

Universal Algebra Exercises - Sheet 11

Exercise 51. Let $\mathbb{A} = (A, *)$ be an algebra where $A = \{0, 1, 2, 3\}$ and $*$ is defined by the following multiplication table.

*	0	1	2	3
0	1	2	1	0
1	0	3	2	3
2	1	0	1	0
3	2	3	2	1

Show that there is no function $f \in \text{Clo}(\mathbb{A})$ satisfying the following.

- (i) $f(3, 1, 3, 3, 3) = 0$
- (ii) $f(1, 0, 2, 3, 2) = 0$ and $f(1, 0, 0, 3, 2) = 1$

Exercise 52. Consider a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ and recall the definition of its dual $f^d(x_1, \dots, x_n) = \neg f(\neg x_1, \dots, \neg x_n)$.

- (i) Show that $\text{Pol}(\neq) = \{f \mid f^d = f\}$.
- (ii) For any clone \mathcal{C} on the set $\{0, 1\}$, show that $\mathcal{C}^d := \{f^d \mid f \in \mathcal{C}\}$ is also a clone.
- (iii) Find a nice relational description of \mathcal{C}^d .

Exercise 53. For all numbers $n \geq 1$, define $\text{OR}_n := \{0, 1\}^n \setminus \{(0, \dots, 0)\}$.

- (i) Show that $\text{Clo}(\{0, 1\}; \rightarrow) = \text{Pol}(\text{OR}_n \mid n \geq 1)$
- (ii) Show that $\text{Clo}(\{0, 1\}; \rightarrow) \subsetneq \text{Pol}(\text{OR}_1, \dots, \text{OR}_n)$ for any $n \geq 1$.
- (iii) Show that $\text{Clo}(\{0, 1\}; \rightarrow) \neq \text{Pol}(R_1, \dots, R_n)$ for any finite set of relations R_1, \dots, R_n .