Universal Algebra Exercises - Sheet 8

If \mathcal{V} is a variety and X a set, let $F_{\mathcal{V}}(X)$ the free algebra in \mathcal{V} on the set X.

Exercise 1. Let \mathcal{V} be the variety of all algebras (A, f) where f is unary and $f^6 = f^2$. Determine and draw $F_{\mathcal{V}}(\{x\})$ and $F_{\mathcal{V}}(\{x,y\})$

Exercise 2. Let S be the variety of semigroups. Show that

$$F_{\mathcal{S}}(X) = (\{\text{nonempty words over } X\}, \circ)$$

where \circ is concatenation of words (for example $(xyz) \circ (zy) = (xyzzy)$).

Exercise 3. Let \mathcal{R} be the variety of semigroups satisfying

$$(x \cdot y) \cdot z \approx x \cdot z$$
 and $x \cdot x \approx x$

- (i) Describe $F_{\mathcal{R}}(X)$ for any set X.
- (ii) Find a natural homomorphism $F_{\mathcal{S}}(X) \to F_{\mathcal{R}}(X)$.
- (iii) Generalize (ii) to free algebras of any varieties $\mathcal{W} \subseteq \mathcal{V}$.

Exercise 4. Let \mathcal{V} be the variety of distributive lattices.

- (i) Describe $F_{\mathcal{V}}(\{x\})$ and $F_{\mathcal{V}}(\{x,y\})$.
- (ii) Find an upper bound on the size of $F_{\mathcal{V}}(\{x_1,\ldots,x_n\})$

Remark. The question of whether $F_{\mathcal{V}}(X)$ is always finite for finite X is in general undecidable. It is even unknown if $F_{\mathcal{V}}(\{x,y\})$ is finite when \mathcal{V} is the variety of groups with $(a^5 \approx 1)$. This is part of "Burnsides Problem".

Exercise 5. Let \mathcal{V} be the variety of semilattices. Show that

$$F_{\mathcal{V}}(X) = (2^X \setminus \{\emptyset\}, \cup)$$