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Abstract
This paper focuses on the so-called weighted inertia-dissipation-energy vari-
ational approach for the approximation of unsteady Leray–Hopf solutions of
the incompressible Navier–Stokes system. Initiated in (Ortiz et al 2018 Non-
linearity 31 5664–82), this variational method is here extended to the case of
non-Newtonian fluids with power-law index r � 11/5 in three space dimen-
sion and large nonhomogeneous data. Moreover, boundary conditions are not
imposed on some parts of boundaries, representing, e.g., outflows. Correspond-
ingly, natural boundary conditions arise from the minimisation. In particular,
at walls we recover boundary conditions of Navier-slip type. At outflows and
inflows, we obtain the condition − 1

2 |v|2n + Tn = 0. This provides the first
theoretical explanation for the onset of such boundary conditions.
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1. Introduction

In this work, we are interested in a variational resolution technique of the incompressible
Navier–Stokes system by means of the so-called weighted inertia-dissipation-energy (WIDE)
functional approach [63, 66].

We consider the unsteady flow of an incompressible fluid through a generalised channel
Ω with inlets ΓD, walls ΓN, and outlets Γi

F, i = 0, . . . , n, as depicted in figure 1. The flow is
modelled in the bulk by the incompressible Navier–Stokes system

div v = 0, ∂tv + v · ∇v − div S(Dv) +∇p = f , (1.1)

where S describes the constitutive relation between the Cauchy stress tensor and the symmetric
velocity gradient Dv := 1

2 (∇v + (∇v)T).
The main focus of this paper is to show that weak solutions to this system can be obtained

as limits as ε→ 0+ of minimisers of the WIDE functionals
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Figure 1. A two-dimensional example of the domain Ω.

Iε(v) =
∫ ∞

0
e−

t
ε

∫
Ω

(ε
2
| ◦
v |2 − f · v

)
dt

+

∫ ∞

0
e−

t
ε

(∫
Ω

∫ 1

0
Sε(λDv) · Dv dλ+

∫
ΓN

∫ 1

0
sε(λv) · v dλ

)
dt, (1.2)

when minimised over whole trajectories satisfying only the constraints

div v = 0, v|ΓD = vD, v|ΓN · n = 0,
∫
Γi

F

v · n = Fi, (1.3)

for some given (inflow) data vD and some given net flux rates Fi through Γi
F, i = 0, 1, . . . , n.

The symbol
◦
v denotes a kind of material derivative defined by

◦
u := ∂tu + rot u × u = ∂tu + u · ∇u −∇(

1
2
|u|2). (1.4)

Here, rotv = ∇× v, i.e., (rotv)i =
∑3

j,k=1εi jk∂ jvk, where εi jk is the Levi-Civita symbol. Fur-

ther, the symbol n is the outward normal vector on ∂Ω. In fact,
◦
u can be replaced by the usual

material derivative
•
u := ∂tu + u · ∇u in some specific cases, as explained below. Moreover,

the function s is an analogue of S at the boundary, modelling the friction forces on ΓN. The
functions Sε and sε approximate S and s, respectively, by improving their asymptotic growth.

The relation between the minimisation of the WIDE functional Iε and the Navier–Stokes
system is revealed by formally computing the Euler–Lagrange equation of Iε, that is, by assum-
ing smoothness. Let vε minimise Iε in some reasonable set of trajectories obeying (1.3) and
compute the Gateaux derivative of Iε with respect to v in a direction ϕ, which does not have
fixed boundary values on ΓN and ΓF. Via integration by parts (more precisely, by the Stokes
theorem) this leads to

◦
v ε − ε∂t

◦
v ε + ε

◦
v ε × rotvε + ε rot(vε ×

◦
v ε) − div Sε(Dvε) +∇qε

+ (Sε(Dvε)n + sε(vε))τ |ΓN + (εvε ×
◦
v ε × n − qεn + Sε(Dvε)n)|ΓF = f , (1.5)
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where qε is the Lagrange multiplier corresponding to the constraint divvε = 0. Here, the sub-
script τ denotes the tangential part of a vector on ∂Ω, i.e., wτ :=w − (w · n)n = n ×w × n.

System (1.5) is of second order in time. In fact, the occurrence of the term −ε∂t
◦
v ε shows

the elliptic-in-time character of (1.5). Formally taking the limit ε→ 0+ then leads to

◦
v +∇q − div S(Dv) + (S(Dv)n + s(v))τ |ΓN + (−qn + S(Dv)n)|ΓF = f , (1.6)

which, using (1.4), divv = 0, and defining p := q + 1
2 |v|2, can be rewritten as

∂tv + v · ∇v +∇p− div S(Dv) + (S(Dv)n + s(v))τ |ΓN

+ (−pn − 1
2
|v|2n + S(Dv)n)|ΓF = f . (1.7)

Thus, for ε→ 0+ we recover the Navier–Stokes equation

∂tv + v · ∇v +∇p− div S(Dv) = f (1.8)

in Ω. In addition, identity (1.7) delivers the following information at the boundary:

(S(Dv)n + s(v))τ |ΓN + (−pn − 1
2
|v|2n + S(Dv)n)|ΓF = 0.

These, together with the forced boundary conditions (1.3), can be rewritten as

v = vD on ΓD, (1.9)

(s(v) + S(Dv)n)τ = 0, v · n = 0 on ΓN, (1.10)

−pn − 1
2
|v|2n + S(Dv)n = cin,

∫
Γi

F

v · n = Fi on Γi
F, (1.11)

for some constants ci, i = 0, . . . , n. Note that, if there is more than one outflow, these constants
cannot not be fixed a priori as they are given, e.g., by

ci =
1

|Γi
F|

∫
Γi

F

(−p− 1
2
|v|2 + S(Dv)n · n), i = 0, . . . , n, (1.12)

provided that the integrals are well-defined. In other words, these arise as natural boundary
condition on ΓN and Γi

F and are automatically selected by the minima of Iε.
We have formally checked that the minimisation of Iε corresponds to an elliptic-in-time

regularisation of the incompressible Navier–Stokes system. Such regularisations in the setting
of linear and nonlinear parabolic systems are quite classical and have already been considered
in [33, 47, 55], especially as tools for tackling regularity issues. The reader is referred to the
classical monograph [50] for an account of results in the linear setting. The Navier–Stokes sys-
tem has also been investigated by elliptic-in-time regularisation [48, 49], in a setting however
which does not admit a variational structure.

The application of the WIDE variational approach to incompressible Navier–Stokes has
been initiated in [56]. There, no-slip boundary conditions are imposed on the whole boundary
∂Ω and the fluid is assumed to be Newtonian. The present paper extends the reach of [56] by
allowing for in- and outlets, by considering general, nonhomogeneous boundary conditions,
and by allowing non-Newtonian effects in the fluid.
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The possibility of dealing with nonhomogeneous boundary conditions, especially with the
outflow boundary condition (1.11), is significant with respect to applications, see [29] and
references therein. To the best of our knowledge, conditions (1.11) are however still missing a
thorough physical justification. They however arise as natural conditions from the minimisation
of Iε. In this sense, we provide here a variational justification of boundary conditions (1.11).

The scope of the paper is to make the above formal argument rigorous: under suitable
assumptions on boundary and initial data, we prove that the minimisers of Iε over trajecto-
ries constrained by (1.3) converge weakly for ε→ 0+ (up to subsequences) to a Leray–Hopf
solution [67] of the Navier–Stokes system with boundary conditions (1.9)–(1.11). As men-
tioned, the accent is here not on existence, which for this system is already known, see [15,
41], but on the variational charaterization of natural boundary conditions.

The structure of the paper is as follows. We collect some detail on the physical setting of the
problem and on the WIDE functional approach in section 2. Notation and assumptions are then
presented in section 3. The statement of our main result, theorem 1, is in section 4, where we
also record a collection of remarks in order to put the statement in context. Section 5 eventually
contains the proof of theorem 1.

2. Physical motivation

Before we proceed with the rigorous mathematical treatment, let us elaborate on the physical
meaning of the whole procedure and its relation with the existing theory.

In figure 1, the set Ω is a representative of an open bounded subset of Rd, d � 2, whose
Lipschitz boundary ∂Ω is divided into three different parts:

ΓD A Dirichlet boundary condition is prescribed here. This can model an adhe-
sive boundary (no-slip), or (more importantly) it represents a prescribed
inflow in the nonhomogeneous case.

ΓN This set represents the impermeable walls, where v · n = 0. No condition
is imposed in the tangential direction a priori.

Γi
F The fluid passes freely through this boundary, only the corresponding net

flux must be equal to a given amount, expressed by a function Fi of time.
As such, this represents an artificial boundary, such as outlet or inlet, where
nothing is known a priori about the flow, except for the net flux. Note that
due to the incompressibility, it is enough to prescribe n out of n + 1 values
of Fi, for instance, those for i = 1, . . . , n.

The sets ΓD, ΓN, and Γi
F, i = 0, 1, . . . , n, are open, but possibly not connected (in order to

allow multiple walls, inflows/outflows with shared flux rate etc). However, for simplicity we
shall assume that they consist of a finite number of connected components. Of course, it is
possible to simplify this very general setting by omitting certain types of boundaries. We keep
generality here, nevertheless assuming that the boundary setting allows for a corresponding
Poincaré inequality in Ω.

2.1. The problem of outflow boundary conditions

Finding a reasonable outflow boundary condition for a flow of an incompressible fluid through
a channel is a longstanding problem, which is obviously of great importance in numerics and
applications. On the one hand, some outflow boundary condition seems to be required in order
to make the problem well-posed. On the other hand, usually no a priori information is available
at the outflow. Consider for example, the flow in a section of a pipe. One would formulate the
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outflow boundary condition by trying to replicate the flow behaviour as if the pipe was a section
of a much longer pipe, an idealisation which is often interpreted as the upscaling of the size
of the system. To this day, there is still no satisfactory theory dealing with this problem. Most
of the existing mathematical theories of (incompressible) fluids consider internal flows only,
an assumption that is actually very rarely met in reality. This is in a sharp contrast with the
numerical simulations of the incompressible flow, where several types of outflow boundary
conditions are used.

Starting from [26], where the so-called do-nothing boundary condition

−pn + ν(∇v)n = 0 on Γ0
F, ν > 0, (2.1)

was introduced for the first time, many outflow boundary conditions have been proposed. All
these can be roughly divided into two classes:

(A) Outflow boundary conditions that are made to fit the geometry of the problem (exper-
iment) at hand. This leads to no versatility of application and usually also to poor
mathematical properties.

(B) Outflow boundary conditions that are guessed, based on the required mathematical prop-
erties (such as the validity of the energy estimate, controllable backward flow etc).

Although the do-nothing boundary condition (2.1) is often deemed to be natural (since
it eliminates the whole boundary term in the variational formulation of the Navier–Stokes
equations), this condition is actually a canonical representative of the class (A). Indeed, this
condition is compatible with a Poiseuille flow through a straight channel. This is however the
effect of the term (∇v)n, which vanishes if the outlet is perpendicular to the direction of the
flow, clearly a very geometry-dependent property. The reader is in fact referred to [29] for
some prototypical examples, where (2.1) leads to unphysical flows. We also remark that no
energy estimate for standard weak solutions of the Navier–Stokes system with (2.1) imposed
on a part of the boundary is known, and hence no corresponding large-data, global-in-time
existence theory is available.

The outflow boundary conditions of class (B) allow to control the unsigned term |v|2v · n
on the outlet, hence giving an energy estimate. The outflow boundary conditions

−1
2
|v|2n − pn + ν(∇v)n = 0 or − 1

2
min(0, v · n)v − pn − 2ν(Dv)n = 0,

studied, e.g., in [12, 29], or [13], are typical representatives of class (B). These are also particu-
lar cases of the class of energy-preserving boundary conditions discovered and studied in [15]
or more recently in [54] using a different approach. In these works it is also shown that some
of these boundary conditions may produce reliable numerical results with respect to experi-
ments, even in the case of a turbulent flow. Unfortunately, the approach based on [15] or [54]
provides no physical motivation for such boundary conditions. This indeed presents a problem
since class (B) is actually huge (basically due to the incompressibility constraint, cf [42]) and
different outflow boundary conditions can lead to dramatically different flow characteristics,
at least near the outlet. What is seemingly missing is a specific selection criterion.

2.2. An optimisation problem in order to qualify boundary conditions

In this work, we attack the problem of outflow boundary conditions by a rather unorthodox
method, that has been so far used only in [9] to derive the boundary conditions of the do-
nothing type for the stationary Stokes system. Here, we model the flow by the more appropriate
unsteady Navier–Stokes equations and we also consider that the fluid is non-Newtonian (for
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example, we allow for the dependence of the viscosity on the shear rate). The underlying math-
ematical idea is that variational (weak) formulations of PDEs (which are also physically more
natural) may implicitly encode boundary conditions if the test functions have enough freedom
near the boundary. This leads to looking for a solution in some large space with unspecified
boundary conditions. It thus seems natural to reformulate the problem as an optimisation in
such a space. Choosing an appropriate functional I to minimise is, of course, a non-trivial task.
Still, in case of the dissipative systems such as the Navier–Stokes equations, the energy dissipa-
tion itself may serve as a good candidate. In fact, this provides a possible physical explanation
and a selection criterion for the obtained (outflow) boundary conditions: they are such that the
corresponding flow dissipates the least amount of energy, in some sense. This approach has
several other advantages. Firstly, if the functional I is indeed related to the physical energy,
then one readily gets an energy estimate and, consequently, the existence of a (weak) solution
follows. This is not in contradiction with the lack of an energy estimate for (2.1) since we are
able to derive (2.1) by our method only for certain shear-thickening fluids, cf (4.18) below.
Another motivation for prescribing the outflow boundary conditions in such an implicit way
can be found in [57]. There, it is argued that just by applying a finite-element discretisation to
the variational formulation of the system with the so-called no boundary condition, one implic-
itly prescribes some outflow boundary conditions that turn out to possess superior numerical
properties. See also [27, 60] for an explicit resolution of such boundary conditions in 1D.

Adapting the idea of [9] to our setting is not a trivial task. Indeed, we need to tackle
the additional problems of adding the time evolution and of the intrinsic nonlinearity of the
Navier–Stokes equation (which cannot be easily treated as a constraint). It turns out that
both these issues can be solved by a clever choice of the functional I, whose Euler–Lagrange
equations coincide (in the bulk) with the unsteady Navier–Stokes system in some specific
limiting sense.

2.3. The WIDE functional

As already remarked in the introduction, the Euler–Lagrange equation (1.5) of the WIDE func-
tional Iε is nothing but an elliptic-in-time regularisation of the original Navier–Stokes system
(1.1).

The use of WIDE variational approach can be tracked back at least to Ilmanen [31], who
used it to tackle existence and partial regularity of the Brakke mean-curvature flow of varifolds.
An application to existence of periodic solutions for gradient flows is given by Hirano [30].
The variational nature of elliptic regularisation is at the core of [23, problem 3, p 487] of the
classical textbook by Evans. Two examples of relaxation related to micro-structure evolution
have been provided in [17] and the case of mean-curvature evolution of Cartesian surfaces
is in [65]. The analysis of the WIDE approach for abstract gradient flows for λ-convex and
nonconvex energies is in [6, 52] in the Hilbertian case and in [61, 62] in the metric case.
Melchionna [38] extended the theory to classes of nonpotential perturbations and Bögelein
et al [10] used this variational approach to prove the existence of variational solutions to the
equation ut −∇ · f (x, u,∇u) + ∂u f (x, u,∇u) = 0 where the field f is convex in (u,∇u).

Doubly nonlinear parabolic evolution equations have been tackled by the WIDE variational
formalism as well. The first result in this direction is by Mielke and Ortiz [40], where the
case of rate-independent processes is addressed. The corresponding time discretisation has
been presented in the subsequent [51] and an application to crack-front propagation in brittle
materials is in [34]. The rate-dependent case has been analysed in [1–5]. See also [35] for a
stability result via Γ-convergence [18, 39] for an application to the study of symmetries of
solutions.
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In the dynamic case, De Giorgi conjectured in [21] that the WIDE functional procedure
could be implemented in the setting of semilinear waves. This has been ascertained in [66] (for
the finite-time case) and by Serra and Tilli [63] (for the infinite-time case). The possibility of
following this same variational approach in other hyperbolic situations has also been pointed
out in [21]. Indeed, extensions to mixed hyperbolic-parabolic semilinear equations [36], to
different classes of nonlinear energies [37, 64], and to nonhomogeneous equations [68, 69]
are also available. The validity of the WIDE approach to the wave equation in time-dependent
domain [19], dynamic perfect plasticity [20]. Eventually, the incompressible Navier–Stokes
system has been tackled in [56].

We build on the work [56], where it is shown that the Navier–Stokes equations can be
obtained as limit of Euler–Lagrange equations of minimisers of certain WIDE functionals,
constrained to v = 0 on the boundary. Here, we remove this constraint and, in a sense, we leave
to the functional to decide which boundary condition is optimal. Moreover, we also allow the
non-Newtonian effects both in the bulk and on the boundary ΓN. This leads to the functional
Iε defined in (1.2). The positive number ε tends to zero and it parametrises the weight e−

t
ε ,

which dampens the impact of the future evolution on a current state of the given system. The
function f represents a given external body force density, such as gravity. Further, the function
S : R3×3

sym → R
3×3
sym represents the stress–strain relation and the function Sε is given by

Sε(A) :=S(A) + εσ4|A|2A + εσq|A|q−2A, σ4, σq > 0, q > 1. (2.2)

The corresponding integral in the definition of Iε is the amount of the dissipated energy due to
internal friction. We postpone the formulation of precise assumptions on S to the next section,
but for the time being, the reader may think of, e.g., the Ladyzhenskaya model

S(A) := 2(σ
2

r−2
2 + σ

2
r−2
r |A|2)

r−2
2 A, σ2, σr > 0, r > 2, (2.3)

which obviously satisfies

S(A) · A � σ2|A|2 + σr|A|r

being actually a canonical representative of the class of models that is considered later. In
the special case r = 2, it is assumed that S is linear, i.e., S(A) = 2σ2A, corresponding to the
classical Navier–Stokes model. The nonlinear model (2.3) would be relevant also for 1 < r <
2. This is indeed the case of shear thinning fluids. Note however that the range 1 < r < 2
is excluded from our analysis. The presence of ε > 0 in Sε further improves its asymptotic
growth. This helps us in several places to deal with the convective term in the equation. The
parameters σ2, σr, σ4, and σq can be interpreted as certain generalised kinematic viscosities
with units [m2 s−1], [m2 sr−3], [m2], and [m2 sq−4], respectively. The integrals with respect to
λ in the definition of Iε are just potentials for the functions Sε and sε, see (3.2) below. These
are used to model the viscous forces within the fluid and the friction forces on the wall ΓN.
The mathematical role of the functions s and sε is completely analogous to that of S and Sε,
respectively, and we shall impose

sε(u) := s(u) + ερ4|u|2u + ερq|u|q−2u, ρ4, ρq > 0, q > 1, (2.4)

where, for the present time, we choose

s(u) := 2(ρ
2

r−2
2 + ρ

2
r−2
r |u|2)

r−2
2 u, ρ2, ρr > 0, r > 2. (2.5)
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We do not claim that Iε is easy to justify physically. At least some of its terms however bear
a clear physical meaning. First of all, the term − f · v obviously corresponds to the work done
by external body forces. Secondly, note that∫

Ω

∫ 1

0
Sε(λDv) · Dv dλ+

∫
ΓN

∫ 1

0
sε(λv) · v dλ =

∫
Ω

T · Dv −
∫
ΓN

Tn · v,

is the amount of dissipated energy in Ω in some time instant by a non-Newtonian fluid obeying
the constitutive relation T = −pI+

∫ 1
0 Sε(λDv) dλ in Ω and the boundary condition (Tn)τ =

−
∫ 1

0 sε(λv)τ dλ on ΓN of the Navier-slip type, where T is the Cauchy stress tensor and p is the

pressure. Finally, the term ε| ◦
v |2 represents the magnitude of certain inertial forces scaled by

the parameter ε > 0.
We remark that ε has units of time and it models a certain future-time horizon that is still

taken into account to get information about the present state. The causality is thus recovered
only in the limit ε→ 0+; we refer to [56] for a detailed discussion. The parameter ε has also
a secondary role as it introduces additional dissipation via Sε and sε, thus stabilising the func-
tional Iε. Similarly as in [56], we choose to work on the infinite time interval (0,∞), which
avoids prescription of the terminal condition for velocity. This would be otherwise neces-
sary since the Euler–Lagrange equation corresponding to Iε is of the second order in time.
To summarise, compared to the WIDE functional considered in [56], we make four important
changes:

(a) We remove the constraint v = 0 on ∂Ω and include friction on ΓN.
(b) We modify the inertial term by considering

◦
v instead of

•
v := ∂tv + (∇v)v, in order to

have the property

◦
v · v = ∂t(

1
2
|v|2). (2.6)

This identity is unaffected by the boundary conditions and it is crucial for obtaining an
energy estimate for the solution of Euler–Lagrange equation of Iε. It seems that our method
works for the standard form of the inertial term | •

v |2 only if r > 3, leading to simpler
outflow boundary conditions, without the corrector 1

2 |v|2n.
(c) We develop the whole theory for certain non-Newtonian fluids with nonlinear dependence

of the stress on strain, both in the bulk and on the boundary.
(d) We use a different stabilisation term, which admits a certain physical interpretation. Note

that the aim of stabilising Iε is that of possibly obtaining information on |∂tv|2 and

|rotv × v|2, starting from bounds on | ◦
v |2. This can be achieved by many different

choices. It is an open question whether one can obtain similar results without any sta-
bilisation of the WIDE functional, cf [56].

2.4. Interpretation of (1.10) and (1.11)

Let us return to the boundary conditions (1.10) and (1.11) from the minimisation of Iε.
Relation (1.10) just prescribes a condition of the Navier-slip type on the impermeable part

of the boundary ΓN. The standard Navier-slip corresponds to the case where r = 2 and s is
linear.

It is interesting to note that the first identity in (1.11) is strikingly similar to the stationary
Navier–Stokes equation

−∇p− div(v ⊗ v) + div S(Dv) = 0.
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This is actually quite intuitive since the outlet is just an abstract boundary,where nothing should
happen to the flow, and therefore the equation that holds there should be just a restriction of the
equation that is satisfied by the flow in the bulk. Moreover, since (1.11) is obviously nonlinear,
it cannot be easily treated as a constraint, unlike the usual do-nothing boundary conditions. This
suggests that the outflow boundary conditions should be perceived as a special kind of PDEs
on the outlet boundary. Then, since we work with weak solutions, it is not at all surprising that
we are able to identify the outflow boundary conditions only in a weak sense. This has been
also observed in [12] for a slightly different type of outflow boundary condition. The analogous
remark actually applies also to the tangential part of the Navier-slip-type boundary condition
(1.10).

Without the corrector 1
2 |v|2n, relation (1.11) is sometimes called constant traction boundary

condition (cf [45]), which is just the do-nothing boundary condition (2.1), but for the sym-
metric part of the velocity gradient. As we shall see, we have the freedom to replace Dv in
the definition of Iε by other types of gradients, leading, for example, to boundary conditions
involving ∇v rather than Dv. However, this is at expense of losing the physical meaning of
the dissipation terms in Iε because of the possible failure of material frame indifference.

It has been observed experimentally in [29] that the correction 1
2 |v|2n on the outflow bound-

ary has a positive effect on the flow characteristics. So far it has been unclear whether the
boundary conditions such as (1.11) can be somehow derived, or if they are completely artifi-
cial, see the discussion in [41]. Our result suggests, that a certain physical justification may
actually be offered. On the other hand, in [58] it is argued that the outflow boundary condition

−pn − 1
2
|v|2n + ν(∇v)n = 0 on Γ0

F, (2.7)

(which is just a version of (1.11) with the full velocity gradient and renormalised pressure
constant) is unphysical since it does not allow the Poiseuille flow in a straight cylindrical pipe
(the streamlines are bent inwards near the outlet, see the figures in [58, figure 4(c)] or [70]).
This is certainly true if the outlet is flat, however, one has the freedom of prescribing (1.11)
on a curved outlet boundary (which is just an artificial interface, after all). This can partially
compensate for the additional term 1

2 |v|2n, but not completely. In fact, choosing a suitable
shape of the outlet boundaries should be probably seen as a part of the whole optimisation
problem. For simplicity however, in this work we assume that the outflow boundaries are fixed
a a priori.

2.5. On the pressure and the constants ci

Let us provide more insight into the redefinition of the pressure, that was made from (1.6) to
(1.7). It is well known that, in case of no inflows/outflows, i.e., if v · n = 0 on ∂Ω, the pressure
can be completely eliminated from the Navier–Stokes equations by the Leray projection. This
happens because

∫
Ω∇p ·ϕ = 0 whenever divϕ = 0 and ϕ · n = 0 on ∂Ω. Consequently, any

substitution of the type p(t, x) = p̃ (t, x, v(t, x)) does not change the problem. This is in general
no longer true if v · n �= 0. Indeed, whenever the boundary condition involves pressure (and
we know it will, cf (1.11)), that pressure must correspond to the pressure appearing under the
gradient operator in the Navier–Stokes equation.

It is a well known fact in the modelling of internal flows of incompressible fluids that the
pressure is determined only up to a constant (in space). This is immediately seen from (1.8).
We wish to point out that, although the outflow boundary condition (1.11) involves pressure, it
is actually invariant with respect to the shift of p by a constant due to (1.12), and therefore the
whole system (1.8)–(1.11) retains the same property. This is in agreement with the physical
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intuition that varying the pressure by a same amount at all points of an incompressible fluid
does not affect the flow, and there seems to be no reason why the presence of outflows should
change this fact, since one can reasonably assume that the same fluid occupies the space also
behind the outlet. Thus, one always has the freedom to impose a single additional condition
on p, such as the value at a point, an integral average over some subdomain etc, provided that
these quantities can be defined.

There is an interesting analogy between the pressure p and the constants ci. While p is a
Lagrange multiplier to the constraint divv = 0, the constants ci are Lagrange multipliers cor-
responding to

∫
Γi

F
v · n = Fi, i = 0, . . . , n. Physically, constants ci represent certain generalised

pressure drops (cf [29]) and they can all be shifted by a common constant that is incorporated
in the pressure p, without affecting the velocity v. It also seems possible to treat both p and ci

as unknowns of the system and compute them implicitly by minimising the functional

Jε(v, p, ci) := Iε(v) +
∫ ∞

0
e−

t
ε

(
−
∫
Ω

p div v +
n∑

i=0

ci

(∫
Γi

F

v · n − Fi

))
+ S

over an enlarged function space without the constraints divw = 0 and
∫
Γi

F
w · n = 0. The

implicit methods based on Jε may turn out relevant in numerical implementations of the
problem, since they give enhanced numerical stability and easier construction of the func-
tion spaces for the solution and test functions. However, this obviously leads to a saddle point
problem and some further stabilisation S is necessary to ensure even the existence of a min-
imum of Jε. Since it is hard to think of any physical justification behind S and there are
many possible choices, we shall stick to the functional Iε, search for the solution in the spaces
constrained by divv = 0,

∫
Γi

F
v · n = Fi, and then construct p and ci a posteriori from v.

In the remaining part of the paper, we provide a rigorous counterpart of the procedure
outlined in the introduction.

3. Technical assumptions & definitions

In this section, we state precisely the hypotheses needed to prove our main results. The
definition of required function spaces is given here as well.

3.1. Constitutive assumptions for S and s

Relations (2.3) and (2.5) are specified via assumptions on S and s, which then allow us to apply
our results to a wide class of non-Newtonian fluids.

For the function S, we suppose that

S ∈ C1(R3×3
sym ;R3×3

sym ), (3.1)

∂i jSkl = ∂klSi j for all i, j, k, l = 1, 2, 3, (3.2)

0 � (S(A) − S(B)) · (A − B), (3.3)

|S(A)| � C(|A|+ |A|r−1), (3.4)

S(A) · A � σ2|A|2 + σr|A|r, σ2, σr > 0, (3.5)
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for all A, B ∈ R3×3
sym and some r > 1. It is easy to see that under these conditions, the function

Sε, defined in (2.2), fulfils

Sε ∈ C1(R3×3
sym ;R3×3

sym ), (3.6)

∂i j(Sε)kl = ∂kl(Sε)i j for all i, j, k, l = 1, 2, 3, (3.7)

0 � (Sε(A) − Sε(B)) · (A − B), (3.8)

|Sε(A)| � C(|A|+ |A|r−1 + ε|A|3 + ε|A|q−1), (3.9)

Sε(A) · A � σ2|A|2 + σr|A|r + εσ4|A|4 + εσq|A|q, σ4, σq > 0 (3.10)

for all A, B ∈ R3×3
sym and some q > 1. Note that thanks to (3.2), there holds

∂

∂A

∫ 1

0
Sε(λA) · A dλ

(3.2)
=

∫ 1

0

(
λ
∂Sε(λA)

∂A
A + Sε(λA)

)
dλ

=

∫ 1

0

d
dλ

(λSε(λA)) dλ = Sε(A). (3.11)

Similarly, we require that s satisfies the properties:

s ∈ C1(R3;R3), (3.12)

∂is j = ∂ jsi for all i, j = 1, 2, 3, (3.13)

0 � (s(u) − s(w)) · (u −w), (3.14)

|s(u)| � C(|u|+ |u|r−1), (3.15)

s(u) · u � ρ2|u|2 + ρr|u|r, ρ2, ρr > 0, (3.16)

and, consequently, the function sε defined in (2.4) fulfils

sε ∈ C1(R3;R3), (3.17)

∂i(sε) j = ∂ j(sε)i for all i, j = 1, 2, 3, (3.18)

0 � (sε(u) − sε(w)) · (u −w), (3.19)

|sε(u)| � C(|u|+ |u|r−1 + ε|u|3 + ε|u|q−1), (3.20)

sε(u) · u � ρ2|u|2 + ρr|u|r + ερ4|u|4 + ερq|u|q, ρ4, ρq > 0 (3.21)

and there holds

∂

∂u

∫ 1

0
sε(λu) · u dλ = sε(u) (3.22)

for all u ∈ R3. The assumptions (3.7) and (3.18) could be omitted. This would however make
identities (3.11) and (3.22), characterising the dissipation potentials, more complicated, see
[22, corollary]. The above assumptions could be further generalised in many ways (e.g., by
allowing anisotropic constitutive relations). We do not aim at maximum generality here and
stick with the simple setting. The parameters r and q retain the same meaning throughout the
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whole paper and they will be eventually required to satisfy certain bounds. For a future use, let
us collect the above assumptions into the hypothesis (HS):

The functionsS, Sε, s, sε satisfy (3.1)–(3.5), (2.2) and (3.12)–(3.16), (2.4). (HS)

3.2. The precise description of the domain Ω

The domain Ω is an open bounded set in R3 (or R2). Moreover, the domain Ω is assumed to
be of class C0,1, i.e., Lipschitz (see [43, section 5.5.6] or [53, p 49] for definition), and nothing
more. This allows us to consider domains with very sharp or obtuse corners, which may arise,
for instance, if the outlets are cut under very sharp angles. This makes our results widely appli-
cable, even to very rough domains. Of course, this also leads to very poor information about
the pressure in the Navier–Stokes equations (since one cannot even apply the Lp-regularity
for elliptic systems). Since our main result is of qualitative nature (identification of boundary
conditions), this lack of information has limited effect the analysis below.

We observe that, if the flux rates through the boundaries ΓD, Γ1
F and Γ2

F are prescribed, one
can use the incompressibility constraint divv = 0 in order to infer that also the net flux rate
through Γ0

F is determined. Indeed we have the formula

∫
Γ0

F

v · n = −
∫
ΓD

v · n −
n∑

i=1

∫
Γi

F

v · n.

Hence, we assume throughout that the sets Ω, ΓD, ΓN, Γi
F, i = 0, . . . , n, and ΓF are chosen in

such a way that

Ω ⊂ R
3 is a Lipschitz domain,

the sets ΓD,ΓN,ΓF ⊂ ∂Ω are open and disjoint,

ΓD ∪ ΓN ∪ ΓF = ∂Ω,

each of the sets Γi
F is connected,

the sets Γi
F , are disjoint.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(HΩ)

Moreover, we let

ΓF :=
n⋃

i=0

Γi
F.

Consequently, the connected components of the set ΓF are separated by (subsets of) ΓD ∪ ΓN.
In particular, if |ΓD| = |ΓN| = 0, then ∂Ω = ΓF = Γ0

F. Note that one could, in principle, allow
existence of some neighbouring outlets, but this would be physically counter-intuitive and give
rise to some unnecessary complications in the following.

3.3. Function spaces

We classically denote the Lebesgue and Sobolev spaces by (Lp(Ω;Rd), ‖·‖p) and (W1,p(Ω;Rd),
‖·‖1,p), 1 � p � ∞, d ∈ N, respectively. Next, let us define
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C∞
∂ :=

{
u ∈ C∞(Ω ;R3) : u|ΓD = 0, u|ΓN · n = 0,

∫
Γi

F

u · n = 0, i = 0, . . . , n

}
,

C∞
∂,div := {u ∈ C∞

∂ : div u = 0}

and then, for any 1 < p < ∞, we define p′ := p
p−1 and

V1,p := C∞
∂

‖·‖
W1,p(Ω;R3) , V1,p

div := C∞
∂,div

‖·‖
W1,p(Ω;R3) ,

V−1,p′ := (V1,p)′, V−1,p′
div := (V1,p

div )′.

The spaces V1,p and V1,p
div are equipped with the norm

‖w‖1,p := ‖w‖W1,p(Ω;R3) =

(∫
Ω

(|∇w|p + |w|p)

) 1
p

.

Note that anyw ∈ V1,p satisfies
∫
∂Ω w · n = 0 (and its boundary values can be thus extended to

a divergence-free vector field). In what follows, we often rely on the Korn–Poincaré inequality
on V1,p in the form∫

Ω

(|∇w|p + |w|p) � cp

(∫
Ω

|Dw|p +
∫
ΓN

|w|p
)

for all w ∈ V1,p, (3.23)

which in our situation holds if |ΓD|+ |ΓN| > 0, a physically reasonable assumption. Indeed,
if |ΓD| > 0, then it is a standard result that (3.23) holds even without the boundary term on the
right-hand side. Further, if |ΓD| = 0 and |ΓN| > 0, then (3.23) follows by a slight adaptation
of the argument from [16, lemma 1.11] (replacing the space L2(∂Ω)d with Lp(ΓN;R3) therein).
Inequality (3.23) cannot hold in the singular case |ΓD| = |ΓN| = 0, where ∂Ω = Γ0

F and then
it is obvious that unbounded constant vector fields violate (3.23). Note that due to (3.23) and
the trace theorem, the expression ‖Dw‖p + ‖w‖p;ΓN

is an equivalent norm on V1,p.
We shall also need the following special spaces of Lions–Magenes type defined on an open

connected subset G of ∂Ω. First, let us denote

W1,∞
0 (G;R3) := {w ∈ W1,∞(G;R3) : w = 0 on ∂G},

W1,∞
0,n (G;R3) := {w ∈ W1,∞

0 (G;R3) : w · n = 0 on G}

and then, we put

W
1
p′ ,p

0 (G;R3) := W1,∞
0 (G;R3)

‖·‖
W1/p′ ,p(G;R3) , (3.24)

W
1
p′ ,p

0,n (G;R3) := W1,∞
0,n (G;R3)

‖·‖
W1/p′ ,p(G;R3) . (3.25)

The boundary conditions will be identified in the corresponding dual spaces.
Next, we need to introduce some spaces for time dependent functions. We set QT := (0, T) ×

Ω for all T > 0, including T = ∞. The Bochner spaces are denoted as (Lp(0, T; X); ‖·‖Lp(0,T;X)),
where X is a Banach space. If X = Ls(Ω;Rd), or X = W1,s(Ω;Rd), 1 � s � ∞, we use the
short-hand ‖·‖Lp(0,T;Ls) := ‖·‖Lp(0,T;Ls(Ω;Rd )), or ‖·‖Lp(0,T;W1,s) := ‖·‖Lp(0,T;W1,s(Ω;Rd )), respectively.
Further, we define

X p := Lp(0,∞; V1,p) and X p
div := Lp(0,∞; V1,p

div ).
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Next, we define the space of admissible trajectories starting from the zero initial datum as

U0 := {u ∈ Lq
loc(0,∞; V1,q

div) : ∂tu ∈ L2
loc(0,∞; L2(Ω;R3)), u(0) = 0}

and, we denote the corresponding spaces of test functions as

V0 := {ϕ ∈ U0 : I1(ϕ) < ∞},

Vc := {ψ ∈ V0 : t �→ ψ(t, ·) has a compact support in (0,∞)}.

3.4. Nonhomogeneous data

In the problem under consideration, we prescribe a nonhomogeneousinitial datum u0 : Ω→ R3

and boundary data vD : (0,∞) × ΓD →R3, Fi : (0,∞) → R, i = 0, . . . , n. Due to the nonlin-
earity of the problem, it seems difficult to formulate some explicit necessary conditions on
this data that are needed for the existence of the corresponding global-in-time weak solution
of Navier–Stokes equations, especially if the data are allowed to be time-dependent. We refer
to [7, 24], [25, IX.4], or [59] where this topic is (partially) treated using different approaches.
Basically, one is asking whether it is possible to extend the boundary data vD, Fi to a diver-
gence free field v0 of such regularity that the products (∇v)v0 and (∇v0)v are under control.
Obviously, this depends on many factors and there seems to be no agreement on how this
extension should be constructed. To avoid this difficult question and, at the same time, to make
our results applicable in real scenarios with (large) inflow and outflows, we assume that the
data u0, vD, Fi and f are admissible in the sense that for any ε > 0 there exists a function
vε

0 : (0,∞) × Ω→ R3 with the following properties:

div vε
0 = 0, vε

0|ΓD = vD, vε
0|ΓN · n = 0,

∫
Γi

F

vε
0 · n = Fi,

lim
ε→0+

‖vε
0(0) − u0‖2 → 0,

‖vε
0‖X 2∩X r +

∥∥∥ε 1
4 vε

0

∥∥∥
X 4

+
∥∥∥ε 1

q vε
0

∥∥∥
X q

+
∥∥∥ε 1

2 ∂tv
ε
0

∥∥∥
L2(0,∞;L2)

� C

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(HA
0 )

and eventually also

‖∂tv
ε
0‖(X 2

div∩X
r
div)′ + ‖vε

0‖L∞(0,∞;L2)∩L
r

r−2 (0,∞;L
r

r−2 )
� C. (HB

0 )

Admissible data indeed exist, at least in some simple scenarios. An obvious case is when
vD and Fi are time independent and u0 ∈ V1,q

div . Then, we can simply choose vε
0(t) :=u0 for all

t > 0 and ε > 0.
It is easy to see that if vε

0 exist, then there also exists a function v0 ∈ X 2
div ∩ X r

div ∩
L∞(0,∞; L2(Ω;R3)) with ∂tv0 ∈ (X 2

div ∩ X r
div)′ and satisfying the same constraints as vε

0, to
which a subsequence of {vε}ε>0 converges weakly in the corresponding spaces (and there also
holds v(0) = u0, div u0 = 0).

For the external body force density, let us assume (for simplicity) that

f ∈ L2(0,∞; L2(Ω;R3)). (H f )
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4. Main result: variational resolution of Navier–Stokes equations with outflow
boundary conditions

We are now in the position of stating the main result of the paper, which makes the outlined
variational approach rigorous.

Theorem 1. Let the hypotheses (HΩ), (HS), (HA
0 ) and (H f ) be fulfilled. Then, for every ε > 0,

the functional Iε admits a minimiser vε in the set U ε :=U0 + vε
0 and the function vε satisfies

∫ ∞

0

∫
Ω

◦
v ε · (ψ + ε∂tψ + ε rotvε ×ψ + ε rotψ × vε)

+

∫ ∞

0

(∫
Ω

Sε(Dvε) · Dψ +

∫
ΓN

sε(vε) · ψ
)

=

∫ ∞

0

∫
Ω

f · ψ (4.1)

for all ψ ∈ Vc.
If, in addition, the conditions (HB

0 ) and

11
5

� r < 4, 4 < q � 3r′, min(σ4, ρ4) >
c4

4
, (4.2)

hold, then there exists a function v with the properties

v − v0 ∈ X 2
div ∩ X r

div ∩ L∞(0,∞; L2(Ω;R3)), (4.3)

∂tv ∈ (X 2
div ∩ X r

div)′, (4.4)

v(0) = u0, (4.5)

which is a limit of a not relabelled subsequence of {vε}ε>0 in the sense that

vε ⇀ v weakly inX 2 ∩ X r, (4.6)

vε ⇀ v weakly∗ in L∞(0,∞; L2(Ω;R3)), (4.7)

vε → v a.e. in (0,∞) × Ω and on (0,∞) × ΓN, (4.8)

∂tvε ⇀ ∂tv weakly in (X 2
div ∩ X q

div)′, (4.9)

and which solves

∫ ∞

0

(
〈∂tv,ϕ〉+

∫
Ω

(rotv × v) · ϕ+

∫
Ω

S(Dv) · Dϕ+

∫
ΓN

s(v) ·ϕ
)

=

∫ ∞

0

∫
Ω

f · ϕ

(4.10)

for all ϕ ∈ X 2
div ∩ X r

div.
Furthermore, let D ∈ L∞

loc(0,∞;R). Then, there exists a function

P ∈ L∞
loc(0,∞; Lr′(Ω;R)) with

∫
Ω

P = D (4.11)

5568



Nonlinearity 35 (2022) 5553 M Bathory and U Stefanelli

and such that ∫ ∞

0

(
−
∫
Ω

v · ∂tψ +

∫
Ω

(∇v)v · ψ +

∫
Ω

S(Dv) · Dψ +

∫
ΓN

s(v) ·ψ
)

+

∫ ∞

0

(∫
Ω

P div ∂tψ − 1
2

∫
ΓF

|v|2n ·ψ
)

=

∫ ∞

0

∫
Ω

f · ψ, (4.12)

for all ψ ∈ C∞
c ((0,∞); V1,r).

Finally, choose any ξi ∈ W1,∞
0 (Γi

F;R3) satisfying
∫
Γi

F
ξi · n = 1, i = 0, . . . , n and, for any

ψ ∈ C1
c ((0,∞);R), let us define

Tψ :=
∫ ∞

0
(PI∂tψ + S(Dv)ψ)

(ci)ψ := 〈T(ψ)n, ξi〉Γi
F
− 1

2

∫
Γi

F

∫ ∞

0
|v|2n · ξiψ. (4.13)

Then, the functions v and P satisfy the boundary conditions

v|ΓD = vD, (4.14)

v|ΓN · n = 0, Tψn +

∫ ∞

0
s(v)ψ = 0 in (W

1
r′ ,r

0,n (ΓN;R3))′, (4.15)

∫
Γi

F

v · n = Fi, Tψn − 1
2

∫ ∞

0
|v|2nψ = (ci)ψn in (W

1
r′ ,r

0 (Γi
F;R3))′, (4.16)

for every i = 0, . . . , n and for all ψ ∈ C1
c ((0,∞);R).

Theorem 1 is proved in section 5 below. We devote the rest of this section to several
comments instead:

(a) Since the setting of theorem 1 enables to test (4.10) by v − v0, it is clear that we are
dealing with a weak solution of the Leray–Hopf type. The total energy of the fluid can
however be increased by the non-homogeneous and possibly unsteady inflow, therefore
the standard form of the energy (in)equality is unavailable. This can be also seen in the
proof of the uniform estimate below, where the physical energy of the (approximated)
solution is estimated by the size of the data.

(b) If, for any reason, the solution (v, P) turns out to be sufficiently smooth up to the boundary
ΓN ∪ ΓF, then the boundary conditions (4.14)–(4.16) and (4.13) simplify to (1.9)–(1.11)
and (1.12), i.e., they hold in the classical sense.

(c) Note that if the test function ϕ from (4.10) vanishes on the whole ∂Ω, then∫
Ω

(rotv × v) ·ϕ =

∫
Ω

(∇v)v ·ϕ− 1
2

∫
Ω

div(|v|2ϕ) =
∫
Ω

(∇v)v · ϕ, (4.17)

which is the standard form of the convective term in the Navier–Stokes equations. If ϕ
does not vanish on ∂Ω, the term −(∇v)Tv ·ϕ contributes both to a pressure and to a
boundary term as can be seen in (4.12).

(d) In assumption (4.2), the parameters q, σ4, and ρ4 correspond just to the stabilisation of Iε
and their values have no impact on the properties of (v, P).
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(e) The upper bounds r < 4 and q � 3r ′ are easily removable. The inequality q � 3r ′ just
simplifies some dual spaces that are needed below. The case r � 4 is sub-critical and the
analysis becomes simpler as the stabilisation of Iε by the fourth order dissipation terms is
unnecessary, i.e., one can set σ4 = ρ4 = 0. Furthermore, if r > 4, we put σ4 = ρ4 = σq =
ρq = 0 and the parameter q is omitted completely.

(f ) The lower bound r � 11
5 is probably not optimal. However, in the case r ∈ ( 6

5 , 11
5 )\{2},

the identification of the weak limit of S(Dvε) becomes difficult. It is not obvious whether
the standard methods (such as the L∞- or W1,∞- truncations) can be applied directly
for our ε-approximation scheme, which is rather complicated. Also, in the case r < 2,
there is another difficulty of extending the boundary data without some kind of smallness
condition on vD · n and Fi, cf e.g. [32, 44].

(g) Theorem 1 is valid, of course, for the classical Navier–Stokes system, where r = 2 and
S and s are linear functions. However, the spaces for ∂tv and for ϕ in (4.10) have to be
modified in a standard way (it is no longer possible to consider v − v0 as a test function in
(4.10)). Also, it is apparent in the proof below (cf (5.29)) that if r = 2, one has to replace
the assumption ‖vε

0‖L∞(0,∞;L∞) � C (recall (HB
0 )) by the requirement that the number

ess sup
t>0

sup
0 �=ϕ∈W1,2(Ω;R3)

divϕ=0

∫
Ω

vε
0(t) · rotϕ×ϕ

‖ϕ‖2
1,2

can be made smaller than any given δ > 0. Thatvε
0 can indeed be constructed in such a way

follows from [25, (IX.4.43)] and it is closely related to the so-called extension condition
of Leray and Hopf.

(h) With usual modifications, the above theorem can be proved also in the d-dimensional,
d � 2, setting.

(i) Starting with the definition of Iε, it is possible to replace everywhere the symmetric veloc-
ity gradient Dv by the full velocity gradient ∇v. This changes very little in the analysis
below. Then, the analogue of theorem 1 yields the outflow boundary condition

−pn − 1
2
|v|2n + S(∇v)n = cin on Γi

F

(again, if the solution is sufficiently smooth). This is a nonlinear version of the do-nothing
boundary condition with the dynamic pressure correction. One could even replace Dv by
∇v + a(∇v)T for any a �= −1 and again, since div(∇v)T = ∇ divv = 0, this would not
change anything except the resulting boundary conditions.

( j) If r > 3, then (∇v)v · v becomes easily controllable and hence, we do not need to use
(2.6). Thus, by replacing

◦
v with

•
v in the definition of Iε, it is possible to prove a version

of theorem 1, where the convective terms take the usual form (∇v)v and the condition
(4.16) becomes just (a weak version of)

−pn − S(∇v)n = cin on Γi
F.

By choosing S(A) = νA + δ|A|δ+1A, δ > 0, and making a convenient shift in the pressure,
this yields

−pn + ν(∇v)n + δ|∇v|δ+1(∇v)n = 0 on Γ0
F. (4.18)

Making δ > 0 very small, this is as close as we can get to the classical do-nothing bound-
ary condition (2.1), while retaining the global-in-time and large-data existence of a weak
solution of the Navier–Stokes equations corresponding to S.
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(k) By subtracting the term
∫∞

0 e−
t
ε
∫
ΓF

g · v in the definition of Iε, we can include also a forcing
through the outflow boundaries, that may arise as a reaction force to the fluid flow outside
Ω. Then, if g∈ L2(0,∞; L2(ΓF;R3)), this additional term can be handled as the one with
f , thanks to the fact that we are able to control the whole Sobolev norms of the solution
via (3.23). (In fact, one could be slightly more general here and observe that f , g∈ L2L2 +
LrLr is sufficient to obtain theorem 1.) This way, it is possible to derive a nonhomogeneous
version of the boundary condition (4.16). On the other hand, it seems hard to imagine any
kind of physical device that would yield exactly some given forcing g, apart from the case
where g arises as a boundary value of some potential, in which case it can be included in
the pressure. Thus, to ensure a viable physical interpretation, one should probably stick
with the choice g= 0, which is what we do in this work.

(l) Adding the term
∫∞

0 e−
t
ε
∫
ΓN

ε
2 |∂tv|2 in the definition of Iε leads (at least formally) to the

so-called dynamic slip boundary conditions, which are studied in [28] for certain polymer
melts. Applying the similar idea also on the outflow boundary ΓF, one can recover the
conditions involving ∂tv, that are studied analytically in [11] and which are quite popular
in numerics, see, e.g., [46] and references therein. For simplicity of presentation (it would
require major changes in the definitions of the function spaces below), we do not discuss
these extensions in detail here.

(m) The distribution p := ∂tP from the above theorem is called pressure. Note that the boundary
conditions are identified only in an averaged sense over time. This is to avoid the fact that
div T, where T := − pI+ S(Dv), is not a function, in general, and hence the trace of Tn
cannot be defined consistently. Actually, this issue arises already for the non-stationary
Stokes system with, e.g., the Navier-slip boundary condition if the domain or the initial
data are rough and no additional regularity of solution, besides the energy estimate, is
available. On the other hand, one can read from (4.12) that div Tψ is an integrable function,
hereby providing a possibility to define the object Tψn in a way which is compatible with
the common meaning of a trace (a limit of restrictions of smooth functions) and with the
corresponding integration-by-parts formula, that is essential for the identification of (4.15)
and (4.16). For a different resolution of this issue, see [12]. It is clear that if T, div T ∈
L1(Q∞;R3), then (·)ψ averaging is unnecessary and conditions (4.15) and (4.16) hold a.e.
in (0,∞). The functions ξi always exist (see the end of the proof of theorem 1 below) and
their only purpose is to get around the fact that the functional Tψn cannot be applied to n,
for a general Lipschitz domain.

5. Proof of the main result

The proof of theorem 1 is developed throughout the section and is divided in subsequent
sections and structured on a series of lemmas. In what follows, the number ω ∈ (0, 1

2 ) is sys-
tematically used as an auxiliary parameter (arising, e.g., from the Young inequality), which is
eventually chosen sufficiently small.

5.1. Existence of minima

Let us consider the problem of minimising Iε over the space U ε. The following lemma tells us
that this problem is solvable.

Lemma 2. Suppose that (HΩ), (HS), (HA
0 ), and (H f ) are satisfied. Then, the functional Iε

attains a minimum vε in U ε. Moreover, there exists a constant C > 0, depending only on the
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data and Ω, such that

|Iε(vε)| � C for all ε > 0. (5.1)

Proof. Let us start by deriving some preliminary estimates that are used below to estimate
certain terms of Iε.

Let w ∈ U ε. We use (3.23) to estimate∫
Ω

|rotw ×w|2 �
∫
Ω

|rotw|2|w|2 � 2
∫
Ω

|∇w|2|w|2 �
∫
Ω

(|∇w|4 + |w|4),

thus

‖rotw ×w‖2 � ‖w‖2
1,4. (5.2)

As a consequence of the convexity of the power function z �→ zα, 1 < α < ∞, there holds

(x + y)α � (1 + ω)xα +
1 + ω

((1 + ω)α′−1 − 1)α−1
yα for all x, y � 0. (5.3)

Hence, using also (3.23), we can continue with the estimate (5.2) to get∫
Ω

|rotw ×w|2 � (1 + ω)‖w − vε
0‖

4
1,4 + C(ω)‖vε

0‖
4
1,4

� (1 + ω)c4

(∫
Ω

|D(w − vε
0)|4 +

∫
ΓN

|w − vε
0|4

)
+ C(ω)‖vε

0‖
4
1,4

� (1 + ω)2c4

(∫
Ω

|Dw|4 +
∫
ΓN

|w|4
)
+ C(ω)‖vε

0‖
4
1,4. (5.4)

From this, Young’s inequality, and ω < 1
2 , we also deduce that∫

Ω

| ◦
w |2 �

∫
Ω

(ω|∂tw|2 − ω

1 − ω
|rotw ×w|2)

� ω

∫
Ω

|∂tw|2 − 5ωc4

∫
Ω

|Dw|4 − 5ωc4

∫
ΓN

|w|4 − C(ω)‖vε
0‖

4
1,4. (5.5)

Next, we estimate the term with f using Young’s inequality, (5.3) and (3.23) as∣∣∣∣
∫
Ω

f ·w
∣∣∣∣ � ω‖w‖2

2 + C(ω)‖ f‖2
2

� ω(1 + ω)‖w − vε
0‖

2
2 + C(ω)(‖vε

0‖
2
2 + ‖ f‖2

2)

� ω(1 + ω)c2

(∫
Ω

|D(w − vε
0)|2 +

∫
ΓN

|w − vε
0|2

)
+ C(ω)(‖vε

0‖
2
2 + ‖ f‖2

2)

� ω(1 + ω)2c2

(∫
Ω

|Dw|2 +
∫
ΓN

|w|2
)
+ C(ω)(‖vε

0‖
2
1,2 + ‖ f‖2

2). (5.6)

5572



Nonlinearity 35 (2022) 5553 M Bathory and U Stefanelli

Further, by (3.9), we have∫ 1

0
Sε(λDw) · Dw dλ � C

∫ 1

0
λ|Dw|2 + λr−1|Dw|r + ελ3|Dw|4 + ελq−1|Dw|q dλ

� C(|Dw|2 + |Dw|r + ε|Dw|4 + ε|Dw|q) (5.7)

and analogously, by (3.20), also∫ 1

0
sε(λw) ·w dλ � C(|w|2 + |w|r + ε|w|4 + ε|w|q). (5.8)

On the other hand, we use (3.8) and (3.10) to obtain the following estimate from below:∫ 1

0
Sε(λDw) · Dw dλ

(3.10)
�

∫ 1

1
2

Sε(λDw) · Dw dλ
(3.8)
� Sε(

1
2
Dw) · (

1
2
Dw)

(3.10)
� 2−2σ2|Dw|2 + 2−rσr|Dw|r + ε2−4σ4|Dw|4 + ε2−qσq|Dw|q.

(5.9)

Analogously, we also get∫ 1

0
sε(λw) ·w dλ � 2−2ρ2|w|2 + 2−rρr|w|r + ε2−4ρ4|w|4 + ε2−qρq|w|q. (5.10)

Now we proceed with the proof of existence of a minimum. Since 0 ∈ U0, we have vε
0 ∈

U ε and the set U ε is thus nonempty. As w ∈ U ε implies ∂tw ∈ L2
loc(0,∞; L2(Ω;R3)), w ∈

Lr
loc(0,∞; W1,r(Ω;R3)), and w ∈ Lr

loc(0,∞; Lr(ΓN;R3)), 1 � r � q, we see, using (5.2), (5.7)
and (5.8) that the integral

IT
ε (w) :=

∫ T

0
e−

t
ε

(
ε

2

∫
Ω

| ◦
w |2 −

∫
Ω

f ·w

+

∫
Ω

∫ 1

0
Sε(λDw) · Dw dλ+

∫
ΓN

∫ 1

0
sε(λw) ·w dλ

)

is well defined and finite for every T > 0. Moreover, estimates (5.2), (5.7) and (5.8) together
with assumption (HA

0 ) imply

IT
ε (vε

0) � C
∫ T

0

(∫
Ω

(
ε|∂tv

ε
0|2 + ε|vε

0|4 + ε|∇vε
0|4 + | f |2 + |vε

0|2
)

+

∫
Ω

(
|Dvε

0|2 + |Dvε
0|r + ε|Dvε

0|4 + ε|Dvε
0|q

)

+

∫
ΓN

(
|vε

0|2 + |vε
0|r + ε|vε

0|4 + ε|vε
0|q

))
� C, (5.11)

for all T > 0, hence infUε Iε � Iε(vε
0) < ∞. On the other hand, using Young’s inequality, (5.6),

and (HA
0 ), we get

IT
ε (w) � C

∫ T

0
e−

t
ε

(∫
Ω

|Dw|2 +
∫
ΓN

|w|2 −
∫
Ω

f ·w
))

� −C (5.12)
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for all T > 0, therefore Iε(w) � −C for every w ∈ U ε. This and (5.11) proves (5.1) once we
show that a minimum is attained.

Let {vk}∞k=1 ⊂ U ε be a minimising sequence for Iε, satisfying also Iε(vk) < C for all k ∈ N.
By using (5.5), (5.6), (5.9) and (5.10), and then choosing ω > 0 sufficiently small, we get

Iε(vk) � C
∫ ∞

0
e−

t
ε

(
εω

∫
Ω

|∂tvk|2 − εω

∫
Ω

|Dvk|4 − εω

∫
ΓN

|vk|4 − εC(ω)‖vε
0‖

4
1,4

)

− ω

∫
Ω

|Dvk|2 − ω

∫
ΓN

|vk|2 − C(ω)(‖vε
0‖

2
1,2 + ‖ f‖2

2)

+

∫
Ω

(|Dvk|2 + |Dvk|r + ε|Dvk|4 + ε|Dvk|q)

+

∫
ΓN

(|vk|2 + |vk|r + ε|vk|4 + ε|vk|q)

)

� C

(
ε
∥∥∥e−

t
2ε ∂tvk

∥∥∥2

L2(0,∞;L2)
+
∥∥∥e−

t
2εvk

∥∥∥2

L2(0,∞;V1,2)
+
∥∥∥e−

t
rεvk

∥∥∥r

Lr(0,∞;V1,r )

+ ε
∥∥∥e−

t
4εvk

∥∥∥4

L4(0,∞;V1,4)
+ ε

∥∥∥e−
t

qεvk

∥∥∥q

Lq(0,∞;V1,q)

)
− C.

Using this estimate on (0, T ), T > 0, we can apply the Aubin–Lions lemma with the com-
pact embedding W1,2(Ω;R3) ↪→ L2(Ω;R3) to deduce that a nonrelabeled subsequence of vk

converges to vε ∈ U ε strongly in L2(0, T; L2(Ω;R3)) and∇vk converges weakly to∇vε. There-
fore, the product rotvk × vk, which is bounded in L2(0, T; L2(Ω;R3)) (recall (5.4)), converges
weakly (up to another subsequence) to the correct limit rotvε × vε. Hence, by the weak lower
semi-continuity of norms, we obtain

IT
ε (vε) +

∫ T

0
e−

t
ε

∫
Ω

f · vε � lim inf
k→∞

(
Iε(vk) +

∫ ∞

0
e−

t
ε

∫
Ω

f · vk

)

= inf
Uε

Iε +
∫ ∞

0
e−

t
ε

∫
Ω

f · vε

and, taking the limit T →∞, we see that vε is a minimum of Iε. �

5.2. Euler–Lagrange equations

Next, we derive the Euler–Lagrange equation of Iε, which we state in three different ways:
(5.13) is useful for deriving most of the ε-uniform estimates, (4.1) is convenient for the weak
limit identification, while (5.15) is important to get an ε-uniform estimate of ∂tvε.

Lemma 3. Assume that (HΩ), (HS), (HA
0 ), and (H f ) hold and let vε be a minimum of Iε in

U ε. Then ∫ ∞

0
e−

t
ε

(∫
Ω

ε
◦
v ε · (∂tϕ+ rotvε × ϕ+ rotϕ× vε) −

∫
Ω

f ·ϕ

+

∫
Ω

Sε(Dvε) · Dϕ+

∫
ΓN

sε(vε) ·ϕ
)

= 0 (5.13)
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for all ϕ ∈ V0. Moreover, we have (4.1) for all ψ ∈ Vc. Furthermore, if

2 � r � 4 and 4 � q � 3r′, (5.14)

then the relation

−ε∂t
◦
v ε +

◦
v ε + ε

1
2−

1
q N1

εvε + ε1− 3
q N2

εvε + ε
1
4 A1

εvε + ε
1
q A2

εvε + Avε = f (5.15)

holds as an identity in the space L1
loc(0,∞; V−1,q′

div ), where we define

〈
N1
εvε,ϕ

〉
:= ε

1
2+

1
q

∫
Ω

∂tvε · (rotvε ×ϕ+ rotϕ× vε),

〈
N2
εvε,ϕ

〉
:= ε

3
q

∫
Ω

(rotvε × vε) · (rotvε ×ϕ+ rotϕ× vε),

〈
A1
εvε,ϕ

〉
:= ε

3
4 σ4

∫
Ω

|Dvε|2Dvε · Dϕ+ ε
3
4 ρ4

∫
ΓN

|vε|2vε · ϕ,

〈
A2
εvε,ϕ

〉
:= ε

1
q′ σq

∫
Ω

|Dvε|q−2
Dvε · Dϕ+ ε

1
q′ ρq

∫
ΓN

|vε|q−2vε ·ϕ,

〈Avε,ϕ〉 :=
∫
Ω

S(Dvε) · Dϕ+

∫
ΓN

s(vε) ·ϕ,

for all ϕ ∈ V1,q.

Proof. Let ϕ ∈ V0. Since V0 ⊂ U0, we have, for all s ∈ R, that vε + sϕ ∈ U ε and it is easy
to see that also I(vε + sϕ) < ∞. Let us define

g(s) :=
∫ 1

0
Sε(λ(Dvε + sDϕ)) · (Dvε + sDϕ) dλ.

By using the fundamental theorem of calculus in the form

g(s) − g(0) = s
∫ 1

0
g′(us) du

together with (3.11), we obtain

g(s) − g(0) = s
∫ 1

0

∂

∂A

∫ 1

0
Sε(λA) · A dλ

∣∣∣∣
A=Dvε+usDϕ

· d
dτ

(Dvε + τDϕ)

∣∣∣∣
τ=us

du

(3.11)
= s

∫ 1

0
Sε(Dvε + usDϕ) · Dϕ du.

An analogous identity holds, of course, for the function sε. Hence, also using

1
2

(|w1|2 − |w2|2) = w2 · (w1 −w2) +
1
2
|w1 −w2|2,
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we find that

0 � I(vε + sϕ) − I(vε)

=

∫ ∞

0
e−

t
ε

(
s
∫
Ω

ε
◦
v ε · (∂tϕ+ rotvε ×ϕ+ rotϕ× vε + srotϕ×ϕ)

+
s2

2

∫
Ω

|∂tϕ+ rotvε ×ϕ+ rotϕ× vε + s rotϕ×ϕ|2 − s
∫
Ω

f · ϕ

+ s
∫
Ω

∫ 1

0
Sε(Dvε + usDϕ) · Dϕ du + s

∫
ΓN

∫ 1

0
sε(vε + usϕ) ·ϕ du

)
. (5.16)

Dividing this by s > 0, using Iε(ϕ) < ∞ and the continuity of Sε and sε to take the limit s →
0+, and then doing the analogous procedure for s < 0 leads to (5.13).

If ψ ∈ Vc, then also ϕ := e
t
εψ ∈ Vc ⊂ V0 and, since ∂tϕ = e

t
ε (∂tψ + ε−1ψ), we obtain

(4.1) from (5.13).
To prove (5.15), note first using Hölder’s inequality and the fact that vε ∈ U ε that the func-

tionals N1
εvε, N2

εvε, A1
εvε, A2

εvε, and Avε are well-defined on V1, 2q
q−2 , V1, q

q−3 , V1,4, V1,q and V1,r,
respectively, for almost every time, where the space V1,q is the smallest one of these. Indeed,
this a consequence of the inequality

2 � r � q
q − 3

� 4 � 2q
q − 2

� 3r′,

that follows from (5.14). Hence, if we rewrite (4.1) as∫ ∞

0

∫
Ω

ε
◦
v ε · ∂tψ +

∫ ∞

0

〈 ◦
v ε + ε

1
2−

1
q N1

εvε + ε1− 3
q N2

εvε

+ ε
1
4 A1

εvε + ε
1
q A2

εvε + Avε − f ,ψ
〉
= 0,

we deduce that ∂t
◦
v ε ∈ L1

loc(0,∞; V−1,q′
div ), leading to (5.15). �

5.3. A priori estimates

Now we examine the limit of the sequence of minimisers constructed in the previous section.
First, we need to derive an ε-uniform estimate for vε, which is the key technical point of the
paper.

Lemma 4. Suppose that (HΩ), (HS), (HA
0 ), (HB

0 ), and (H f ) hold and let {vε}ε>0 be a
sequence of minimisers to {Iε}ε>0. If r � 11

5 and min(σ4, ρ4) > c4
4 , then

‖vε‖X 2∩X r + ‖ε 1
4 vε‖X 4 + ‖ε

1
q vε‖X q + ‖vε‖L∞(0,∞;L2) � C, (5.17)

‖ε 1
2 ∂tvε‖L2(0,∞;L2) +

∥∥∥ε 1
2 rotvε × vε

∥∥∥
L2(0,∞;L2)

+ ‖ε 1
2

◦
v ε‖L2(0,∞;L2) � C, (5.18)

‖rotvε × vε‖L
r
2 (0,∞;L

r
2 )
+
∥∥∥ε 2

q rotvε × vε

∥∥∥
L

q
2 (0,∞;L

q
2 )

� C, (5.19)

‖∂tvε‖(X 2
div∩X

q
div)′ + ‖rotvε × vε‖(X r)′ +

∥∥∥ ◦
v ε

∥∥∥
(X 2

div∩X
q
div)′

� C. (5.20)
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Proof. To get an estimate on (0, ε), we notice that e−
t
ε � e−1 on that interval, hence we

can just apply (5.1), use Young’s inequality and (3.23) to eliminate f and then estimate the
exponential from below. This leads to

C � Iε(vε) � C
∫ ∞

0
e−

t
ε

(∫
Ω

(ε| ◦
v ε|2 + |Dvε|2 + |Dvε|r + ε|Dvε|4 + ε|Dvε|q)

+

∫
ΓN

(|vε|2 + |vε|r + ε|vε|4 + ε|vε|q)

)
− C

� C
∫ ε

0

(∫
Ω

(ε| ◦
v ε|2 + |Dvε|2 + |Dvε|r + ε|Dvε|4 + ε|Dvε|q)

+

∫
ΓN

(|vε|2 + |vε|r + ε|vε|4 + ε|vε|q)

)
− C. (5.21)

Next, we let T > 0 and choose ϕ := η(vε − vε
0) in (5.13), where

η(t) =

⎧⎨
⎩

e
t
ε − 1, t � T

e
T
ε − 1, t > T.

Note that then ϕ ∈ V0 and ϕ(0) = 0. Hence, we obtain∫ ∞

0
e−

t
ε η

(∫
Ω

ε
◦
v ε · (∂tvε + 2 rotvε × vε) +

∫
Ω

Sε(Dvε) · Dvε +

∫
ΓN

s(vε) · vε

)

+

∫ ∞

0
εe−

t
ε η′

∫
Ω

∂t(
1
2
|vε|2)

=

∫ ∞

0
e−

t
ε η

(∫
Ω

ε
◦
v ε · (∂tv

ε
0 + rotvε × vε

0 + rotvε
0 × vε) +

∫
Ω

f · (vε − vε
0)

+

∫
Ω

Sε(Dvε) · Dvε
0 +

∫
ΓN

s(vε) · vε
0

)
+

∫ ∞

0
εe−

t
ε η′

∫
Ω

◦
v ε · vε

0, (5.22)

where we used (2.6) in order to eliminate the term (∇vε)vε · vε, which would otherwise be
impossible to control for general boundary conditions and r � 3. Next, we apply the identity

◦
v ε · (∂tvε + 2 rotvε × vε) = |∂tvε +

3
2

rotvε × vε|2 −
1
4
|rotvε × vε|2, (5.23)

we note that ε e−
t
ε η′(t) = χ(0,T)(t) and vε(0) = vε

0(0) to rewrite (5.22) as

∫ ∞

0
e−

t
ε η

(∫
Ω

ε|∂tvε +
3
2

rotvε × vε|2 +
∫
Ω

Sε(Dvε) · Dvε +

∫
ΓN

sε(vε) · vε

)

+
1
2

∫
Ω

|vε
0(0)|2 + 1

2

∫
Ω

|vε(T)|2

=

∫ ∞

0
e−

t
ε η

(∫
Ω

ε(∂tvε +
3
2

rotvε × vε) · (∂tv
ε
0 + rotvε × vε

0 + rotvε
0 × vε)
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+
1
4

∫
Ω

ε|rotvε × vε|2 −
1
2

∫
Ω

ε(rotvε × vε) · (∂tv
ε
0 + rotvε × vε

0 + rotvε
0 × vε)

+

∫
Ω

Sε(Dvε) · Dvε
0 +

∫
ΓN

sε(vε) · vε
0 +

∫
Ω

f · (vε − vε
0)

)

+

∫
Ω

|vε
0(0)|2 +

∫ T

0

∫
Ω

◦
v ε · vε

0. (5.24)

Our aim is to estimate the terms on the right-hand side by the ω-Young inequality, so that
the part containing vε is sufficiently small and the other (large) part depends only on vε

0, for
which we can use assumptions (HA

0 ), (HB
0 ), (H f ) and include these terms into a constant C (or

C(ω)). Let us proceed term by term and observe first, using (3.23), that

ε

∫
Ω

|∂tv
ε
0 + rotvε × vε

0 + rotvε
0 × vε|2

� 3ε
∫
Ω

(
|∂tv

ε
0|2 + |rotvε × vε

0|2 + |rotvε
0 × vε|2

)

� 3ε
∫
Ω

(
|∂tv

ε
0|2 + 2|∇vε|2|vε

0|2 + 2|∇vε
0|2|vε|2

)

� ωεC

(∫
Ω

|Dvε|4 +
∫
ΓN

|vε|4
)
+ εC‖∂tv

ε
0‖

2
2 + εC(ω)‖vε

0‖
4
1,4. (5.25)

The terms such as rotvε × vε are estimated similarly as in (5.4). Note that the assumptions on
σ4 and ρ4 are needed to absorb the term ε|rotvε × vε|2 which is the only term on the right-hand
side of (5.24) that does not involve data. Next, for the term with Sε, we use (3.4) and Young’s
inequality to get∫

Ω

Sε(Dvε) · Dvε
0 � C

∫
Ω

(
|Dvε|+ |Dvε|r−1 + ε|Dvε|3 + ε|Dvε|q−1

)
|Dvε

0|

� ωC
∫
Ω

(
|Dvε|2 + |Dvε|r + ε|Dvε|4 + ε|Dvε|q

)

+ C(ω)
∫
Ω

(
|Dvε

0|2 + |Dvε
0|r + ε|Dvε

0|4 + ε|Dvε
0|q

)
(5.26)

and, similarly, we also obtain∫
ΓN

sε(vε) · vε
0 � ωC

∫
ΓN

(
|vε|2 + |vε|r + ε|vε|4 + ε|vε|q

)

+ C(ω)
∫
ΓN

(
|vε

0|2 + |vε
0|r + ε|vε

0|4 + ε|vε
0|q

)
. (5.27)

To handle the term containing f , we proceed analogously as in (5.6), leading to∣∣∣∣
∫
Ω

f · (vε − vε
0)

∣∣∣∣ � ωC

(∫
Ω

|Dvε|2 +
∫
ΓN

|vε|2
)
+ C(ω)(‖vε

0‖
2
1,2 + ‖ f‖2

2). (5.28)

Regarding the last two terms in (5.24), we use (3.23) to get
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∫
Ω

(rotvε × vε) · vε
0 � 2ω

r

∫
Ω

|rotvε|
r
2 |vε|

r
2 +

r − 2
rω

∫
Ω

|vε
0|

r
r−2

� Cω
∫
Ω

|Dvε|r + Cω
∫
ΓN

|vε|r + C(ω)‖vε
0‖

r
r−2

r
r−2

(5.29)

and then the Bochner version of integration by parts formula to write∫
Ω

|vε
0(0)|2 +

∫ T

0

∫
Ω

◦
v ε · vε

0

=

∫
Ω

vε(T) · vε
0(T) −

∫ T

0
〈∂tv

ε
0, vε〉+

∫ T

0

∫
Ω

(rotvε × vε) · vε
0

� 1
4

∫
Ω

|vε(T)|2 + ωC

(∫ T

0

∫
Ω

(|Dvε|2 + |Dvε|r) +
∫ T

0

∫
ΓN

(|vε|2 + |vε|r)
)

+ C(ω) inf
w1+w2=∂tv

ε
0

(‖w1‖2
(X 2

div)′ + ‖w2‖r′
(X r

div)′ )

+ C(ω)‖vε
0‖

r
r−2

L
r

r−2 (0,∞;L
r

r−2 )
+ ‖vε

0‖
2
L∞(0,∞;L2).

Using this, (5.25), (5.26) and (5.27) in (5.24), choosing ω > 0 sufficiently small and recall-
ing (HA

0 ), (HB
0 ), we get∫ ∞

0
e−

t
ε η

(∫
Ω

(
ε|∂tvε +

3
2

rotvε × vε|2
)
+

∫
Ω

(|Dvε|2 + |Dvε|r + ε|Dvε|4 + ε|Dvε|q)

+

∫
ΓN

(|vε|2 + |vε|r + ε|vε|4 + ε|vε|q)

)
+

1
2

∫
Ω

|vε
0(0)|2 + 1

4

∫
Ω

|vε(T)|2

� ωC

(∫ T

0

∫
Ω

(|Dvε|2 + |Dvε|r) +
∫ T

0

∫
ΓN

(|vε|2 + |vε|r)
)
+ ‖vε

0‖
2
L∞(0,∞;L2)

+ C(ω)
∫ ∞

0

(
‖vε

0‖
2
1,2 + ‖vε

0‖
r
1,r + ε‖vε

0‖
4
1,4 + ε‖vε

0‖
q
1,q + ε‖∂tv

ε
0‖

2
2

)

+ C(ω) inf
w1+w2=∂tv

ε
0

(‖w1‖2
(X 2

div)′ + ‖w2‖r′
(X r

div)′ ) + C(ω)‖vε
0‖

r
r−2

L
r

r−2 (0,∞;L
r

r−2 )

� ωC

(∫ T

ε

∫
Ω

(|Dvε|2 + |Dvε|r) +
∫ T

ε

∫
ΓN

(|vε|2 + |vε|r)
)
+ C(ω), (5.30)

where in the last inequality we also used (5.21) to estimate the integral over (0, ε) by a constant.
If we apply the inequality

e−
t
ε η � (1 − e−

t
ε )χ(ε,T) � (1 − e−1)χ(ε,T), t > 0,

on the left-hand side of (5.30), we see that the integral on the right-hand side of (5.30) gets
absorbed for ω sufficiently small, leading to
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∫ T

ε

(∫
Ω

(
ε|∂tvε +

3
2

rotvε × vε|2
)

+

∫
Ω

(|Dvε|2 + |Dvε|r + ε|Dvε|4 + ε|Dvε|q)

+

∫
ΓN

(|vε|2 + |vε|r + ε|vε|4 + ε|vε|q)

)
+

∫
Ω

|vε(T)|2 � C.

Putting this information together with (5.21) and then taking the essential supremum over T >
0, we arrive at ∫ ∞

0

(∫
Ω

(|Dvε|2 + |Dvε|r + ε|Dvε|4 + ε|Dvε|q)

+

∫
ΓN

(|vε|2 + |vε|r + ε|vε|4 + ε|vε|q)

)
+ ess sup

(0,∞)

∫
Ω

|vε|2 � C (5.31)

and also at ∫ ε

0

∫
Ω

ε| ◦
v ε|2 +

∫ ∞

ε

∫
Ω

ε| ◦
v ε +

1
2

rotvε × vε|2 � C. (5.32)

By virtue of (3.23), estimate (5.31) is equivalent to (5.17). Moreover, the information∥∥∥ε 1
4 vε

∥∥∥
X 4

� C implies that
∥∥∥ε 1

2 rotvε × vε

∥∥∥
2
� C via (5.2) which, together with (5.32),

yields (5.18) through the Young inequality. Moreover, by a similar estimate to (5.29), we also
immediately obtain (5.19) from (5.17).

To extract information about ∂tvε, we need first to estimate rotvε × vε in an appro-
priate dual space. In the case r � 3, we use the information that rotvε is bounded in
L2(0,∞; L2(Ω;R3)) and that vε is bounded in L∞(0,∞; L2(Ω;R3)) ∩ L2(0,∞; L6(Ω;R3))
(using the Sobolev embedding), which leads to

‖rotvε × vε‖
L2(0,∞;L1)∩L1(0,∞;L

3
2 )

� C (5.33)

by the Hölder inequality. An interpolation then gives

‖rotvε × vε‖
Lr′ (0,∞;L

3r
2r+2 )

� C.

As 3r
2r+2 � 9

8 > 1 and X r ↪→ Lr(0,∞; L9(Ω;R3)), we deduce that

‖rotvε × vε‖(X r)′ � C‖rotvε × vε‖
Lr′ (0,∞;L

9
8 )

� C. (5.34)

On the other hand, if 11
5 � r < 3, we use instead the information that vε is bounded in X r,

replacing (5.33) with

‖rotvε × vε‖
Lr(0,∞;L

2r
r+2 )∩L

r
2 (0,∞;L

3r
6−r )

� C.

Using interpolation once again yields

‖rotvε × vε‖Lr′ (0,∞;Lz′ ) � C, where z :=
6r

(r − 2)(5r − 3)
.
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A direct calculation verifies that, in the considered range of r, we have 1 < z � 33
4 � 3r

3−r ,
hence the embeddings

W1,r(Ω;R3) ↪→ Lz(Ω;R3) and Lr′ (0,∞; Lz′(Ω;R3)) ↪→ (X r)′,

hold true, from which we deduce

‖rotvε × vε‖(X r)′ � C‖rotvε × vε‖Lr′ (0,∞;Lz′ ) � C.

This together with (5.34) gives

‖rotvε × vε‖(X r)′ � C (5.35)

for any r � 11
5 .

Next, we estimate
◦
v ε by applying a similar method as in [56]. Estimates (5.17)–(5.19)

proved thus far and the Hölder inequality show that the functionals N1
εvε, N2

εvε, A1
εvε, A2

εvε

and Avε, defined in lemma 3, are bounded in the following sense:∥∥N1
εvε

∥∥
(X

2q
q−2 )′

� C
∥∥∥ε 1

q vε

∥∥∥
X q

∥∥∥ε 1
2 ∂tvε

∥∥∥
L2(0,∞;L2)

� C, (5.36)

∥∥N2
εvε

∥∥
(X

q
q−3 )′

� C
∥∥∥ε 1

q vε

∥∥∥3

X q
� C, (5.37)

∥∥A1
εvε

∥∥
(X 4)′ � C

∥∥∥ε 1
4 vε

∥∥∥3

X 4
� C, (5.38)

∥∥A2
εvε

∥∥
(X q)′ � C

∥∥∥ε 1
q vε

∥∥∥q−1

X q
� C, (5.39)

‖Avε‖(X 2∩X r )′ � C‖vε‖X 2 + C‖vε‖r−1
X r � C. (5.40)

Then, we use (5.15) to express
◦
v ε as a temporal convolution with the kernel K(t) := ε−1 e

t
ε χt�0.

This leads to

◦
v ε = K ∗ (ε

1
2−

1
q N1

εvε + ε1− 3
q N2

εvε + ε
1
q Aεvε + Avε − f ), (5.41)

which is understood as an identity in the space L1
loc(0,∞; V−1,q′

div ). Using the properties of con-
volution, (5.36)–(5.40), and recalling (5.14), the right-hand side of (5.41) is a continuous linear
functional in the space X 2 ∩ X q. Identity (5.41) thus gives∥∥∥ ◦

v ε

∥∥∥
(X 2

div∩X
q
div)′

� C (5.42)

and in combination with (5.35) and the embedding X 2
div ∩ X q

div ↪→ X r, this proves (5.20). �
It is clearly seen in the proof above that the assumption r � 11

5 is used only to show that the
convective term is a bounded functional on X r, uniformly with respect to ε > 0. This informa-
tion is useful later when taking the limit ε→ 0+. Otherwise, it is important that r � 2, because
then one can absorb the term

∫
Ω(∇vε)vε · vε

0, recall (5.29) and remark (f) above.
It is apparent that the term ε|Dvε|4 is needed to control terms related to the convective term.

The role of the higher order stabilisation ε|Dvε|q, q > 4, is later clarified while taking the limit
ε→ 0+.

Comparing with the usual existence theories for Navier–Stokes equations, one may wonder
why we need a super-linear growth also in the boundary terms on ΓN. We recall that we do not
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want to impose additional geometrical assumptions on Ω. In this case, there will always be
a term on the right-hand side of (3.23) that controls the overall speed of the flow (to have
just ‖w‖1,p � c′p‖Dw‖p, one would need to exclude domains that are ‘too special’ such as
axisymmetric domains, parallel plates etc) As opposed to usual existence theories, we cannot
choose this term to be (

∫
Ω|w|)p since we do not know that ‖vε‖L∞(0,∞;L2) is bounded a priori.

In our case, this information needs to be carefully deduced from the Euler–Lagrange equations
by testing with a solution (minimum), but this generates many terms without a sign, especially
in the case with nonhomogeneous data, as can be seen in the proof above. It thus seems natural
to take instead into consideration the fact that the fluid loses energy also due to friction on ΓN.
But then (3.23) indirectly requires the scalings of S and s to be compatible, explaining the same
nonlinear growth. The whole situation would simplify in the case we considered Iε for the full
velocity gradient, since then one does not need the Korn inequality. Nevertheless, even for the
Poincaré inequality to hold in the form ‖w‖1,p � c′′p‖∇w‖p, certain domains have to be ruled
out.

5.4. Pressure reconstruction

At this point, the most of the work leading to theorem 1 is done. Before proceeding with its
proof, let us state one more auxiliary result, that is used in the pressure construction. Let us
define Lp

0(Ω;R) := { f ∈ Lp(Ω;R) :
∫
Ω f = 0}. Up to the boundary conditions, the following

proposition is very standard.

Proposition 5. Let 1 < p < ∞ and g∈ V−1,p′ be such that

〈g,ϕ〉 = 0 for all ϕ ∈ V1,p
div . (5.43)

Then, there exists an unique function q ∈ Lp′
0 (Ω;R) satisfying

〈g,ϕ〉 = −
∫
Ω

q div ϕ for all ϕ ∈ V1,p (5.44)

and

‖q‖p′ � C(p,Ω)‖g‖V−1,p′ . (5.45)

Proof. Since W1,p
0 (Ω;R3) ⊂ V1,p, one can apply, e.g., the result [25, III.5.1] to get (5.44).

The pressure estimate (5.45) can be found, e.g., in [8, corollary 2.5.].
To see more explicitly that the boundary conditions encoded in V1,p do not cause any

difficulties, one can show that the auxiliary problem∫
Ω

|∇u|p−2∇u · ∇ϕ+

∫
Ω

|u|p−2u · ϕ−
∫
Ω

q div ϕ = 〈g,ϕ〉 (5.46)

for all ϕ ∈ V1,p admits an unique solution (u, q) ∈ V1,p × Lp′
0 (Ω;R) whenever g∈ V−1,p′,

which then obviously gives (5.44) if (5.43) holds. This is nothing but the weak formulation
of the nonlinear problem

div u = 0, − div(|∇u|p−2∇u) + |u|p−2u +∇q = g in Ω,

u = 0, on ΓD,

u · n = 0, ((−qI+ |∇u|p−2∇u)n)τ = 0 on ΓN,∫
Γi

F

u · n = 0, (−qI+ |∇u|p−2∇u)n = cin on Γi
F,
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where ci are the Lagrange multipliers to the constraints
∫
Γi

F
u · n = 0, i = 0, . . . , n. To find a

solution to (5.46) one may proceed by minimising the functional

Jk(u) :=
1
p

∫
Ω

(|∇u|p + |u|p + k| div u|p) − 〈g, u〉

and letting k →∞ (cf [67, chapter I, section 6]). In any case, to obtain the pressure estimate
(5.45), one has to verify the inf-sup condition

inf
q∈Lp′

0 (Ω;R)

sup
ϕ∈V1,p

∫
Ωq div ϕ

‖q‖p′ ‖ϕ‖1,p

� C > 0.

This condition is again an immediate consequence of W1,p
0 (Ω;R) ⊂ V1,p, the fact that the norms

‖·‖1,p and ‖∇·‖p are equivalent on W1,p
0 (Ω;R3) and the standard inf-sup condition for the pair

(W1,p
0 (Ω;R3), Lp′

0 (R)) (to be found in various forms in the works by Ladyzhenskaya, Lions,
Magenes, Babuška, Nečas, or Brezzi), which can be proved by applying the Bogovskii operator
to |q|p′−2q − 1

|Ω|
∫
Ω|q|p

′−2q ∈ Lp
0(Ω;R). �

Note that proposition 5 works for a general Lipschitz domain Ω (actually only the local
cone property is needed), which is desirable in our application, cf figure 1. This contrasts with
other methods of constructing q, such as the Helmholtz decomposition or the Lp-theory for the
Stokes system that require some regularity of ∂Ω, cf [8] and references therein.

5.5. Passage to the limit as ε→ 0+

Let {vε}ε>0 be a sequence of minimisers to Iε, which exist due to lemmas 2 and 3.
The uniform estimates (5.17)–(5.20) guaranteed by lemma 4, reflexivity of the underlying

spaces and standard compactness arguments involving the compact Sobolev embeddings, the
Aubin–Lions lemma and the Vitali convergence theorem imply the existence of a function v
with property (4.3) and of a (not relabelled) subsequence of {vε}ε>0, satisfying (4.6)–(4.9)
and also

rotvε × vε ⇀ rotv × v weakly in L
r
2 (Q∞;R3), (5.47)

◦
v ε ⇀

◦
v weakly in (X 2

div ∩ X q
div)′, (5.48)

ε|Dvε|2Dvε → 0 strongly in L
4
3 (Q∞;R3), (5.49)

ε|Dvε|q−2
Dvε → 0 strongly in Lq′(Q∞;R3), (5.50)

S(Dvε) ⇀ S weakly in L2(Q∞;R3×3
sym ) + Lr′ (Q∞;R3×3

sym ), (5.51)

ε|vε|2vε → 0 strongly in L
4
3 (Σ∞;R3), (5.52)

ε|vε|q−2vε → 0 strongly in Lq′ (Σ∞;R3), (5.53)

s(vε) ⇀ z weakly in L2(Σ∞;R3) + Lr′ (Σ∞;R3), (5.54)
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for some functions S and z and for ΣT := (0, T) × ΓN, T ∈ (0,∞]. These convergences are
clearly sufficient to take the limit in (4.1), yielding∫ ∞

0

∫
Ω

(−v · ∂tϕ+ (rotv × v) · ϕ+ S · Dϕ) +
∫ ∞

0

∫
ΓN

z ·ϕ =

∫ ∞

0

∫
Ω

f ·ϕ (5.55)

for allϕ ∈ C∞
c ((0,∞); V1,q

div). Recalling (5.35), note that all terms, except for the time derivative,
are well defined also if ϕ ∈ X 2

div ∩ X r
div. Therefore, we read from (5.55) that the functional ∂tv

extends uniquely to ∂tv ∈ (X 2
div ∩ X r

div)′ (proving (4.4)), and hence∫ ∞

0
〈∂tv,ϕ〉+

∫
Q∞

((rotv × v) ·ϕ+ S · Dϕ− f ·ϕ) +
∫ ∞

0

∫
ΓN

z ·ϕ = 0 (5.56)

for all ϕ ∈ X 2
div ∩ X r

div.
To identify v(0), we recall that, by our construction, we have vε(0) = vε

0(0) → u0 strongly

in L2(Ω;R3). Further, as the sequence ∂tvε is uniformly bounded in Lq′ (0, T; V−1,q′
div ) for some

T > 0, there is a non relabelled subsequence vε converging strongly in C([0, T]; V−1,q′
div ) by the

Arzelà–Ascoli theorem. In particular, we have vε(0) → v(0) in V−1,q′
div , and hence v(0) = u0

(as both v(0) and u0 are divergence-free), which is (4.5).
By the properties of the trace operator (see [16, corollary 1.13]), it is standard to show that

the trace of vε actually converges strongly to the trace of v on ΓN (proving the second part of
(4.8)) and then, by the continuity of s, this necessarily means that z = s(v).

To prove (4.10), it remains to identify the weak limit S. To this end, we take advantage of the
fact that in the considered case r � 11

5 , the function v, after a correction of boundary values, is
an admissible test function in (5.56). Let vδ be a fixed element of the approximating sequence
{vε}ε>0 and let 0 � η ∈ C∞

c ((0, T)), T > 0. Next, we observe that

h :=
∫ T

0

(〈 ◦
v , vδ

〉
+

∫
Ω

(S · Dvδ − f · vδ) +
∫
ΓN

s(v) · vδ

)
η (5.57)

and

hε :=
∫ T

0

(∫
Ω

( ◦
v ε · (vδ + ε∂tvδ + ε rotvε × vδ + ε rotvδ × vε)

+ Sε(Dvε) · Dvδ − f · vδ) +
∫
ΓN

sε(vε) · vδ

)
η + ε

∫ T

0

∫
Ω

◦
v ε · vδ∂tη (5.58)

are well-defined and finite quantities. Moreover, using the convergence results (4.6)–(4.9) and
(5.47)–(5.54), lemma 4 and the property vδ ∈ vδ

0 + X 2
div ∩ X q

div, it is not hard to show

hε → h as ε→ 0+. (5.59)

Further, using ϕ := (v − vδ)η ∈ X 2
div ∩ X r

div as a test function in (5.56) leads to

∫
QT

(
−1

2
|v|2∂tη + S · Dvη − f · vη

)
+

∫
ΣT

s(v) · vη = h. (5.60)

Next, we use ψ := (vε − vδ)η ∈ X 2
div ∩ X q

div in (4.1) and (5.23), Young’s and Hölder’s inequal-
ities, q > 4, and (5.2), giving
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∫
QT

(
−1

2
|vε|2∂tη + Sε(Dvε) · Dvεη − f · vεη

)
+

∫
ΣT

sε(vε) · vεη

= −ε

∫
QT

(∂tvε · ∂t(vεη) + (rotvε × vε) · ∂t(vεη)

+ 2∂tvε · (rotvε × vε)η + 2|rotvε × vε|2η
)
+ hε

= ε

∫
QT

(
1
2
|vε|2∂2

ttη − |∂tvε|2η − 3∂tvε · (rotvε × vε)η − 2|rotvε × vε|2η
)
+ hε

� ε

∫
QT

(
1
2
|vε|2∂2

ttη +
1
4
|rotvε × vε|2η

)
+ hε

� C(η)

(
ε‖vε‖2

X 2 + ε1− 4
q

∥∥∥ε 1
q vε

∥∥∥4

X 4

)
+ hε � C(η, T)(ε+ ε1− 4

q ) + hε.

Now, we take the limes superior of this inequality and on the left-hand side we use that vε → v
strongly in L2(QT ;R3) (by interpolation and Vitali’s theorem), the inequality Sε(Dvε) · Dvε �
S(Dvε) · Dvε, and in the boundary term we use (4.8) and Fatou’s lemma. This way, we get

h � lim sup
ε→0+

(∫
QT

(
−1

2
|vε|2∂tη + Sε(Dvε) · Dvεη − f · vεη

)
+

∫
ΣT

sε(vε) · vεη

)

� lim sup
ε→0+

∫
QT

S(Dvε) · Dvεη + lim
ε→0+

∫
QT

(
−1

2
|vε|2∂tη − f · vεη

)

+ lim inf
ε→0+

∫
ΣT

s(vε) · vεη

� lim sup
ε→0+

∫
QT

S(Dvε) · Dvεη +

∫
QT

(
−1

2
|v|2∂tη − f · vη

)
+

∫
ΣT

s(v) · vη.

Comparing this with (5.60) immediately leads to

lim sup
ε→0+

∫
QT

S(Dvε) · Dvεη �
∫

QT

S · Dvη.

Hence, by the monotonicity of S, we get, for any W ∈ Lr(QT ;R3×3
sym ), that

0 � lim sup
ε→0+

∫
QT

(S(Dvε) − S(W)) · (Dvε − W)η

�
∫

QT

(S · Dv − S · W − S(W) · Dv + S(W) · W)η

=

∫
QT

(S − S(W)) · (Dv − W)η.

Choosing now W = Dv + λU, U ∈ Lr(QT ;R3×3
sym ) and dividing by λ > 0 yields

0 �
∫

QT

(S(Dv + λU) − S) · Uη
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and, consequently, using the continuity of S to take the limit λ→ 0+, we arrive at

0 �
∫

QT

(S(Dv) − S)η · U.

Since U is arbitrary, we deduce that S(Dv)η = Sη a.e. in QT, but since η and T are also arbitrary,
we conclude that S(Dv) = S a.e. in Q∞ and (4.10) is proved.

In the next step, we prove (4.12) by constructing a pressure in (4.10). Since the test func-
tions from (4.10) must vanish on ΓD, we follow the same construction of pressure as in [71,
theorem 2.6.], but only partially, since we do not need a pressure decomposition here.

We fix t ∈ (0,∞) and choose ϕ = χ(−∞,t]ψ in (5.56) to get

〈g(t),ψ〉 = 0 for all ψ ∈ C∞
∂,div, (5.61)

where

〈g(t),ψ〉 :=
∫
Ω

v(t) · ψ +

∫
Ω

∫ t

0
(rotv × v) ·ψ −

∫
Ω

∫ t

0
f ·ψ

+

∫
Ω

∫ t

0
S(Dv) · Dψ +

∫
ΓN

∫ t

0
s(v) · ψ, ψ ∈ V1,r. (5.62)

As V1,r ↪→ V1,2 ↪→ V1, 3
2 ↪→ V1, 6

5 ↪→ L2(Ω;R3) and V1, 3
2 ↪→ L3(Ω;R3), the functional g can be

estimated using (4.3) as

‖g(t)‖V−1,r′ � C sup
‖ϕ‖1,r�1

(
‖v(t)‖2‖ϕ‖2 +

∫ t

0
‖rotv‖2‖v‖6‖ϕ‖3 +

∫ t

0
‖ f‖2‖ϕ‖2

+

∫ t

0
‖S(Dv)‖r′ ‖Dϕ‖r +

∫ t

0
‖s(v)‖r′ ;ΓN

‖ϕ‖r;ΓN

)

� C‖v(t)‖2 + C
∫ t

0
(‖v‖2

1,2 + ‖ f‖2 + ‖S(Dv)‖r′ + ‖s(v)‖r′ ;ΓN
) � C(1 + t

1
2 ).

Consequently, the relation (5.61) holds also for all V1,r
div and thus, by proposition 5, there

exists a unique function Q(t) ∈ Lr′
0 (Ω;R) satisfying

−
∫
Ω

Q(t) div ϕ = 〈g,ϕ〉 for all ϕ ∈ V1,r (5.63)

and

‖Q(t)‖r′ � C(1 + t
1
2 ),

showing that Q ∈ L∞
loc(0,∞; Lr′

0 (Ω;R)) (the Bochner measurability of Q is a consequence of
the weak continuity of v in time). Further, we infer from (5.62) and (5.63) that

−
∫ ∞

0

∫
Ω

v · ∂tψ +

∫ ∞

0

(∫
Ω

(rotv × v) ·ψ +

∫
Ω

S(Dv) · Dψ +

∫
ΓN

s(v) · ψ
)

=

∫ ∞

0

∫
Ω

f ·ψ +

∫ ∞

0

∫
Ω

Q div ∂tψ (5.64)
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for all ψ ∈ C∞
c ((0,∞); V1,r). Next, we define the function

K(t, x) :=
∫ t

0

1
2
|v(s, x)|2 ds

and note, using properties of the Bochner integral, that

2 ess sup
(0,T)

‖K‖3 =

∥∥∥∥
∫ T

0
|v|2

∥∥∥∥
3

�
∫ T

0
‖v‖2

6 � ‖v‖2
X 2 � C

for all T > 0, hence K ∈ L∞(0,∞; L3(Ω;R)). Next, integration by parts shows

−
∫ ∞

0

∫
Ω

K div ∂tψ =

∫ ∞

0

∫
Ω

1
2
|v|2 div ψ

=

∫ ∞

0

∫
ΓF

1
2
|v|2ψ · n −

∫ ∞

0

∫
Ω

∇
(

1
2
|v|2

)
·ψ,

where we used that ∇( 1
2 |v|2) = (∇v)Tv is summable in Q∞ and that

v ∈ L2(0,∞; W
1
2 ,2(∂Ω;R3)) ↪→ L2(0,∞; L4(∂Ω;R3)).

Adding this to (5.64), recalling (1.4) and defining

P0 :=Q + K ∈ L∞
loc(0,∞; Lr′(Ω;R))

leads to (4.12) with P0 instead of P. Finally, we remark that the form of (4.12) remains
unchanged if the pressure is shifted by a function E ∈ L∞

loc(0,∞;R) of time only. Indeed, this
is a consequence of∫ ∞

0

∫
Ω

E div ∂tψ =

∫ ∞

0
E ∂t

∫
∂Ω

ψ · n = 0 for all ψ ∈ C∞
c ((0,∞); V1,r).

The choice P :=P0 − 1
|Ω|

∫
ΩK + D then leads precisely to (4.11) and (4.12).

5.6. Identification of boundary conditions

To conclude the proof, it remains to identify the boundary conditions on ΓN ∪ ΓF, that are
encoded implicitly in (4.12). Let us choose ψ = ψϕ with ϕ ∈ V1,r and ψ ∈ C1

c ((0,∞);R)
fixed, use the fact that S · Dϕ = S · ∇ϕ whenever S is a symmetric matrix, and rewrite (4.12)
as ∫

Ω

Tψ · ∇ϕ =

∫
Ω

∫ ∞

0
(v∂tψ − (∇v)vψ + fψ) · ϕ

+

∫
ΓF

∫ ∞

0

1
2
|v|2nψ ·ϕ−

∫
ΓN

∫ ∞

0
s(v)ψ ·ϕ. (5.65)

In particular, by choosing ϕ with compact support in Ω and taking into consideration that
∇v ∈ Lr(0,∞; Lr(Ω;R3)) ↪→ Lr(0,∞; L2(Ω;R3)) and v ∈ X r

div ↪→ Lr(0,∞; L6(Ω;R3)) imply

(∇v)v ∈ L
r
2 (0,∞; L

3
2 (Ω;R3)), we read from (5.65) that

div Tψ ∈ L
3
2 (Ω;R3).
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Hence, we can define a continuous linear functional

Tψn ∈ (W
1
r′ ,r(∂Ω;Rd))′ (5.66)

by the formula

〈Tψn,w〉 :=
∫
Ω

(div Tψ · Ew + Tψ · ∇Ew) for all w ∈ W
1
r′ ,r(∂Ω;Rd),

where E : W
1
r′ ,r(∂Ω;R3) → W1,r(Ω;R3) is the continuous linear trace-extension operator

(inverse of the trace operator). Then, integration by parts in (5.65) yields∫
Ω

(
div Tψ −

∫ ∞

0
(v∂tψ − (∇v)vψ + fψ)

)
· ϕ

= 〈Tψn,ϕ〉ΓF −
∫
ΓF

∫ ∞

0

1
2
|v|2nψ · ϕ

+ 〈Tψn,ϕ〉ΓN +

∫
ΓN

∫ ∞

0
s(v)ψ ·ϕ. (5.67)

for all ϕ ∈ V1,r andψ ∈ C1
c ((0,∞);R). Since this is true in particular for everyϕ ∈ C∞

c (Ω;R3),
we recover the Navier–Stokes equation in the form

div Tψ =

∫ ∞

0
(v∂tψ − (∇v)vψ + fψ) a.e. inΩ,

and, consequently, returning to (5.67), also

〈Tψn,ϕ〉ΓF −
∫
ΓF

∫ ∞

0

1
2
|v|2nψ · ϕ

+ 〈Tψn,ϕ〉ΓN +

∫
ΓN

∫ ∞

0
s(v)ψ ·ϕ = 0 for all ϕ ∈ V1,r. (5.68)

Let w ∈ W1,∞
0,n (ΓN;R3) and extend it by zero to ∂Ω. Then, we have w ∈ W1,∞(∂Ω;R3) and∫

∂Ω w · n = 0. Therefore, w can be extended to a Lipschitz function in Ω such that w ∈ V1,r.
Hence, (5.68) yields

〈Tψn,w〉ΓN +

∫
ΓN

∫ ∞

0
s(v)ψ ·w = 0 for all w ∈ W1,∞

0,n (ΓN;R3).

Recalling (5.66) and (3.25), this remains valid for all w ∈ W
1
r′ ,r

0,n (ΓN;R3), proving (4.15). Next,
let 0 � i � n and choose w ∈ W1,∞

0 (Γi
F;R3) such that

∫
Γi

F
w · n = 0, extend this function by

zero to whole ∂Ω, and use (5.68) to deduce

〈G,w〉 = 0 for all w ∈ W1,∞
0 (Γi

F;R3) with
∫
Γi

F

w · n = 0, (5.69)

where we abbreviated

〈G,w〉 := 〈Tψn,w〉Γi
F
−
∫
Γi

F

∫ ∞

0

1
2
|v|2nψ ·w.
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The restriction of w on Γi
F is a consequence of the prescribed net fluxes and of the incompress-

ibility of v, recall the definition of V1,r. SinceΓi
F is locally a graph of a Lipschitz function, there

exists a vector field ξi ∈ W1,∞(Γi
F;R3) such that ξi · n > 0 on Γi

F. Moreover, it is clear that ξi

can be chosen in a way that ξi ∈ W1,∞
0 (Γi

F;R3) and
∫
Γi

F
ξi · n = 1. Let z ∈ W1,∞

0 (Γi
F;R3). Then,

the function

w := z − ξi

∫
Γi

F

z · n

can be used in (5.69), leading to

〈G, z〉 = 〈G, ξi〉
∫
Γi

F

z · n =

∫
Γi

F

〈G, ξi〉n · z =
∫
Γi

F

(ci)ψn · z.

Since z ∈ W1,∞
0 (Γi

F;R3) was arbitrary and n ∈ L∞(Γi
F;R3), we deduce (4.16) by virtue of (3.24)

and (5.66). �
The bounds r � 11

5 and q > 4 are evidently used only to identify that the weak limit of
Sε(Dvε) is S(Dv). The assumption r � 11

5 greatly simplifies the identification procedure since
then the function v can be used (after minor corrections) in (4.10) as a test function. It is
however unlikely that this bound for r is necessary since in the mathematical theory of non-
Newtonian fluids, more refined arguments are available for the limit identification. Unfortu-
nately, the application of the methods of either [71] or [14] to our ε-approximation scheme
seems not straightforward. Therefore, the case 6

5 < r < 11
5 , r �= 2 is left open. However, this

drawback seems not so significant in the view of the fact that our method works for p-fluids
with p sufficiently large that can approximate a flow of an r-fluid for arbitrary r > 6

5 , see the
proof of [14, theorem 3.1], effectively avoiding the ε-approximation.
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[62] Rossi R, Savaré G, Segatti A and Stefanelli U 2019 Weighted energy-dissipation principle for
gradient flows in metric spaces J. Math. Pure Appl. 127 1–66

[63] Serra E and Tilli P 2012 Nonlinear wave equations as limits of convex minimisation problems: proof
of a conjecture by De Giorgi Ann. Math. 175 1551–74

[64] Serra E and Tilli P 2016 A minimisation approach to hyperbolic Cauchy problems J. Eur. Math.
Soc. 18 2019–44

[65] Spadaro E N and Stefanelli U 2011 A variational view at the time-dependent minimal surface
equation J. Evol. Equ. 11 793–809

[66] Stefanelli U 2011 The De Giorgi conjecture on elliptic regularisation Math. Models Methods Appl.
Sci. 21 1377–94

[67] Temam R 1977 Navier–Stokes Equations: Theory and Numerical Analysis Studies in Mathematics
and Its Applications vol 2 (Amsterdam: North-Holland)

[68] Tentarelli L and Tilli P 2018 De Giorgi’s approach to hyperbolic Cauchy problems: the case of
nonhomogeneous equations Commun. Partial Differ. Equ. 43 677–98

[69] Tentarelli L and Tilli P 2019 An existence result for dissipative nonhomogeneous hyperbolic
equations via a minimisation approach J. Differ. Equ. 266 5185–208

[70] Turek S 1994 Tools for simulating non-stationary incompressible flow via discretely divergence-free
finite element models Int. J. Numer. Methods Fluids 18 71–105

[71] Wolf J 2007 Existence of weak solutions to the equations of non-stationary motion of non-
Newtonian fluids with shear rate dependent viscosity J. Math. Fluid Mech. 9 104–38

5592

https://doi.org/10.1002/(sici)1097-0363(19970228)24:4&tnqx3c;413::aid-fld507&tnqx3e;3.0.co;2-n
https://doi.org/10.1002/(sici)1097-0363(19970228)24:4&tnqx3c;413::aid-fld507&tnqx3e;3.0.co;2-n
https://doi.org/10.1002/(sici)1097-0363(19970228)24:4&tnqx3c;413::aid-fld507&tnqx3e;3.0.co;2-n
https://doi.org/10.1002/(sici)1097-0363(19970228)24:4&tnqx3c;413::aid-fld507&tnqx3e;3.0.co;2-n
https://doi.org/10.1016/j.crma.2011.11.002
https://doi.org/10.1016/j.crma.2011.11.002
https://doi.org/10.1016/j.crma.2011.11.002
https://doi.org/10.1016/j.crma.2011.11.002
https://doi.org/10.1016/j.matpur.2018.06.022
https://doi.org/10.1016/j.matpur.2018.06.022
https://doi.org/10.1016/j.matpur.2018.06.022
https://doi.org/10.1016/j.matpur.2018.06.022
https://doi.org/10.4007/annals.2012.175.3.11
https://doi.org/10.4007/annals.2012.175.3.11
https://doi.org/10.4007/annals.2012.175.3.11
https://doi.org/10.4007/annals.2012.175.3.11
https://doi.org/10.4171/jems/637
https://doi.org/10.4171/jems/637
https://doi.org/10.4171/jems/637
https://doi.org/10.4171/jems/637
https://doi.org/10.1007/s00028-011-0111-5
https://doi.org/10.1007/s00028-011-0111-5
https://doi.org/10.1007/s00028-011-0111-5
https://doi.org/10.1007/s00028-011-0111-5
https://doi.org/10.1142/s0218202511005350
https://doi.org/10.1142/s0218202511005350
https://doi.org/10.1142/s0218202511005350
https://doi.org/10.1142/s0218202511005350
https://doi.org/10.1080/03605302.2018.1459686
https://doi.org/10.1080/03605302.2018.1459686
https://doi.org/10.1080/03605302.2018.1459686
https://doi.org/10.1080/03605302.2018.1459686
https://doi.org/10.1016/j.jde.2018.10.023
https://doi.org/10.1016/j.jde.2018.10.023
https://doi.org/10.1016/j.jde.2018.10.023
https://doi.org/10.1016/j.jde.2018.10.023
https://doi.org/10.1002/fld.1650180105
https://doi.org/10.1002/fld.1650180105
https://doi.org/10.1002/fld.1650180105
https://doi.org/10.1002/fld.1650180105
https://doi.org/10.1007/s00021-006-0219-5
https://doi.org/10.1007/s00021-006-0219-5
https://doi.org/10.1007/s00021-006-0219-5
https://doi.org/10.1007/s00021-006-0219-5

	Variational resolution of outflow boundary conditions for incompressible Navier–Stokes
	1.  Introduction
	2.  Physical motivation
	2.1.  The problem of outflow boundary conditions
	2.2.  An optimisation problem in order to qualify boundary conditions
	2.3.  The WIDE functional
	2.4.  Interpretation of (1.10) and (1.11)
	2.5.  On the pressure and the constants ci

	3.  Technical assumptions & definitions
	3.1.  Constitutive assumptions for S and s
	3.2.  The precise description of the domain 
	3.3.  Function spaces
	3.4.  Nonhomogeneous data

	4.  Main result: variational resolution of Navier–Stokes equations with outflow boundary conditions
	5.  Proof of the main result
	5.1.  Existence of minima
	5.2.  Euler–Lagrange equations
	5.3.  A priori estimates
	5.4.  Pressure reconstruction
	5.5.  Passage to the limit as 0+
	5.6.  Identification of boundary conditions

	References


