Universal Algebra Exercises - Homework 3

Exercise 1. Let R be a commutative ring, such that for every non-zero element a also $a^n \neq 0$ holds for all n > 0 (such a ring is called reduced).

- (i) Show that for any non-zero $a \in R$ there is a prime ideal P_a with $a \notin P_a$. (Hint: Pick a P_a to be the greatest ideal that does not contain any power a, a^2, a^3, \ldots)
- (ii) Show that R is a subdirect product of integral domains.

Exercise 2. Let \mathcal{V} be a variety of algebras (A, \cdot, l, r) of type (2, 1, 1) that satisfy the axioms

$$l(x \cdot y) = x$$
, $r(x \cdot y) = y$, $l(x) \cdot r(x) = x$

- (i) Show that every nontrivial member of \mathcal{V} is infinite.
- (ii) Show that, if \mathbb{A} is generated by $\{a_1, a_2, \dots, a_n\}$, then it is already generated by $\{(a_1 \cdot a_2), \dots, a_n\}$
- (iii) Let $\mathcal{F}_{\mathcal{V}}(n)$ be the free algebra in \mathcal{V} with n generators. Show that $\mathcal{F}_{\mathcal{V}}(n) = \mathcal{F}_{\mathcal{V}}(m)$ for all positive integers n and m.

Exercise 3. Let \mathbb{A} be the semigroup given by the following multiplication table.

Prove the the variety generated by \mathbb{A} is exactly the variety of all commutative semigroups satisfying $x^3 \approx x^4$.