

Universal Algebra Exercises - Sheet 12

Definition. An algebra \mathbb{A} is called *congruence distributive* if its congruence lattice $\text{Con}(\mathbb{A})$ is distributive. A variety \mathcal{V} is called congruence distributive if it contains only congruence distributive algebras.

Theorem (Jónsson, 1967). Let \mathcal{V} be a variety and let $F = F_{\mathcal{V}}(\{x, y, z\})$ be the free algebra with three generators. The following are equivalent.

- (i) \mathcal{V} is congruence distributive
- (ii) F is congruence distributive
- (iii) there is an odd number n and ternary terms J_0, \dots, J_n that satisfy the following identities in \mathcal{V} :
 - $J_0(x, x, y) \approx x$
 - $J_n(x, y, y) \approx y$
 - $J_i(x, y, x) \approx x$ for all i
 - $J_i(x, x, y) \approx J_{i+1}(x, x, y)$ for even i
 - $J_i(x, y, y) \approx J_{i+1}(x, y, y)$ for odd i

Exercise 1. Show that varieties with a majority term are congruence distributive. Can you do it without Jónssons theorem?

Exercise 2. Prove Jónssons theorem.

- (i) Note that (i) \implies (ii) is trivial.
- (ii) Let α, β and γ be the congruences in F generated by a single pair $(x, y), (y, z)$ and (x, z) respectively. Show that $(x, z) \in (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$.
- (iii) Conclude that there are elements j_0, \dots, j_n in F with

$$x(\alpha \wedge \gamma)j_0(\beta \wedge \gamma) \dots (\alpha \wedge \gamma)j_n(\beta \wedge \gamma)z$$

- (iv) Use this to show (ii) \implies (iii).
- (v) Try to show (iii) \implies (i).