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Abstract:We prove that there exists a weak solution to a system governing an unsteady �ow of a viscoelastic

�uid in three dimensions, for arbitrarily large time interval and data. The �uid is described by the incom-

pressible Navier-Stokes equations for the velocity v, coupled with a di�usive variant of a combination of the

Oldroyd-B and the Giesekus models for a tensor B. By a proper choice of the constitutive relations for the

Helmholtz free energy (which, however, is non-standard in the current literature, despite the fact that this

choice is well motivated from the point of view of physics) and for the energy dissipation, we are able to

prove that B enjoys the same regularity as v in the classical three-dimensional Navier-Stokes equations. This

enables us to handle any kind of objective derivative of B, thus obtaining existence results for the class of

di�usive Johnson-Segalman models as well. Moreover, using a suitable approximation scheme, we are able

to show that B remains positive de�nite if the initial datum was a positive de�nite matrix (in a pointwise

sense). We also show how the model we are considering can be derived from basic balance equations and

thermodynamical principles in a natural way.

Keywords: viscoelasticity; viscoleastic �uid; Oldroyd-B; Johnson-Segalman; existence; weak solution; stress

di�usion
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1 Introduction
We aim to establish a global-in-time and large-data existence theory, within the context of weak solutions,

to a class of homogeneous incompressible rate-type viscoelastic �uids �owing in a closed three-dimensional

container. The studied class of models can be seen as the Navier-Stokes system (for which a similar existence

theory is well known, cf. [27]) coupled with a viscoelastic rate-type �uid model that shares the properties

of both Oldroyd-B and Giesekus models and is completed with a di�usion term. Such models are frequently

encountered in the theory of non-Newtonian �uid mechanics, see [19, 21] and further references cited in [19].
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In order to precisely formulate the problems investigated in this study, we start by introducing the nec-

essary notation. For a bounded domain Ω ⊂ R3

with the Lipschitz boundary ∂Ω and a time interval of the

length T > 0, we de�ne the time-space cylinder Q := (0, T) ×Ω and we also set Σ := (0, T) × ∂Ω for a part of its

boundary. The symbol n denotes the outward unit normal vector on ∂Ω and, for any vector z, the vector zτ
denotes the projection of the vector to a tangent plane on ∂Ω, i.e., zτ := z − (z · n)n. Then, for a given density

of the external body forces f : Q → R3

, a given initial velocity v
0
: Ω → R3

and a given initial extra stress

tensor B
0
: Ω → R3×3

>0

(here R3×3

>0

denotes the set of symmetric positive de�nite (3 × 3)-matrices), we look for

a vector �eld v : Q → R3

, a scalar �eld p : Q → R and a positive de�nite matrix �eld B : Q → R3×3

>0

solving

the following system in Q:

div v = 0, (1.1)

∂tv + (v ·∇)v − ν∆v +∇p = 2µa div((1−β)(B − I) + β(B2

−B)) + f , (1.2)

∂tB + (v ·∇)B + δ
1
(B − I) + δ

2
(B2

− B) − λ∆B =

a+1
2

(∇vB + (∇vB)T) + a−1
2

(B∇v + (B∇v)T), (1.3)

and being completed by the following boundary conditions on Σ:

v · n = 0,

−σvτ =
((
ν∇v + ν(∇v)T + 2µa(1−β)(B − I) + 2µaβ(B2

− B)
)
n
)
τ
,

(n ·∇)B = O, (hereO stands for zero 3 × 3-matrix)

(1.4)

and by the initial conditions in Ω:

v(0, ·) = v
0
, (1.5)

B(0, ·) = B
0
. (1.6)

The parameters β ∈ (0, 1), ν, λ, σ > 0, δ
1
, δ

2
≥ 0 and a ∈ R are given numbers.

The main result of this study can be stated as:

Let v
0
and B

0
be such that the initial total energy is bounded. Then, for su�ciently regular f , there exists a

global-in-time weak solution to (1.1)–(1.6).
Although the above result is stated vaguely, we would like to emphasize that we are going to establish

the long-time existence of a weak solution for large data and for three-dimensional �ows. A more precise

and rigorous version of the above result including the correct function spaces and the properly de�ned weak

formulation is stated in the Theorem below, see Section 2.

We complete the introductory part by providing the physical background relevant to the studied problem

and by recalling earlier results relevant to the problem (1.1)–(1.6) analyzed here.

1.1 Mathematical and physical background

The system (1.1)–(1.4) can be rewritten into amore concise formonce one recognizes somephysical quantities.

First of all, let

Dv = 1

2

(∇v + (∇v)T) and Wv = 1

2

(∇v − (∇v)T)

denote the symmetric and antisymmetric parts of the velocity gradient∇v, respectively. Then, looking at the

equation (1.2), we see that (1.2) is obtained from a general form of the balance of linear momentum, namely

ϱ •v = divT + ϱf , (1.7)

once we set the density ϱ = 1 and require that the Cauchy stress tensor T has the form

T = −pI + 2νDv + 2aµ((1 − β)(B − I) + β(B2

− B)). (1.8)

In (1.7),

•v stands for the material time derivative of v, i.e., •v = ∂tv + (v ·∇)v. De�ning similarly the material

time derivative of a tensor B as

•

B = ∂tB + (v ·∇)B,
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we can recognize the presence of a general objective derivative in (1.3). Namely, de�ning

�
B =

•

B − a(DvB + BDv) − (WvB − BWv),

we can rewrite the system (1.1)–(1.3) into a more familiar form as

div v = 0, (1.9)

•v = divT + f , (1.10)

�
B + δ

1
(B − I) + δ

2
(B2

− B) = λ∆B, (1.11)

which is supposed to hold true in Q and which is completed by the initial conditions (1.5), (1.6) ful�lled in Ω
and by the boundary conditions (1.4) on Σ that take the form:

v · n = 0, (1.12)

(Tn)τ = −σvτ , (1.13)

(n ·∇)B = O. (1.14)

We provide several comments regarding (1.8)–(1.11) as well as the boundary conditions (1.12)–(1.14). The

Navier slip boundary condition (1.13) (and in general all boundary conditions allowing the �uid to slip ever

so slightly) has recently attracted lot of attention. It was well documented that in certain situations the

Navier slip boundary conditions are more appropriate than no slip boundary conditions, we refer e.g. to

[12, 20, 23, 25] or [36] and references therein. In addition, it was shown that the Navier slip boundary con-

dition can be understood as an asymptotic limit of no slip boundary conditions in case we consider rough

and highly oscillating boundary, see e.g. [1, 6, 9]. Furthermore, for the classical Navier-Stokes equation or

the Stokes equation, we can say that the available mathematical theory for no-slip boundary condition has

been already “re-proven” for Navier boundary conditions, see e.g. [3] for the existence analysis, [2, 4, 30] for

regularity theory for the Stokes system and [7] for a conditional regularity result for Navier-Stokes system.

The key di�erence and also the main mathematical advantage of the Navier slip boundary conditions is, that

for smooth domains, namely if Ω ∈ C1,1, we can introduce the pressure p as an integrable function, e.g., by

using an additional layer of approximation as in [11], see also [15, 16] or [8] which discuss the treatment of

the pressure in evolutionary models subject to the Navier boundary condition. Nevertheless, since we shall

always deal with formulation without the pressure (see the De�nition), we can also treat the Dirichlet bound-

ary condition, as well as very general implicitly speci�ed boundary conditions see e.g. [12, 13, 36] or [8]. The

Neumann boundary condition for B is considered here only for simplicity and without any speci�c physical

meaning.

A further aspect, whichmakes the above systemmore complicated than theNavier-Stokes equation is the

formof theCauchy stress tensorT as in (1.8). The term−pI+2νDv corresponds to the standardNewtonian�uid

�owmodel with a constant kinematic viscosity ν. The next part of the Cauchy stress, which depends linearly

on B, appears in all the viscoelastic rate-type �uid models - see, e.g., [32, (7.20b), (8.20e)], [24, (6.43e)] or [19,

(43a)]. On the other hand, the addition of the term 2aµβ(B2

− B) is, to our best knowledge, considered here

for the �rst time. The fact that we require that β is positive (and strictly less than 1) plays a key role in the

analysis of the problem, as will be shown below. Note that the linearization of T with respect to B when B is

close to the identity I yields
T = −pI + 2νDv + 2aµ(B − I)

and we recover the standard form of T (after possible rede�nition of the pressure).

The quantity B takes into account the elastic responses of the �uid and the equation (1.11) describes

its evolution in the current con�guration (Eulerian coordinates), just as the velocity v. It is frequent to call

the tensor µ(B − I) the extra stress or conformation tensor and to denote it by τ. More importantly, since

the material derivative of B is not objective, it must be “corrected” and this is the reason, why in (1.11) the

derivative

�
B appears. The parameter a in the de�nition of

�
B determines the type of the objective derivative.

The case a = 1 leads to the upper convected Oldroyd derivative, that has favourable physical properties and
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that leads to a clear interpretation of B within the thermodynamical framework developed in [38], see also

[33–35, 39]. Next, the case a = 0 leads to the corrotational Jaumann-Zaremba derivative and this is the only

case for which the analysis is much simpler than in other cases. Furthermore, if a ∈ [−1, 1], one obtains

the entire class of Gordon-Schowalter derivatives. However, it turns out that the physical properties of these

derivatives are irrelevant for the analysis presented below (except the case a = 0), therefore we may take any

a ∈ R. For a = 1 and λ = 0 we distinguish two cases: if δ
1
> 0 and δ

2
= 0 we obtain the classical Oldroyd-B

model while if δ
1
= 0 and δ

2
> 0 we get the Giesekus model. Next, by considering a ∈ [−1, 1], we obtain

the class of Johnson-Segalman models. If we further let λ > 0, we are introducing di�usive variants of the

previousmodels. It has been observed that including the di�usion term in (1.11) is physically reasonable, see,

e.g., [21] or [19] and references therein.However, up tonow, it has beenunknownwhat precise formshould the

di�usion term take and also whether it actually helps in the analysis of the model. Our main result provides

a partial answer to this question, namely: for β ∈ (0, 1) and with the di�usion term being of the form ∆B (or

more generally, a linear second order operator), the global existence of a weak solution is available.

The reader familiar with the equations describing �ows of the standard Oldroyd-B viscoleastic rate-type

�uid can identify two deviations in the set of equations (1.9)–(1.11) studied hereafter. We provide a few com-

ments on these di�erences.

The �rst deviation concerns the incorporation of the stress di�usion term, i.e. the term −∆B, into the

equations. Following the pioneeringwork of [21] it is clear that a quantity related to |∇B|2 has to be added into

the list of underlying dissipation mechanisms. On the other hand, the precise form in which stress di�usion

should appear dependson the choice of a thermodynamical approachand speci�c assumptions. In fact, using

the thermodynamical concepts as in [32] or [19], one can derive models, where the stress di�usion term takes

the form −B∆B − ∆BB, −B
1

2 ∆BB
1

2
etc., however, we would prefer −∆B simply because it coincides with the

form proposed by [21], and, from the perspective of PDE analysis and numerical approximation, one prefers

to deal with stress di�usion that leads to a linear operator.

The second deviation from usual viscoelastic models consists in the presence of the term (B2

− B) in the

Cauchy stress tensor, see (1.8). This term arises if we slightly modify energy storage mechanism and apply

the thermodynamic approach as developed in [32]. In what follows, we shall give a clear interpretation and a

thermodynamic derivation of our model.

1.2 Thermodynamical derivation of the model

Viscoelastic models with (nonlinear) stress di�usion, but without the termB2

in the stress tensor are derived,

e.g., in [32] and [19] even in the temperature-dependent case. Here, we will brie�y explain the approach in

a simpli�ed isothermal setting (su�cient for the purpose of this study), referring to the cited works for the

derivation in a complete thermal setting and for more details.

First, we postulate the constitutive equation for the Helmholtz free energy in the form

ψ(B) := µ((1 − β)(trB − 3 − ln detB) + 1

2

β|B − I|2), (1.15)

where µ > 0 and β ∈ [0, 1] is a parameter interpolating between two forms of the energy. The choice β = 0

would lead to a standardOldroyd-B di�usivemodel. To our best knowledge, the case β > 0wasnot considered

before in literature. The term

1

2

β|B− I|2, which is newly included in ψ is obviously convex with the minimum

at B = I and depends only on trB and on tr(BB), i.e., on invariants of B, therefore it does not violate any of

the basic principles of continuum physics. Moreover, such an addition does not a�ect the �rst three terms in

the asymptotic expansion of ψ near I, on the logarithmic scale. To see this, letH denote the Hencky logarith-

mic tensor satisfying eH = B (which exists due to the positive de�niteness of B). Using Jacobi’s identity, we

compute that

trB − 3 − ln detB = tr(eH − I −H) = tr(

1

2

H2

+ O(H3

)).

On the other hand, we easily get

1

2

|B − I|2 = 1

2

tr(e2H − 2eH + I) = tr(

1

2

H2

+ O(H3

)),
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hence we also have

(1 − β)(trB − 3 − ln detB) + 1

2

β|B − I|2 = tr(

1

2

H2

+ O(H3

))

and we see that for B being close to identity, the form of ψ is almost independent of the choice of parameter

β and the second part of ψ in (1.15) can be just understood as a correction for large values of B.
Next, we show how the constitutive equation forT (see (1.8)) appears naturally if we start with the choice

of the Helmholtz free energy (1.15) and require that the form of the equation for B is given by (1.11). For the

derivation,we followed theapproachdeveloped in [32] that stems from thebalance equations and requires the

knowledge of how thematerial stores the energy, but we simplify the derivation presented there by assuming

that the density is constant (in fact we set for simplicity ϱ = 1) and hence div v = 0 and the �ow is isothermal,

i.e., the temperature θ is constant as well. Under these assumptions the balance equations of continuum

physics (for linear and angular momenta, energy and for formulation of the second law of thermodynamics)

take the form

•v = divT, T = TT ,
•e = T ·Dv − div je ,
•η = ξ − div jη with ξ ≥ 0,

where e is the (speci�c) internal energy, η is the entropy, ξ is the rate of entropy production, T is the Cauchy

stress tensor and the quantities je, jη represent the internal and the entropy �uxes, respectively. Since the

quantities ψ, e, θ and η are related through the thermodynamical identity

e = ψ + θη,

we can easily deduce from above identities that

θξ = θ •η + div (θjη) = T ·Dv − div(je − θjη) −
•

ψ. (1.16)

To evaluate the last term, we rewrite (1.11) as

−

•

B = −λ∆B − a(DvB + BDv) − (WvB − BWv) + δ
1
(B − I) + δ

2
(B2

− B). (1.17)

Next, it follows from (1.15) that

∂ψ(B)
∂B = J, (1.18)

where J is de�ned as

J := µ(1 − β)(I − B−1) + µβ(B − I).

Consequently, taking the inner product of (1.17) with J we observe that (since BJ = JB, the term with Wv
vanishes)

−

•

ψ = −λ∆B · J − a(DvB + BDv) · J − (WvB − BWv) · J + δ
1
(B − I) · J + δ

2
(B2

− B) · J

= −λ div(∇ψ(B)) − a(DvB + BDv) · J + δ
1
(B − I) · J + δ

2
(B2

− B) · J + λ∇B ·∇J.
(1.19)

To evaluate the terms on the last line, we use the symmetry and the positive de�niteness of the matrix B to

obtain

(B − I) · J = µ(1 − β)|B
1

2

− B−
1

2 |2 + µβ|B − I|2,

(B2

− B) · J = µ(1 − β)|B − I|2 + µβ|B
3

2

− B
1

2 |2,

∇B ·∇J = µβ|∇B|2 − µ(1 − β)∇B ·∇B−1

= µβ|∇B|2 + µ(1 − β)∇B · B−1∇BB−1

= µβ|∇B|2 + µ(1 − β)|B−
1

2∇BB−
1

2 |2.

(1.20)

Similarly, we obtain

a(BDv +DvB) · J =
[
2µa((1 − β)(B − I) + β(B2

− B))
]
·Dv. (1.21)
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Thus, using (1.19)–(1.21) in (1.16), we conclude that

θξ = −div(λ∇ψ(B) + je − θjη)

+

[
T − 2aµ((1 − β)(B − I) + β(B2

− B))
]
·Dv + µλ(β|∇B|2 + (1 − β)|B−

1

2∇BB−
1

2 |2)

+ µ
(
(1 − β)δ

1
|B

1

2

− B−
1

2 |2 + βδ
2
|B

3

2

− B
1

2 |2
)
+ µ
(
((1 − β)δ

2
+ βδ

1
)|B − I|2

)
.

(1.22)

Hence, assuming that the �uxes ful�l

λ∇ψ(B) + je − θjη = 0, (1.23)

and setting (compare with (1.8))

T = −pI + 2νDv + 2aµ((1 − β)(B − I) + β(B2

− B)),

the identity (1.22) reduces to (noticing that −pI ·Dv = −p div v = 0)

θξ = µλ(β|∇B|2 + (1 − β)|B−
1

2∇BB−
1

2 |2) + 2ν|Dv|2 + µ
(
(1 − β)δ

1
|B

1

2

− B−
1

2 |2 + βδ
2
|B

3

2

− B
1

2 |2
)

+ µ
(
((1 − β)δ

2
+ βδ

1
)|B − I|2

)
, (1.24)

which gives the nonnegative rate of the entropy production. Moreover, we have seen how the form of the

Cauchy stress tensor T in (1.8) is dictated by the second line in (1.22). Furthermore, we can also see in (1.24)

(and also in the last line of (1.20)) how the choice of the free energy (1.15) a�ects the entropy production due

to the presence of the di�usive term ∆B in (1.3).

1.3 The concept of weak solution and energy (in)equality

In order to introduce the proper concept of weak solution, we �rst derive the basic energy estimates based

on the observations from the previous section. First, taking the scalar product of (1.10) and v, we deduce the

kinetic energy identity

1

2

∂t|v|2 +
1

2

div(|v|2v) − div(Tv) + T ·Dv = f · v (1.25)

and replacing the termT ·Dv from the equation (1.16), and using then also (1.23) and (1.24), we �nally obtain

∂t(ψ +

1

2

|v|2) + div((ψ +

1

2

|v|2)v) − div(Tv + λ∇ψ(B)) + 2ν|Dv|2

+ µλ
(
β|∇B|2 + (1 − β)|B−

1

2∇BB−
1

2 |2
)

+ µ
(
(1 − β)δ

1
|B

1

2

− B−
1

2 |2 + βδ
2
|B

3

2

− B
1

2 |2 + ((1 − β)δ
2
+ βδ

1
)|B − I|2

)
= f · v.

(1.26)

Integrating the above identity over Ω, using integration by parts and the boundary conditions (1.12)–(1.14),

we obtain

d

dt

∫
Ω

(
1

2

|v|2 + ψ(B)
)
+ 2ν

∫
Ω

|Dv|2 + σ
∫
∂Ω

|v|2 + µλ
∫
Ω

(
β|∇B|2 + (1 − β)|B−

1

2∇BB−
1

2 |2
)

+ µ
∫
Ω

(
(1 − β)δ

1
|B

1

2

− B−
1

2 |2 + βδ
2
|B

3

2

− B
1

2 |2 + ((1 − β)δ
2
+ βδ

1
)|B − I|2

)
=

∫
Ω

f · v.
(1.27)

The identity (1.27) indicates the proper choice of the function spaces for the solution (v,B) and the form of

the (weak) formulation of the solution to (1.1)–(1.6).
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1.4 Notation

In order to formulate the de�nition of a weak solution conveniently, let us �x some notation. By Lp(Ω) and
Wn,p

(Ω), 1 ≤ p ≤ ∞, n ∈ N, we denote the usual Lebesgue and Sobolev space, with their usual norms

denoted as ‖·‖p and ‖·‖n,p, respectively. The trace operator that mapsW1,p
(Ω) into Lq(∂Ω), for certain q ≥ 1,

will be denoted by T. Further, we set W−1,p′
(Ω) = (W1,p

(Ω))*, where p′ = p/(p − 1). We shall use the same

notation for the function spaces of scalar-, vector-, or tensor-valued functions, but we will distinguish the

functions themselves using di�erent fonts such as a for scalars, a for vectors and A for tensors. Also, we do

not specify the meaning of the duality pairing 〈·, ·〉, assuming that it is clear from the context. Moreover, for

certain subspaces of vector valued functions, we shall use the following notation:

C∞n = {w : Ω → R3

: w in�nitely di�erentiable, w · n = 0 on ∂Ω},
C∞n,div = {w ∈ C

∞

n : divw = 0 in Ω},

L2n,div = C∞n,div
‖·‖

2

, W1,2

n,div = C∞n,div
‖·‖

1,2

, W3,2

n,div = C∞n,div
‖·‖

3,2

,

W−1,2

n,div = (W1,2

n,div)
*

, W−3,2

n,div = (W3,2

n,div)
*

.

Occasionally, we shall denote the standard inner products in L2(Ω) and L2(∂Ω) as (·, ·) and (·, ·)∂Ω, respec-

tively. The Bochner spaces of mappings from (0, T) to a Banach space X will be denoted as Lp(0, T; X) with

the norm ‖·‖Lp(0,T;X) = (

∫ T
0

‖·‖pX)
1

p
. If X = Lq(Ω), or X = Wk,q

(Ω), we will write just ‖·‖LpLq , or ‖·‖LpWk,q , respec-

tively. The space C
weak

(0, T; X) ⊂ L∞(0, T; X) denotes a space of weakly continuous functions, i.e., for every

f ∈ C
weak

(0, T; X), every t
0
∈ [0, T] and every g ∈ X* there holds

lim

t→t
0

〈f (t), g〉 = 〈f (t
0
), g〉.

The symbolR3×3

sym
denotes the set of symmetric 3×3 real matrices. Furthermore, byR3×3

>0

we denote the subset

of R3×3

sym
which consists of positive de�nite matrices, i.e., those which satisfy

Az · z > 0 for all z ∈ R3

\ {0}.

2 The de�nition of a weak solution and its existence
In this section we state and prove the main result.

De�nition. Let T > 0 and assume that Ω ⊂ R3

is a Lipschitz domain. Let β ∈ (0, 1), ν, σ, λ > 0, δ
1
, δ

2
≥ 0,

a ∈ R, and f ∈ L2(0, T;W−1,2

n,div), v0 ∈ L
2

n,div(Ω). Furthermore, let B
0
∈ L2(Ω) be such that

−

∫
Ω

ln detB
0
< ∞. (2.1)

Then, we say that a couple (v,B) : Q → R3

×R3×3

>0

is a weak solution to (1.1)–(1.6) if the following hold:

v ∈ L2(0, T;W1,2

n,div) ∩ L
∞

(0, T; L2(Ω)), ∂tv ∈ L
4

3

(0, T;W−1,2

n,div),

B ∈ L2(0, T;W1,2

(Ω)) ∩ L∞(0, T; L2(Ω)), ∂tB ∈ L
4

3

(0, T;W−1,2

(Ω));

For all φ ∈ L4(0, T;W1,2

n,div) we have

T∫
0

〈∂tv,φ〉 +
∫
Q

(v ·∇)v · φ + σ
T∫

0

∫
∂Ω

Tv · Tφ = −

∫
Q

(2νDv + 2aµ((1−β)(B − I) + β(B2

− B))) ·∇φ +

T∫
0

〈f ,φ〉;

(2.2)



508 | Michal Bathory et al., Mathematical analysis of Navier-Stokes-Oldroyd-B fluids

For all A ∈ L4(0, T;W1,2

(Ω)), A = AT , we have

T∫
0

〈∂tB,A〉 +
∫
Q

((v ·∇)B + 2BWv − 2aBDv) ·A +

∫
Q

(δ
1
(B − I) + δ

2
(B2

− B)) ·A + λ
∫
Q

∇B ·∇A = 0. (2.3)

The initial conditions are satis�ed in the following sense

lim

t→0
+

(

∥∥v(t) − v
0

∥∥
2

+

∥∥B(t) − B
0

∥∥
2

) = 0. (2.4)

Moreover, we say that the solution satis�es the energy inequality if, for all t ∈ (0, T):

∫
Ω

(
|v(t)|2
2

+ ψ(B(t))
)
+

t∫
0

(
2ν‖Dv‖2

2

+ σ‖Tv‖2
2,∂Ω

)
+ µλ

t∫
0

(
(1−β)

∥∥∥B− 1

2∇BB−
1

2

∥∥∥2
2

+ β‖∇B‖2
2

)

+ µ
t∫

0

(
(1−β)δ

1

∥∥∥B 1

2

− B−
1

2

∥∥∥2
2

+ βδ
2

∥∥∥B 3

2

− B
1

2

∥∥∥2
2

+ (βδ
1
+ (1−β)δ

2
)‖B − I‖2

2

)

≤

∫
Ω

(
|v

0
|2

2

+ ψ(B
0
)

)
+

t∫
0

〈f , v〉.

(2.5)

The key result of the paper is the following

Theorem. Let T > 0 and assume that Ω ⊂ R3 is a Lipschitz domain. Suppose that β ∈ (0, 1), ν, σ, λ > 0,
δ
1
, δ

2
≥ 0, a ∈ R, and f ∈ L2(0, T;W−1,2

n,div), v0 ∈ L
2

n,div(Ω). Furthermore, let B
0
∈ L2(Ω) be such that (2.1)

holds. Then there exists a weak solution to (1.1)–(1.6) satisfying the energy inequality.

Let us brie�y explain themain di�culties connected with the analysis of the system (1.9)–(1.13) and our ideas

how to solve them. In the standard models where β = 0, to get an a priori estimate for B, the appropriate test

function to take in (1.11) is I −B−1. Then, using (1.9) and (1.10) tested by v, one can eliminate the problematic

terms, such as B · Dv coming from the objective derivative. However, the non-negative quantity to be con-

trolled, which comes from the di�usion term, turns out to be just |B−
1

2∇BB−
1

2 |2 and this provides little to no

information. In particular, the terms∇vB appearing in (1.11) are going to be just integrable and it is unclear

if one can show strong convergence of B. Instead, one would like to test also by B to achieve control over

|∇B|2. But this is not possible, since the resulting term ∇vB · B cannot be estimated without some serious

simpli�cations (such as boundedness of∇v, two or one dimensional setting or small data). Quite remarkably,

this problem is solved simply by adding

1

2

β|B − I|2 into the constitutive form for ψ. More precisely, consid-

ering β ∈ (0, 1), we observe that the appropriate test function in (1.11) is in fact (1 − β)(I − B−1) + β(B − I).
Indeed, the terms from the objective derivative cancel again due to the presence of β(B2

− B) in T. But now,

we also get β|∇B|2 under control, which is much better information than in the case β = 0 and it will imply

compactness of all the terms appearing in (1.10) and (1.11). We have seen above that such amodi�cation of ψ,
and consequently of T, is not ad-hoc and that it rests on solid physical grounds.

The second and also the last major di�culty which we will encounter is how one can justify testing of

(1.11) by B−1 on the approximate (discrete level), where B−1 might not even exist. This we overcome by de-

signing a delicate approximation scheme, which takes into account the smallest eigenvalue of B, and also by

noting that testing (1.11) only by B yields su�ciently strong a priori estimates for the initial limit passage (in

the Galerkin approximation of B).
Up to now, there have been no results on global existence of weak solutions to Oldroyd-Bmodels in three

dimensions, including either the standard, or di�usive variants. The closest result so far is probably [37, The-

orem 4.1], however there it is assumed that δ
2
> 0 and λ = 0 (Giesekus model), whereas we treat also the

case δ
2
= 0, but with λ > 0 (di�usive Oldroyd-B or Giesekus model). Moreover, in [37], only the weak se-

quential stability of a hypothetical approximation is proved. We, on the other hand, provide the complete
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existence proof, including the construction of approximate solutions (which, in viscoelasticity, is generally a

non-trivial task). In the article [28], Lions and Masmoudi prove the global existence in three dimensions, but

only for a = 0 (corrotational case), which is known to be much easier. The local in time existence of regular

solutions for the non-di�usive variants of the models above (λ = 0) is proved in the pioneering work [22,

Theorem 2.4.]. There, also the global existence for small data is shown. In two dimensions, the problem is

solved in [18] in the case λ > 0, δ
1
> 0, δ

2
= 0 (di�usive Oldroyd-B model). There are also global large data

existence results in three dimensions for slightly di�erent classes of di�usive rate-type viscoelastic models,

but under some simplifying assumptions. For example, in [14] and [10], the authors consider the case where

B = bI. This assumption, however, turns (1.11) into a much simpler scalar equation. Moreover, note that if

B = bI, then the equations (1.10) and (1.11) decouple (which is not the case in [14] and [10] since there the con-

sidered constitutive relation for T is more complicated than here). Furthermore, in [29], the authors consider

yet another class of Peterlin viscoelastic models with stress di�usion and prove existence of a global two-

or three-dimensional solution. However, the free energy associated with these models depends only on the

trace of the extra stress tensor. This is a signi�cant simpli�cation, which can even be seen as unphysical. See

also [17] for various modi�cations of Oldroyd-B viscoelastic models, for which an existence theory is avail-

able. Finally, in [5] (see also [26]), the global existence of a weak solution is shown for a certain regularized

Oldroyd-B model (including a cut-o� or nonlinear p−Laplace operator in the di�usive term in B). Thus, one
might argue that since the case β > 0 could be also seen as a regularization of the original model, we are just

proving an existence of a solution to another regularization. However, this argument is not, in our opinion,

correct for several reasons. First of all, the “regularization” β > 0 does not touch the equation (1.11) at all. Sec-

ond, it is not obvious why the nonlinear term β(B − I)2 should have any regularization e�ect. And, perhaps

most importantly, we already showed in Section 1.2 that the model with β > 0 is physically well founded and

worthy of studying in its own right.

Remark. Finally, we close this section with several concluding remarks on possible extensions, but we do

not provide their proofs in this paper.

(i) The Theorem holds also in arbitrary dimensions d > 3 (in d ≤ 2, it is known), however with worse

function spaces for the time derivatives and better for the test functions. Indeed, the only dimension-

speci�c argument in the proof below is in the derivation of interpolation inequalities,which are thenused

to estimate ∂tv and ∂tB. Moreover, all of the non-linear terms in (2.2), (2.3) are integrable for arbitrary d
if the test functions are smooth. In addition, if d = 2, then we can prove the existence of a weak solution

satisfying even the energy equality, i.e., (2.5) holds with the equality sign.

(ii) When Ω has C1,1 boundary, then, in addition, there exists a pressure p ∈ L
5

3
(Q), which appears in (1.2).

Then, the test functions in (2.2) need not be divergence-free if we include the term

∫
Ω p divφ in (2.2). This

follows in a standard way, using the Helmholtz decomposition of v (see, e.g., [8] for details).
(iii) It is possible to replace (1.12), (1.13) by the no-slip boundary condition v = 0 on ∂Ω. Then, we only need

to change the space W1,2

n to W1,2

0

, and so on. However, then it seems that the pressure p can be only

obtained as a distribution (see [8]).

3 Proof of the Theorem
Throughout the proof, we shall simplify notation by assuming

λ = µ = ν = σ = 1

and refer to Section 1.2 for a detailed computation for general parameters. To shorten all formulae, we also

denote

S(A) := (1 − β)(A − I) + β(A2

−A) for A ∈ R3×3

,

R(A) := δ
1
(A − I) + δ

2
(A2

−A) for A ∈ R3×3

.
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The general scheme of the proof is the following: In order to invert the matrix B and to avoid problems

with low integrability in the objective derivative, we introduce the special cut-o� function

ρε(A) :=
max{0, Λ(A) − ε}
Λ(A)(1 + ε|A|3) for A ∈ R3×3

sym
,

where Λ(A) denotes a minimal eigenvalue ofA (whose spectrum is real due to its symmetry)¹. Since eigenval-

ues of a matrix depend continuously on its entries, the function ρε is continuous. Moreover, for any positive

de�nitematrixA there holds ρε(A)→ 1 as ε → 0
+
. We construct a solution by an approximation schemewith

parameters k, l and ε, where k, l ∈ N correspond to the Galerkin approximation for v andB, respectively, and
ε corresponds to the presence of the cut-o� function ρε in certain terms. The �rst limit we take is l → ∞,

which corresponds to the limit in the equation for B. This way, the limiting object B is in�nite-dimensional

and, using the properties of ρε, we prove that B−1 exists. With the help of this information, we derive the en-

ergy estimates that are uniform with respect to all the parameters. Next, we let ε → 0
+
in order to remove the

truncation function and �nally we take k →∞, which corresponds to the limiting procedure in the equation

for the velocity v.

3.1 Galerkin approximation

Following e.g., [31, Appendix A.4], we know that there exists a basis {wi}∞i=1 ofW3,2

n,div, which is orthonormal

in L2(Ω) and orthogonal inW3,2

n,div. Moreover, the projection Pk : L2(Ω)→ span{wi}ki=1, de�ned as²

Pkφ =

k∑
i=1

(φ,wi)wi , φ ∈ L2(Ω),

is continuous in L2(Ω) and also inW3,2

n,div independently of k, i.e.,

‖Pkφ‖2 ≤ C‖φ‖2 and ‖Pkφ‖W3,2

n,div
≤ C‖φ‖W3,2

n,div

for all φ ∈ W3,2

n,div, where the constant C is independent of k. Furthermore, by the standard embedding, we

also have thatW3,2

n,div ↪→ W2,6

(Ω) ↪→ W1,∞

(Ω). Similarly, we construct the basis {Wj}∞j=1 ofW1,2

(Ω), which is

L2-orthonormal,W1,2

-orthogonal and the projection

QlA =

l∑
j=1

(A,Wj)Wj , A ∈ L2(Ω),

is continuous in L2(Ω) and inW1,2

(Ω) independently of l.
Then for �xed k, l ∈ N and ε ∈ (0, 1), we look for the functions vk,lε ,Bk,lε of the form

vk,lε (t, x) =
k∑
i=1

ck,l,εi (t)wi(x) and Bk,lε (t, x) =
l∑
j=1

dk,l,εj (t)Wj(x),

where ck,l,εi , dk,l,εj , i = 1, . . . , k, j = 1, . . . , l, are unknown functions of time, andwe require that vk,lε ,Bk,lε (and

consequently the functions ck,l,εi (t) and dk,l,εj (t)) satisfy the following system of (k + l) ordinary di�erential

equations in time interval (0, T):

d

dt (v
k,l
ε ,wi) + ((vk,lε ·∇)vk,lε ,wi) + 2(Dvk,lε ,∇wi) + (Tvk,lε , Twi)∂Ω

= −2a(ρε(Bk,lε )S(Bk,lε ),∇wi) + 〈f ,wi〉 for i = 1, . . . , k,
(3.1)

1 We set ρε(A) := 0 if Λ(A) = 0.

2 We recall here the de�nition (a, b) :=
∫
Ω ab.
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d

dt (B
k,l
ε ,Wj) + ((vk,lε ·∇)Bk,lε ,Wj) + (ρε(Bk,lε )R(Bk,lε ),Wj) + (∇Bk,lε ,∇Wj)

= 2(ρε(Bk,lε )Bk,lε (aDvk,lε −Wvk,lε ),Wj) for j = 1, . . . , l.
(3.2)

Due to the L2-orthonormality of the bases {wi}∞i=1 and {Wj}∞j=1, the system (3.1)–(3.2) can be rewritten as a

nonlinear system of ordinary di�erential equations for ck,l,εi and dk,l,εj , where i = 1, . . . , k and j = 1, . . . , l,
and we equip this system with the initial conditions

ck,l,εi (0) = (v
0
,wi) and dk,l,εj (0) = (Bε

0
,Wj). (3.3)

Here, Bε
0
is de�ned as

Bε
0
(x) :=

{ B
0
(x) if Λ(B

0
(x)) > ε,

I elsewhere.

Since B
0
(x) ∈ R3×3

>0

for almost every x ∈ Ω, we have that Λ(B
0
(x)) > 0 for almost all x ∈ Ω. Consequently,

using the fact B
0
∈ L2(Ω), we obtain, as ε → 0

+
, that∥∥Bε

0
− B

0

∥∥2
2

=

∫
Λ(B

0
)≤ε

|I − B
0
|2 → 0

Note also that the initial conditions (3.3) can be rewritten as vk,lε (0) = Pkv0 and Bk,lε (0) = QlBε0.
For the system (3.1)–(3.3), Carathéodory’s theorem can be applied and therefore there exists T* > 0 and

absolutely continuous functions ck,l,εi , dk,l,εj satisfying (3.3) and (3.1)–(3.2) almost everywhere in (0, T*). If T*

is the maximal time, for which the solution exists, and T* < T, then at least one of the functions ck,l,εi , dk,l,εj
must blow up as t → T*

−
. But using the estimate presented below (see (3.8) valid for all t ∈ (0, T*)), this will

be seen never to happen. Thus, we can set T* = T.

3.2 Limit l → ∞

In this part, we simplify the notation and denote the approximating solution, constructed in the previous

section, by (vl ,Bl) := (vk,lε ,Bk,lε ). We start by proving estimates independent of l. Since Bl(t) and vl(t) belong
for almost all t to the linear hull of {Wj}lj=1 and {wi}ki=1, respectively, we can use vl instead of wi in (3.1) and

Bl instead ofWj in (3.2) to deduce,

1

2

d

dt ‖Bl‖
2

2

+ ‖∇Bl‖22 = 2a(ρε(Bl)BlDvl ,Bl) − (ρε(Bl)R(Bl),Bl), (3.4)

1

2

d

dt ‖vl‖
2

2

+ 2‖Dvl‖22 + ‖Tvl‖
2

2,∂Ω = −2a(ρε(Bl)S(Bl),Dvl) + 〈f , vl〉, (3.5)

where we used the integration by parts formula and the facts that div vl = 0 and Tv · n = 0. Next, it follows

from the de�nition of ρε, R and S that

ρε(Bl)
(
|S(Bl)| + |R(Bl)||Bl| + |Bl|2

)
≤ C 1 + |Bl|3

1 + ε|Bl|3
≤ C(ε). (3.6)

Here, the notation C(ε) emphasizes that the constant C depends on ε; we keep this notation in what follows.

Summing (3.4) and (3.5) and using the estimate (3.6) to bound the term on the right-hand side, we obtain with

the help of Hölder’s, Young’s and Korn’s inequalities that

d

dt

(
‖vl‖22 + ‖Bl‖

2

2

)
+ ‖Dvl‖22 + ‖Tvl‖

2

2,∂Ω + ‖∇Bl‖
2

2

≤ C(ε) + C‖f‖2W−1,2

n,div
.

After integrating over (0, T) with respect to time, we obtain the following bound:

sup

t∈(0,T)

(
‖vl‖22 + ‖Bl‖

2

2

)
+

T∫
0

(
‖Dvl‖22 + ‖Tvl‖

2

2,∂Ω + ‖∇Bl‖
2

2

)

≤ C(ε) + ‖Pkv0‖22 +
∥∥QlBε0∥∥2

2

+ C
T∫

0

‖f‖2W−1,2

n,div
≤ C(ε),

(3.7)
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where the last inequality follows from the continuity of the projections Pk and Ql and from the assumptions

on data, namely that

‖v
0
‖2
2

+ ‖B
0
‖2
2

+ ‖ln detB
0
‖
1

+ C
T∫

0

‖f‖2W−1,2

n,div
< ∞.

Next, we focus on the estimate for time derivatives. First, it follows from L2-orthonormality of the bases

and the estimate (3.7) that

k∑
i=1

ci(t)2 +
l∑
j=1

dj(t)2 ≤ C(ε). (3.8)

Then, since vl is a linear combination of {wi}ki=1 ⊂ W1,∞

(Ω), we can estimate

‖vl‖L∞W1,∞
≤ ess sup

t∈(0,T)

k∑
i=1
|ci(t)|‖wi‖1,∞ ≤ C(ε, k), (3.9)

and we can deduce from (3.1) and f ∈ L2(0, T;W−1,2

n,div) that

‖∂tvl‖L2W1,∞
≤ C(ε, k). (3.10)

Finally, it follows from (3.2) and (3.7) that (3.10)

‖∂tBl‖L2W−1,2
≤ C(ε, k). (3.11)

Using (3.7), (3.9)–(3.11) and Banach-Alaoglu’s theorem, we can �nd subsequences (which we do not rela-

bel) and corresponding weak limits (denoted with the subscript ε), such that, for l →∞, we get

vl ⇀ vε weakly in L2(0, T;W1,2

n,div), (3.12)

vl
*

⇀ vε weakly

*

in L∞(0, T;W1,∞

(Ω)), (3.13)

∂tvl
*

⇀ ∂tvε weakly

*

in L2(0, T;W1,∞

(Ω)), (3.14)

Tvl ⇀ Tvε weakly in L2(0, T; L2(∂Ω)), (3.15)

Bl ⇀ Bε weakly in L2(0, T;W1,2

(Ω)), (3.16)

∂tBl ⇀ ∂tBε weakly in L2(0, T;W−1,2

(Ω)). (3.17)

Moreover, it follows from (3.12), (3.14), (3.16), (3.17) and from the Aubin-Lions lemma that for some further

subsequences, we have(3.13)(3.15)

vl → vε strongly in L2(Q), (3.18)

Bl → Bε strongly in L2(Q) and a.e. in Q, (3.19)

ρε(Bl)→ ρε(Bε) a.e. in Q.(3.18)(3.19) (3.20)

Using the convergence results (3.12)–(3.20), it is rather standard to let l →∞ in (3.1)–(3.2). Thisway, for almost

all t ∈ (0, T), we obtain

(∂tvε ,wi) + ((vε ·∇)vε ,wi) + 2(Dvε ,∇wi) + (Tvε , Twi)∂Ω
= −2a(ρε(Bε)S(Bε),∇wi) + 〈f ,wi〉

(3.21)

for i = 1, . . . , k, and

〈∂tBε ,A〉 + ((vε ·∇)Bε ,A) + (∇Bε ,∇A)
= 2(ρε(Bε)Bε(aDvε −Wvε),A) − (ρε(Bε)R(Bε),A)

(3.22)

for all A ∈ W1,2

(Ω). Moreover, from (3.16) and (3.17), we get Bε ∈ C(0, T; L2(Ω)) and it is standard to show

that Bε(0, ·) = Bε
0
and vε(0, ·) = Pkv0.
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3.3 Limit ε → 0

In this part we consider the solutions (vε ,Bε) constructed in the preceding section for ε ∈ (0, 1) andwe study

their behaviour as ε → 0
+
. To do so, we �rst have to derive estimates that are uniform with respect to ε.

Following the ideas used before in the derivation of the model, we wish to test (3.22) by the function

Jε := (1 − β)(I − B−1ε ) + β(Bε − I). (3.23)

This test function, however, contains B−1ε and we need to justify that it exists (for any ε ∈ (0, 1)).

3.3.1 Estimates for the inverse matrix, still ε-dependent

First, we prove that Λ(Bε) ≥ ε. For this purpose, let z ∈ R3

be arbitrary and consider³

A = (Bεz · z − ε|z|2)− (z ⊗ z), where (z ⊗ z)ij := zizj (3.24)

in (3.22). Due to the properties of Bε (see (3.16)), we know thatA belongs to L2(0, T;W1,2

(Ω)) and we can use

it as a test function in (3.22). Upon inserting A into (3.22), we integrate the result over (0, τ) with some �xed

τ ∈ (0, T). We evaluate all terms in (3.22) separately. For the time derivative, we have

τ∫
0

〈∂tBε ,A〉 =
τ∫

0

〈
∂t(Bεz · z − ε|z|2), (Bεz · z − ε|z|2)−

〉
=

1

2

∥∥∥(Bε(τ)z · z − ε|z|2)−∥∥∥2
2

−

1

2

∥∥∥(Bε
0
z · z − ε|z|2)

−

∥∥∥2
2

=

1

2

∥∥∥(Bε(τ)z · z − ε|z|2)−∥∥∥2
2

,

(3.25)

where, for the last equality, the de�nition of Bε
0
was used. Furthermore, we obtain

∫
Q

∇Bε ·∇A =

τ∫
0

∫
Ω

∇(Bε − εI) ·∇((Bεz · z − ε|z|2)− (z ⊗ z))

=

τ∫
0

∥∥∥∇(Bεz · z − ε|z|2)−∥∥∥2
2

(3.26)

and ∫
Q

(vε ·∇)Bε ·A =

τ∫
0

∫
Ω

vε ·∇(Bεz · z − ε|z|2)(Bεz · z − ε|z|2)−

=

1

2

τ∫
0

∫
Ω

vε ·∇((Bεz · z − ε|z|2)2−

= −

1

2

τ∫
0

∫
Ω

((Bεz · z − ε|z|2)2− div vε = 0,

(3.27)

integrating by parts and using the fact that div vε = 0 and Tvε = 0. Since

Bεz · z ≥ Λ(Bε)|z|2 a.e. in Q,

3 In this subsection, we use the notation (f )
+
:= max{0, f} and (f )

−
:= min{0, f}.
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we also observe, that

0 ≥ (Λ(Bε) − ε)+(Bεz · z − ε|z|2)− ≥ (Λ(Bε) − ε)+(Λ(Bε) − ε)− |z|2 = 0.

Hence, we get

ρε(Bε)A = O a.e. in Q. (3.28)

Consequently, inserting A of the form (3.24) into (3.22), we see that the right-hand side is identically zero.

Therefore, relations (3.25), (3.26), (3.27) and (3.28) yield

∥∥∥(Bεz · z − ε|z|2)−∥∥∥2
2

(τ) ≤
∥∥∥(Bεz · z − ε|z|2)−∥∥∥2

2

(τ) + 2
τ∫

0

∥∥∥∇(Bεz · z − ε|z|2)−∥∥∥2
2

= 0,

which implies

Bεz · z ≥ ε|z|2 for every z ∈ R3

and a.e. in Q. (3.29)

Thus, we have the following estimate for the minimal eigenvalue of Bε:

Λ(Bε) ≥ inf

0≠z∈R3

Bεz · z
|z|2 ≥ ε.

Therefore, the inverse matrix B−1ε is well de�ned and satis�es

|B−1ε | ≤
C
ε a.e. in Q. (3.30)

Furthermore, since

∇B−1ε = B−1ε Bε∇B−1ε = B−1ε ∇(BεB−1ε ) − B−1ε (∇Bε)B−1ε = −B−1ε (∇Bε)B−1ε ,

we conclude from (3.7) and (3.30), that∫
Q

|∇B−1ε |2 ≤
∫
Q

|B−1ε |4|∇Bε|2 ≤ C(ε).

Hence, the inverse of Bε exists and B−1ε ∈ L2(0, T;W1,2

(Ω)).

3.3.2 Estimates independent of (ε, k)

At this point, we can test (3.22) with Jε de�ned in (3.23). This way, we obtain

〈∂tBε , Jε〉 + ((vε ·∇)Bε , Jε) + (∇Bε ,∇Jε) = 2(ρε(Bε)Bε(aDvε −Wvε), Jε) − (ρε(Bε)R(Bε), Jε).

Next, we evaluate all terms. Here, we follow very closely the procedure developed in Section 1.2, see the

derivation of (1.19) and consequent identities. Since

Jε =
∂ψ(Bε)
∂Bε

,

where ψ is de�ned in (1.15), it is clear that

〈∂tBε , Jε〉 =
d

dt

∫
Ω

ψ(Bε),

((vε ·∇)Bε , Jε) =
∫
Ω

vε ·∇ψ(Bε) = 0.
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Next, recalling (1.20), we get

(ρε(Bε)R(Bε), Jε) =
∫
Ω

ρε(Bε)
(
δ
1
(1 − β)|B

1

2

ε − B
−

1

2

ε |
2

+ (δ
1
β + δ

2
(1 − β))|Bε − I|2 + δ2β|B

3

2

ε − B
1

2

ε |
2

)
,

(∇Bε ,∇Jε) = β‖∇Bε‖22 + (1 − β)‖B
−

1

2

ε ∇BεB
−

1

2

ε ‖
2

2

and due to the fact that BεJε = JεBε we also have

(ρε(Bε)(WvεBε − BεWvε), Jε) = 0,

a(ρε(Bε)(DvεBε + BεDvε), Jε) = 2a(ρε(Bε)Dvε ,BεJε)
= 2a(ρε(Bε)Dvε , (1 − β)(Bε − I) + β(B2

ε − Bε))

= 2a(ρε(Bε)S(Bε),Dvε),

where we used the fact that the trace of Dvε is identically zero. Hence, using A := Jε (de�ned in (3.23)) in

(3.22) and taking into account the above identities, we deduce that

d

dt

∫
Ω

ψ(Bε) + (1 − β)
∥∥∥B− 1

2

ε ∇BεB
−

1

2

ε

∥∥∥2
2

+ β‖∇Bε‖2
2

+ (βδ
1
+ (1 − β)δ

2
)

∥∥∥√ρε(Bε)(Bε − I)∥∥∥2
2

+ (1 − β)δ
1

∥∥∥√ρε(Bε)(B 1

2

ε − B
−

1

2

ε )

∥∥∥2
2

+ βδ
2

∥∥∥√ρε(Bε)(B 3

2

ε − B
1

2

ε )
∥∥∥2
2

= 2a(ρε(Bε)S(Bε),Dvε).

(3.31)

Similarly as in previous section, replacing wi in (3.21) by vε, we get

1

2

d

dt ‖vε‖
2

2

+ 2‖Dvε‖2
2

+ ‖Tvε‖2
2,∂Ω = 〈f , vε〉 − 2a(ρε(Bε)S(Bε),Dvε). (3.32)

Thus, summing (3.31) and (3.32) and integrating the result with respect to time t ∈ (0, τ), we deduce the

identity

1

2

∥∥vε(τ)∥∥2
2

+

∫
Ω

ψ(Bε(τ)) +
τ∫

0

(
2‖Dvε‖2

2

+ ‖Tvε‖2
2,∂Ω + (1 − β)

∥∥∥B− 1

2

ε ∇BεB
−

1

2

ε

∥∥∥2
2

+ β‖∇Bε‖2
2

+ (βδ
1
+ (1 − β)δ

2
)

∥∥∥√ρε(Bε)(Bε − I)∥∥∥2
2

+ (1 − β)δ
1

∥∥∥√ρε(Bε)(B 1

2

ε − B
−

1

2

ε )

∥∥∥2
2

+ βδ
2

∥∥∥√ρε(Bε)(B 3

2

ε − B
1

2

ε )
∥∥∥2
2

)
=

1

2

‖Pkv0‖22 +
∫
Ω

ψ(Bε
0
) +

τ∫
0

〈f , vε〉 ≤
1

2

‖v
0
‖2
2

+

∫
Ω

ψ(B
0
) +

τ∫
0

〈f , vε〉,

(3.33)

where, for the last inequality we used the continuity of Pk, the de�nition of Bε
0
and the fact that ψ(I) = 0.

From (3.33), we get, using Korn’s, Sobolev’s, Hölder’s and Young’s inequalities, that

‖vε‖L∞L2 + ‖vε‖L2L6 + ‖vε‖L2W1,2
+ ‖Bε‖L2W1,2

+ ‖Bε‖L2L6 ≤ C, (3.34)

where the constant C depends only on Ω, v
0
, B

0
and f . Furthermore, the interpolation inequalities yield

‖vε‖L 10

3 L
10

3

+ ‖vε‖L4L3 + ‖Bε‖L 10

3 L
10

3

+ ‖Bε‖L4L3 + ‖Bε‖L 8

3 L4
≤ C. (3.35)

Finally, we focus on the estimate for time derivatives. Letφ ∈ L4(0, T;W3,2

n,div) be such that ‖φ‖L4W3,2
≤ 1.

Then, since vε is a linear combination of {wi}ki=1, we obtain, using (3.21), Hölder’s inequality, (3.33), (3.35) and

W3,2

-continuity of Pk, that
T∫

0

〈∂tvε ,φ〉 ≤ C,

hence

‖∂tvε‖L 4

3 W−3,2

n,div
≤ C. (3.36)

Similarly, by considering A ∈ L4(0, T;W1,2

(Ω)) in (3.22), we get

‖∂tBε‖L 4

3 W−1,2

≤ C. (3.37)
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3.3.3 Limit ε → 0+.

From (3.34), (3.36), (3.37), Banach-Alaoglu’s theorem and the Aubin-Lions lemma, we obtain the existence of

a couple (vk ,Bk) satisfying the following convergence results⁴

vε ⇀ vk weakly in L2(0, T;W1,2

n,div),

∂tvε ⇀ ∂tvk weakly in L
4

3

(0, T;W−3,2

n,div),

Tvε ⇀ Tvk weakly in L2(0, T; L2(∂Ω)),
Bε ⇀ Bk weakly in L2(0, T;W1,2

(Ω)),

∂tBε ⇀ ∂tBk weakly in L
4

3

(0, T;W−1,2

(Ω)),
vε → vk strongly in L3(Q) and a.e. in Q, (3.38)

Bε → Bk strongly in L3(Q) and a.e. in Q. (3.39)

Using (3.39) and letting ε → 0
+
in (3.29), we obtain

Bkz · z ≥ 0 a.e. in Q and for all z ∈ R3

.

Hence Λ(Bk) ≥ 0 and detBk ≥ 0 a.e. in Q. Therefore, using (3.39) again and the continuity of ψ, there exists

(still possibly in�nite) limit

ψ(Bε)→ ψ(Bk) a.e. in Q.

However, since ψ ≥ 0, Fatou’s lemma implies that, for almost every t ∈ (0, T), we have∫
Ω

ψ(Bk)(t) ≤ lim inf

ε→0
+

∫
Ω

ψ(Bε)(t) ≤ C.

Thus, we deduce that ∥∥ψ(Bk)∥∥L∞L1 ≤ C. (3.40)

If there existed a set E ⊂ Q of a positive measure, where Λ(Bk) = 0, then also − ln detBk = ∞ on that set,

which contradicts (3.40). Thus, we have

Λ(Bk) > 0 a.e. in Q. (3.41)

Therefore, it directly follows from the continuity of Λ, that ρε(Bε) → 1 a.e. in Q. Then, since ρε(Bε) ≤ 1, we

further get, by Vitali’s theorem, that

ρε(Bε)→ 1 strongly in Lp(Q) for all p ∈ [1,∞).

Using the established convergence results, it is easy to let ε → 0
+
in (3.21) and (3.22) and obtain, for almost

all t ∈ (0, T), that

〈∂tvk ,wi〉 + ((vk ·∇)vk ,wi) + 2(Dvk ,∇wi) = −(Tvk , Twi)∂Ω − 2a(S(Bk),∇wi) + 〈f ,wi〉

for i = 1, . . . , k and that

〈∂tBk ,A〉 + ((vk ·∇)Bk ,A) + (∇Bk ,∇A) = 2(Bk(aDvk −Wvk),A) − (R(Bk),A)

for all A ∈ W1,2

(Ω). Furthermore, we can take the limit in the estimates (3.33), (3.35), (3.36) and (3.37) using

either theweak lower semi-continuity of norms or, in the termswhich depend onBε, e.g.
∫
Q ρε(Bε)|B

3

2

ε −B
1

2

ε |2,

4 The convergence results (3.38), (3.39) are true in any space Lp(Q), 1 ≤ p <

10

3

, as can be seen from (3.35) and Vitali’s theorem.

The space L3(Ω) is chosen for simplicity; in our proof, we need p > 2.
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we apply (3.41) to conclude the pointwise limit and then use Fatou’s lemma. Thus, inequalities (3.33), (3.35),

(3.36) and (3.37) continue to hold in the same form, but for (vk ,Bk) instead of (vε ,Bε) and with 1 instead of

ρε(Bε). In particular, for almost all t ∈ (0, T), we have

1

2

∥∥vk(τ)∥∥2
2

+

∫
Ω

ψ(Bk(τ)) +
τ∫

0

(
2‖Dvk‖22 + ‖Tvk‖

2

2,∂Ω + (1 − β)
∥∥∥B− 1

2

k ∇BkB
−

1

2

k

∥∥∥2
2

+ β‖∇Bk‖22

+ (βδ
1
+ (1 − β)δ

2
)‖Bk − I‖22 + (1 − β)δ1

∥∥∥B 1

2

k − B
−

1

2

k

∥∥∥2
2

+ βδ
2

∥∥∥B 3

2

k − B
1

2

k

∥∥∥2
2

)
≤

1

2

‖v
0
‖2
2

+

∫
Ω

ψ(B
0
) +

τ∫
0

〈f , vk〉.

The attainment of initial conditions is standard (see the last section for details in a more complicated case).

3.4 Limit k → ∞

Since we start from the same a priori estimates as in the previous section, we follow, step by step, the proce-

dure developed when taking the limit ε → 0
+
. The only di�erence is that the term ρε(Bε) is not present. Thus,

using the density of {wi}∞i=1 inW3,2

n,div, we obtain, after letting k →∞, for almost all t ∈ (0, T), that

〈∂tv,φ〉 + ((v ·∇)v,φ) + 2(Dv,∇φ) = −(Tv, Tφ)∂Ω − 2a(S(B),∇φ) + 〈f ,φ〉 for all φ ∈ W3,2

n,div (3.42)

and that

〈∂tB,A〉 + ((v ·∇)B,A) + (∇B,∇A) = 2(B(aDv −Wv),A) − (R(B),A) for all A ∈ W1,2

(Ω).

Moreover, from theweak lower semi-continuity of norms, we obtain the energy inequality (2.5) for almost

all t ∈ (0, T). Furthermore, the same argument as above implies that B is positive de�nite a.e. in Q. Now

observe that, by Hölder’s inequality and (3.35), all the terms in (3.42) except the �rst one, are integrable for

every φ ∈ L4(0, T;W1,2

n,div) ↪→ L4(0, T; L6(Ω)). Indeed, for example for the non-linear terms, we get∫
Q

|(v ·∇)v · φ| ≤ ‖v‖L4L3‖∇v‖L2L2‖φ‖L4L6

and ∫
Q

|S(B) ·∇φ| ≤ C‖B‖2
L
8

3 L4
‖∇φ‖L4L2 .

Hence, the functional ∂tv can be uniquely extended to ∂tv ∈ L
4

3
(0, T;W−1,2

n,div) and we can use the density

argument to conclude (2.2). Analogously, we obtain (2.3). Hence, it remains to show that (2.5) holds for all

t ∈ (0, T) and that the initial data ful�l (2.4).

3.4.1 Energy inequality for all t ∈ (0, T)

First, we observe, that due to (3.34), (3.36) and (3.37), we have that

v ∈ C
weak

(0, T; L2(Ω)) and B ∈ C
weak

(0, T; L2(Ω)). (3.43)

Next, we notice that the function ψ is convex on the convex set R3×3

>0

. Indeed, evaluating the second Fréchet

derivative of ψ, we get

∂2ψ(A)
∂A2

= (1 − β)A−1 ⊗A−1 + βI⊗ I for all A ∈ R3×3

>0
,
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which is obviously a positive de�nite operator for any β ∈ [0, 1] and consequently,ψmust be convex onR3×3

>0

.

Further, we integrate (2.5) over (t
1
, t

1
+ δ), where t

1
∈ (0, T), and divide the result by δ. Using also an

elementary inequality

t
1∫

0

g ≤ 1δ

t
1
+δ∫

t
1

( t∫
0

g
)
dt

valid for every integrable non-negative g, we get

1

2δ

t
1
+δ∫

t
1

‖v‖2
2

+

1

δ

t
1
+δ∫

t
1

∫
Ω

ψ(B) +
t
1∫

0

(
2‖Dv‖2

2

+ ‖Tv‖2
2,∂Ω + (1 − β)

∥∥∥B− 1

2∇BB−
1

2

∥∥∥2
2

+ β‖∇B‖2
2

+ (βδ
1
+ (1 − β)δ

2
)‖B − I‖2

2

+ (1 − β)δ
1

∥∥∥B 1

2

− B−
1

2

∥∥∥2
2

+ βδ
2

∥∥∥B 3

2

− B
1

2

∥∥∥2
2

)
≤

1

2

‖v
0
‖2
2

+

∫
Ω

ψ(B
0
) +

1

δ

t
1
+δ∫

t
1

τ∫
0

〈f , v〉.

Finally, we let δ → 0
+
. The limit on the right hand side is standard and consequently, if we show that

1

2

∥∥v(t
1
)

∥∥2
2

+

∫
Ω

ψ(B(t
1
)) ≤ lim inf

δ→0
+

1

δ

t
1
+δ∫

t
1

(
‖v‖2

2

2

+

∫
Ω

ψ(B)
)
, (3.44)

then (2.5) will hold for all t ∈ (0, T). To show it, we notice that due to (3.43)

v(t) ⇀ v(t
1
) weakly in L2(Ω) as t → t

1
,

B(t) ⇀ B(t
1
) weakly in L2(Ω) as t → t

1
,

(3.45)

Consequently, due to the weak lower semicontinuity and the convexity of ψ we also have for all t ∈ (0, T)∫
Ω

|v(t)|2 + ψ(B(t)) ≤ C.

Hence denoting by ΩM ⊂ Ω the set where |v(t
1
, ·)| + |B(t

1
, ·)| + |B−1(t

1
, ·)| ≤ M, it follows from the previous

estimate that |Ω\ΩM| → 0 asM →∞. Hence, sinceψ is nonnegative and convex,we have for all t ∈ (t
1
, t

1
+δ)

that ∫
Ω

|v(t)|2
2

+ ψ(B(t)) ≥
∫
ΩM

|v(t)|2
2

+ ψ(B(t))

≥

∫
ΩM

|v(t
1
)|2

2

+ ψ(B(t
1
)) +

∫
ΩM

v(t
1
) · (v(t) − v(t

1
)) +

∂ψ(B(t
1
))

∂B · (B(t) − B(t
1
)).

Since, v(t
1
) and ∂Bψ(B(t1)) are bounded on ΩM, we can integrate the above estimate over (t

1
, t

1
+ δ) and it

follows from (3.45) that

lim inf

δ→0
+

1

δ

t
1
+δ∫

t
1

∫
Ω

|v|2
2

+ ψ(B) ≥
∫
ΩM

|v(t
1
)|2

2

+ ψ(B(t
1
)).

Hence, letting M →∞, we deduce (3.44) and the proof of (2.5) is complete.

3.4.2 Attainment of initial conditions

First, it is standard to show from the construction and from the weak continuity (3.45), that for arbitrary

φ,A ∈ L2(Ω) there holds

lim

t→0
+

(v(t),φ) = (v
0
,φ) and lim

t→0
+

(B(t),A) = (B
0
,A).

(3.46)
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Next, using the convexity of ψ and (3.46) (and consequently weak lower semicontinuity of the corresponding

integral) and letting t → 0
+
in (2.5), we deduce that

‖v
0
‖2
2

+ 2

∫
Ω

ψ(B
0
) ≤ lim inf

t→0
+

∥∥v(t)∥∥2
2

+ 2

∫
Ω

ψ(B(t))


≤ lim sup

t→0
+

∥∥v(t)∥∥2
2

+ 2

∫
Ω

ψ(B(t))


≤ ‖v

0
‖2
2

+ 2

∫
Ω

ψ(B
0
).

(3.47)

We claim that this implies that

‖v
0
‖2
2

= lim

t→0
+

∥∥v(t)∥∥2
2

and

∫
Ω

ψ(B
0
) = lim

t→0
+

∫
Ω

ψ(B(t)).
(3.48)

Indeed, assume for a moment that

‖v
0
‖2
2

< lim inf

t→0
+

∥∥v(t)∥∥2
2

.

But then it follows from (3.47) that ∫
Ω

ψ(B
0
) > lim inf

t→0
+

∫
Ω

ψ(B(t)),

which contradicts (3.46) and convexity of ψ. Consequently, (3.48) holds.
It directly follows from (3.46)

1
and (3.48)

1
that

lim

t→0
+

∥∥v(t) − v
0

∥∥2
2

= 0.

To claim the same result also for B, we simply split ψ as follows

ψ(A) = β
2

|A − I|2 + (1 − β)(trA − 3 − ln detA) =: βψ
1
(A) + (1 − β)ψ

2
(A).

Similarly as above, it is easy to observe thatψ
1
aswell asψ

2
are convex on the set of positive de�nitematrices.

Therefore, (3.48)
2
and (3.46)

2
imply∫

Ω

|B
0
− I|2 = 2

∫
Ω

ψ
1
(B

0
) = 2 lim

t→0
+

∫
Ω

ψ
1
(B(t)) = lim

t→0
+

∫
Ω

|B(t) − I|2,

∫
Ω

ψ
2
(B

0
) = lim

t→0
+

∫
Ω

ψ
2
(B(t)).

(3.49)

Finally, (3.46) and (3.49)
1
lead to

lim

t→0
+

∥∥B(t) − B
0

∥∥2
2

= lim

t→0
+

∥∥
(B(t) − I) + (I − B

0
)

∥∥2
2

= lim

t→0
+

∥∥B(t) − I∥∥2
2

+ ‖B
0
− I‖2

2

− 2

∫
Ω

(B(t) − I) · (B
0
− I)


= 0,

which �nishes the proof of (2.4) and consequently also the proof of the Theorem.
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