � (jn · n − z)

=
∫

Ω

(f − f(v)) : (j − v) +
∫

Γ

(g − g(z)) � (j · n − z),
(4.36)

where we used (4.26)–(4.29) and (4.35). Finally, we closely follow [1,8,9] (see also [3, Lemma 2.4.2.] for
similar procedure for more general monotone mappings). We define the sets

Ωj := {x ∈ Ω; |j(x)| ≤ j}, Γj := {x ∈ Γ; |j(x) · n(x)| ≤ j}.

Then for arbitrary ε > 0, v ∈ L∞(Ω; Rd×N ), z ∈ L∞(Γ; RN ) and arbitrary j ≤ k < ∞, we set

v := jχΩk
− εvχΩj

, z := j · nχΓk
− εzχΓj

in (4.36). Doing so, we obtain (using also the fact that f(0) = g(0) = 0)

0 ≤
∫

Ω

(f − f(jχΩk
− εvχΩj

)) : (j(1 − χΩk
) + εvχΩj

)

+
∫

Γ

(g − g(j · nχΓk
− εzχΓj

)) � ((j · n)(1 − χΓk
) + εzχΓj

)

= ε

∫

Ωj

(f − f(j − εv)) : v + ε

∫

Γj

(g − g(j · n − εz)) � z

+
∫

Ω\Ωk

f : j +
∫

Γ\Γk

g � (j · n).

(4.37)

Thanks to (4.26) and (4.27) and since |Ω\Ωk| → 0, |Γ\Γk| → 0 as k → ∞, we can let k → ∞ in (4.37) to
deduce

0 ≤ ε

∫

Ωj

(f − f(j − εv)) : v + ε

∫

Γj

(g − g(j · n − εz)) � z.

Dividing by ε and letting ε → 0+, using the definition of Ωj and Γj (leading to the fact that j and
also j · n are bounded on the integration domain) and the fact that f and g are Carathédory, we finally
observe

0 ≤
∫

Ωj

(f − f(j)) : v +
∫

Γj

(g − g(j · n)) � z.

Setting

v := − f − f(j)
1 + |f − f(j)| and z := − g − g(j · n)

1 + |g − g(j · n)| ,

we deduce that (4.32) is valid almost everywhere in Ωj (and Γj , respectively) for every j ∈ N. Since
|Ω\Ωj | → 0 and |Γ\Γj | → 0 as j → ∞, it directly follows that (4.32) holds.
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4.4.4. Uniqueness. We start the proof by claiming that (2.20) holds for all τ ∈ BX. Indeed, if Ψ∗ and
Φ∗ satisfy Δ2 condition, then EX = BX and there is nothing to prove. On the other hand if Ψ and Φ
satisfy Δ2 condition, then we use the fact f(j) ∈ LΦ(Ω) = EΦ(Ω) and g(j ·n) ∈ LΨ(Γ) = EΨ(Γ). Hence,
for arbitrary τ ∈ BX, we can find an approximating sequence {τ k}∞

k=1 ⊂ EX such that

(τ k, τ k · n) ⇀
∗ (τ , τ · n) in LΦ∗

(Ω) × LΨ∗
(Γ).

We replace τ by τ k in (2.20) and let k → ∞. Using the above weak star convergence result, we recover
that (2.20) holds also for τ .

Finally, assume that we have two solutions j1, j2 ∈ j0 + BX. Subtracting (2.20) for j2 from that one
for j1, we have for all τ ∈ BX:

∫

Ω

(f(j1) − f(j2)) : τ +
∫

Γ

(g(j1 · n) − g(j2 · n)) � (τ · n) = 0.

Setting finally τ := j1 − j2 ∈ BX and using the strict monotonicity of f , we find that j1 = j2 in Ω,
which finishes the uniqueness part.

4.5. Proof of Theorem 3.1—case (Δ) holds

This proof is analogous to the preceding proof of Theorem 3.3 (i). Again, we approximate the prob-
lem using separability of EP and the Galerkin method. Eventually, we construct an approximation φn

satisfying
∫

Ω

h(∇φn) : ∇q +
∫

Γ

b([φn]) � [q] =
∫

Ω

j0 : ∇q

for all q from some n-dimensional subspace of EP . Then, using the analogous a priori estimate to (4.25)
and very similar limiting procedure, we let n → ∞ and obtain (2.18).

In addition, it is evident that we obtain a weak solution φ ∈ φ0 + BP , which is the last claim of
Theorem 3.1. Furthermore, assume that q ∈ BP is arbitrary. Therefore, it can be approximated by a
weakly star convergent sequence {qn}∞

n=1 ⊂ EP . Since h(∇φ) ∈ EΦ∗
(Ω) and b([φ]) ∈ EΨ∗

(Γ), we can
now use (2.18), where we replace q by qn, and using the weak star convergence, we can conclude that
(2.18) holds even for all q ∈ BP . Finally, assume that we have two solutions φ1, φ2 ∈ φ0 +BP . Then using
(2.18) and the above argument, we can deduce that

∫

Ω

(h(∇φ1) − h(∇φ2)) : ∇q +
∫

Γ

(b([φ1]) − b([φ2])) � [q] = 0.

Hence, setting q := φ1−φ2 ∈ BP in the above identity, we observe with the help of the strict monotonicity
of h that

∇φ1 = ∇φ2 in Ω.

Hence, since φ1 = φ2 on the sets Γ1
D ⊂ ∂Ω1, Γ2

D ⊂ ∂Ω2 of positive measure, we see that φ1 = φ2 in Ω1

and also in Ω2 and the solution is unique in the class φ0 + BP .

4.6. Proof of Theorem 3.3 (ii)

This proof is analogous to the proof of Theorem 3.1 (ii). Indeed, it is easy to see that if we define

I(τ ) :=
∫

Ω

(Ff (j0 + τ ) − ∇φ0 : τ ) +
∫

Γ

Fg(j · n), τ ∈ X,
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we can proceed as before to get a minimum τ ∈ X and the corresponding j := j0 + τ satisfying (2.21).
This minimum is a weak solution by Theorem 3.5.

4.7. Proof of Corollary 3.2

We only need to prove that the nonlinearities defined in (1.2) satisfy all the assumptions of Theorem 3.1.
Namely, we show that (Π) holds and that (Δ) is valid. We define:

Φ(v) = Fh(v) := cosh(|v|) − 1, Ψ(z) = Fb(z) := exp(|z|) − |z| − 1.

It is clear that both functions are N -functions. Moreover, by a direct computation, we have that
∂Fh(v)

∂v
=

sinh |v|
|v| v,

∂Fb(z)
∂z

=
exp(|z|) − 1

|z| z

and thus (Π) holds. Moreover, Fh and Fb are strictly convex. Hence, we use Theorem 3.1 to get the
existence of a weak solution.

To prove also further properties, we show that Ψ∗ and Φ∗ satisfy Δ2 condition and consequently (Δ)
holds as well, and having such property, we can even prove uniqueness of a weak solution. First, one can
easily observe that there exists K > 1 such that

2KΦ(v) ≤ Φ(2v) for all v ∈ R
d×N , |v| ≥ 1,

2KΨ(z) ≤ Ψ(2z) for all z ∈ R
N , |z| ≥ 1.

Then, by [13, Theorem 4.2.], this implies that Φ∗ and Ψ∗ satisfy the Δ2 condition. The proof is complete.
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