Central limit theorem for functionals of Gibbs particle processes ROBUST 2018, Rybník

Daniela Novotná 25.1.2018

Outline

1 [Particle processes](#page-2-0)

[The outcome space](#page-3-0) [Definition of particle process](#page-3-0)

2 [Gibbs particle processes](#page-5-0)

[Papangelou conditional intensity](#page-6-0) [Pair potential](#page-6-0) [Definition of Gibbs particle process](#page-6-0)

³ [Bounds on the Wasserstein distance](#page-9-0)

[Innovation](#page-10-0) [Main result](#page-10-0)

4 [Application of the main result](#page-12-0)

[Planar Gibbs segment process](#page-13-0) [Central limit theorem for functionals of Gibbs segment process](#page-13-0)

1 [Particle processes](#page-2-0)

[The outcome space](#page-3-0) [Definition of particle process](#page-3-0)

[Papangelou conditional intensity](#page-6-0) [Pair potential](#page-6-0) [Definition of Gibbs particle process](#page-6-0)

[Innovation](#page-10-0) [Main result](#page-10-0)

[Planar Gibbs segment process](#page-13-0) [Central limit theorem for functionals of Gibbs segment process](#page-13-0)

 $2Q$

K ロ ⊁ K 倒 ≯ K 差 ▶ K

Particle processes

The outcome space

- \bullet \mathcal{C}^d ...the system of all compact subsets in \mathbb{R}^d (equipped with the Hausdorff metric), $\mathcal{C}^{(d)} := \mathcal{C}^d \setminus \{\emptyset\}$
- \bullet N^d ... the space of all configurations (all locally finite, integer valued measures on $\mathcal{C}^{(d)}$)
- \mathcal{N}^d ... the standard σ -algebra on \mathbf{N}^d defined by

$$
\mathcal{N}^d = \sigma\left(\left\{\mathbf{x} \in \mathbf{N}^d : \text{card}\{K \in \mathbf{x} : K \in B\} = m\right\}, B \in \mathcal{B}(\mathcal{C}^d) \text{ bounded}, m \in \mathbb{N}\right)
$$

Particle process

Definition (Particle process)

Particle process is a point process on $\mathcal{C}^{(d)}$, i.e. a random element

$$
\xi:(\Omega,\mathcal{A},\mathbb{P})\to (\mathbf{N}^d,\mathcal{N}^d)
$$

∢ ロ ≯ -∢母 ≯ -∢ ヨ ≯ -∢

 $2Q$

Particle distribution

Reference particle distribution

• Let ${\mathbb Q}$ be a probability measure on ${\mathcal C}^{(d)}$ such that

$$
\mathbb{Q}(\{\mathsf{K}\in\mathcal{C}^{(d)}:c(\mathsf{K})=0\})=1
$$

• Assume $\mathbb{Q}(\{K\in\mathcal{C}^{(d)}:B(K)\subset B(0,R)\})=1$ for some $R>0$

Reference measure

• Let λ be a measure on $\mathcal{C}^{(d)}$ defined by

$$
\lambda(B)=\int_{\mathcal{C}^{(d)}}\int_{\mathbb{R}^d} \mathbf{1}_{[K+x\in B]}\,\mathrm{d} x\,\mathbb{Q}(\mathrm{d} K),\ B\in\mathcal{B}(\mathcal{C}^d)
$$

Daniela Novotn´a [ROBUST 2018](#page-0-0) 25.1.2018 5 / 19

 $2Q$

 4 ロ } 4 4 9 } 4 \equiv } -4

[The outcome space](#page-3-0) [Definition of particle process](#page-3-0)

2 [Gibbs particle processes](#page-5-0)

[Papangelou conditional intensity](#page-6-0) [Pair potential](#page-6-0) [Definition of Gibbs particle process](#page-6-0)

[Innovation](#page-10-0) [Main result](#page-10-0)

[Planar Gibbs segment process](#page-13-0) [Central limit theorem for functionals of Gibbs segment process](#page-13-0)

Papangelou conditional intensity

Definition (Papangelou conditional intensity)

Let μ be a point process on $\mathbb X$ with distribution $P_\mu.$ Let $\mathcal C^!$ is a measure on $X \times N$ that is absolutely continuous with respect to $\sigma \otimes P_{\mu}$, satisfying for all Borel $B \subset \mathbb{X}$ and $A \in \mathcal{N}$

$$
C^{1}[B \times A] = \mathbb{E} \left[\sum_{x \in \mu} \mathbf{1}\{x \in B\} \mathbf{1}\{\mu - \delta_{x} \in A\} \right].
$$

Then the Radon-Nikodým derivative $\lambda^*: \mathbb{X} \times \mathcal{N} \rightarrow \mathbb{R}_+$ of the measure $\textsf{C}^!$ w.r.t measure $\sigma \otimes P_{\mu}$ is called the P apangelou conditional intensity of the point process μ .

• λ^* is defined to satisfy for every Borel $B \subset \mathbb{X}$ and $A \in \mathcal{N}$ $C^1[B \times A] =$ B $\mathbb{E} \left[\lambda^*(u, \mu) \mathbf{1} \{ \mu \in A \} \right] \sigma(\mathrm{d}u).$

 $2Q$

K ロ ⊁ K 倒 ≯ K 差 ▶ K

Gibbs particle process

• Gibbs particle process can be defined via Dobrushin-Lanford-Ruelle (DLR) equation or via Georgii-Nguyen-Zessin (GNZ) equation

Definition (Gibbs particle process)

Daniela Novotná

Stationary Gibbs particle process μ with Papangelou conditional intensity λ^* , intensity measure λ and activity $\tau > 0$ is a particle process with distribution $P^{\tau,\beta}$ that satisfies

$$
\int_{\mathbf{N}^d}\sum_{K\in\mathbf{x}}f(K,\mathbf{x}\setminus\{K\})P^{\tau,\beta}(\mathrm{d}\mathbf{x})=\int_{\mathbf{N}^d}\int_{\mathcal{C}^{(d)}}f(K,\mathbf{x})\lambda^*(K,\mathbf{x})\lambda(\mathrm{d} K)P^{\tau,\beta}(\mathrm{d}\mathbf{x})
$$

for any measurable function $f: \mathcal{C}^{(d)} \times \mathsf{N}^d \to \mathbb{R}_+.$

In [Novotná, Beneš], the existence of stationary Gibbs particle process was proved.

Pair potential

Definition (Pair potential)

Pair potential is a measurable, translation invariant function $g: \mathcal{C}^d \to [0,\infty)$, with the property $g(\emptyset) = 0.$

• We deal with the Papangelou intensity λ^* of the form

$$
\lambda^*(K, \mathbf{x}) := \tau \exp\left\{-\beta \sum_{L \in \mathbf{x}} g(K \cap L)\right\}, \quad K \in \mathcal{C}^{(d)}, \mathbf{x} \in \mathbf{N}^d
$$

where $\tau > 0$ is called the activity and $\beta \geq 0$ is called the inverse temperature.

 $2Q$

[The outcome space](#page-3-0) [Definition of particle process](#page-3-0)

[Papangelou conditional intensity](#page-6-0) [Pair potential](#page-6-0) [Definition of Gibbs particle process](#page-6-0)

³ [Bounds on the Wasserstein distance](#page-9-0)

[Innovation](#page-10-0) [Main result](#page-10-0)

[Planar Gibbs segment process](#page-13-0) [Central limit theorem for functionals of Gibbs segment process](#page-13-0)

Innovation

Definition (Innovation)

We define the innovation of a Gibbs particle process μ as a random variable

$$
I_\mu(\varphi) = \sum_{K \in \mu} \varphi(K,\mu \setminus \{K\}) - \int_{\mathcal{C}^{(d)}} \varphi(K,\mu) \lambda^*(K,\mu) \lambda(\textup{d} K)
$$

for any measurable $\varphi: \mathcal{C}^{(d)} \times \mathsf{N}^d \to \mathbb{R}$, for which $|I_{\mathsf{x}}(\varphi)| < \infty$ for μ -a.a. $\mathbf{x} \in \mathsf{N}^{d}$.

- From the Georgii-Nguyen-Zessin formula: $\mathbb{E}[I_{\mu}(\varphi)] = 0$
- We are interested in estimates of the Wasserstein distance d_W between an innovation I_{μ} and a standard Gaussian random variable Z.

 $2Q$

K ロ ト K 何 ト K ヨ ト K

Main result

Theorem (Bound on the Wasserstein distance)

Let μ be a stationary Gibbs particle process given by the conditional intensity as above with activity $\tau > 0$, inverse temperature $\beta \geq 0$ and with pair potential g which is bounded from above by some positive constant a. Let $\varphi: \mathcal{C}^{(d)} \to \mathbb{R}$ be a measurable function that does not depend on $\mathbf{x} \in \mathsf{N}^{d}$ and

$$
\varphi \in L^1(\mathcal{C}^{(d)}, \lambda) \cap L^2(\mathcal{C}^{(d)}, \lambda).
$$

Then

$$
d_W(I_\mu(\varphi),Z) \leq \sqrt{\frac{2}{\pi}}\sqrt{1-2\tau(1-\beta b)||\varphi||^2_{L^2(C^{(d)},\lambda)}+\tau^2||\varphi||^4_{L^2(C^{(d)},\lambda)}}\\+\tau||\varphi||^3_{L^3(C^{(d)},\lambda)}+\sqrt{\frac{2}{\pi}}\tau^2||\varphi||^2_{L^1(C^{(d)},\lambda)}|1-e^{-\beta a}|\newline+2\tau^2||\varphi||^2_{L^2(C^{(d)},\lambda)}||\varphi||_{L^1(C^{(d)},\lambda)}|1-e^{-\beta a}|+\tau^3||\varphi||^3_{L^1(C^{(d)},\lambda)}|1-e^{-\beta a}|^2.
$$

 $2Q$

K ロ ト K 何 ト K ヨ ト K

[The outcome space](#page-3-0) [Definition of particle process](#page-3-0)

[Papangelou conditional intensity](#page-6-0) [Pair potential](#page-6-0) [Definition of Gibbs particle process](#page-6-0)

[Innovation](#page-10-0) [Main result](#page-10-0)

4 [Application of the main result](#page-12-0)

[Planar Gibbs segment process](#page-13-0) [Central limit theorem for functionals of Gibbs segment process](#page-13-0)

 $2Q$

K ロ ⊁ K 倒 ≯ K 差 ▶ K

The space of all segments

- Let $S \subset \mathcal{C}^{(2)}$ be the space of all segments in \mathbb{R}^2 and S_0 be the subsystem of segments centered in the origin.
- Fix a reference probability measure $\mathbb Q$ on S_0 , which corresponds to $\mathbb{Q}_{\phi} \otimes \mathbb{Q}_L$, where \mathbb{Q}_{ϕ} , \mathbb{Q}_L are the reference distributions of lengths and directions of segments.
- Recall the assumption

$$
\mathbb{Q}(\{K\in\mathcal{C}^{(d)}:B(K)\subset B(0,R)\})=1
$$

for some $R > 0$, from which the support of \mathbb{Q}_L is $(0, 2R]$.

 $2Q$

 4 ロ } 4 4 9 } 4 \equiv } -4

Gibbs segment process

• Define the pair potential by

$$
g(K):=\mathbf{1}\{K\neq\emptyset\},\quad K\in\mathcal{C}^2
$$

Under this setting, g is nonnegative, translation invariant, bounded from above by a and $g(\emptyset) = 0$, ergo satisfies conditions of Theorem 1.

Definition (Gibbs segment process)

We define the Gibbs segment process ξ as a stationary Gibbs particle process in \mathbb{R}^2 with the conditional intensity

$$
\lambda^*(K, \mathbf{x}) = \tau \exp\left\{-\beta \sum_{L \in \mathbf{x}} \mathbf{1}\{K \cap L \neq \emptyset\}\right\} \quad K \in S, \mathbf{x} \in \mathbf{N}^2.
$$

 $\bullet\;\; \lambda^*(K,\mathbf{x})=\tau e^{-\beta N_{\mathbf{x}}(K)}$, where $N_{\mathbf{x}}(K)$ denotes the number of intersections of K with segments in x

 $2Q$

K ロ ⊁ K 倒 ≯ K ミ ▶ K

CLT for a stationary Gibbs segment process

Daniela Novotn´a [ROBUST 2018](#page-0-0) 25.1.2018 16 / 19

CLT for a stationary Gibbs segment process

Theorem

Consider for each $n \in \mathbb{N}$ a stationary Gibbs planar segment process $\xi^{(n)}$ with the conditional intensity as above with parameters $\tau_n > 0$ and $\beta_n > 0$. Suppose that $\beta_n \to 0$ and $0 < c_1 < \tau_n < c_2 < \infty$ for some $c_1, c_2 \in \mathbb{R}$ and that the common reference particle distribution $\mathbb Q$ for all $\xi^{(n)}$ has a uniform directional distribution. Let $\{W_n, n \in \mathbb{N}\}$ be a convex averaging sequence in \mathbb{R}^2 such that Leb $(W_n) = O(\beta_n^{-1})$. For $n \in \mathbb{N}$ and $K \in S$, define

$$
\varphi_n(K)=\frac{1}{\sqrt{\tau_n Leb(W_n)}}\cdot \mathbf{1}\{K\cap W_n\neq \emptyset\},\qquad \psi_n(K)=\frac{l(K)}{\sqrt{\mathbb{E}_L l^2}}\varphi_n(K).
$$

where $I(K)$ denotes the length of the segment K , I is a random variable that follows the law of \mathbb{Q}_l and \mathbb{E}_l denotes the expectation with respect to \mathbb{Q}_l . Then

$$
d_W(I_{\xi^{(n)}}(\varphi_n),Z)\to 0, \qquad d_W(I_{\xi^{(n)}}(\psi_n),Z)\to 0.
$$

 $2Q$

≮ロ ⊁ ⊀ 倒 ≯ -⊀ ミ ▶ -⊀

References

- [1] Torrisi G. L. (2017). Probability approximation of point processes with Papangelou conditional intensity. Bernoulli 23, 2210–2256.
- $[2]$ Novotná D., Beneš V. (2018). Gaussian approximation for functionals of Gibbs particle processes. Preprint, arXiv: 1707.06872 [math.PR], submitted.
- [3] Schneider R. and Weil W. (2008). Stochastic and Integral Geometry. Probability and Its Applications. Springer, Berlin.
- $[4]$ Dereudre D. (2017). Introduction to the theory of Gibbs point processes. Preprint, arXiv:1701.08105 [math.PR], submitted.

 $2Q$

K ロ ⊁ K 倒 ≯ K ミ ▶ K

Thank you for your attention.

Daniela Novotná 2008 – 25.1.2018 25.1.2018 19 / 19