Central limit theorem for functionals of Gibbs particle processes ROBUST 2018, Rybník

Daniela Novotná 25.1.2018

Outline

Particle processes

The outcome space Definition of particle process

2 Gibbs particle processes

Papangelou conditional intensity Pair potential Definition of Gibbs particle process

3 Bounds on the Wasserstein distance

Innovation Main result

4 Application of the main result

Particle processes

The outcome space Definition of particle process

2 Gibbs particle processes

Papangelou conditional intensity Pair potential Definition of Gibbs particle process

3 Bounds on the Wasserstein distance

Innovation Main result

4 Application of the main result

Dan		

Particle processes

The outcome space

- C^d ... the system of all compact subsets in ℝ^d (equipped with the Hausdorff metric), C^(d) := C^d \ {∅}
- **N**^d ... the space of all configurations (all locally finite, integer valued measures on $C^{(d)}$)
- \mathcal{N}^d . . . the standard σ -algebra on \mathbf{N}^d defined by

$$\mathcal{N}^d = \sigma\left(\left\{\mathbf{x} \in \mathbf{N}^d : \operatorname{card}\{K \in \mathbf{x} : K \in B\} = m\right\}, B \in \mathcal{B}(\mathcal{C}^d) \text{ bounded}, m \in \mathbb{N}\right)$$

Particle process

Definition (Particle process)

Particle process is a point process on $\mathcal{C}^{(d)},$ i.e. a random element

$$\xi: (\Omega, \mathcal{A}, \mathbb{P}) \to (\mathbf{N}^d, \mathcal{N}^d)$$

Particle distribution

Reference particle distribution

• Let $\mathbb Q$ be a probability measure on $\mathcal C^{(d)}$ such that

$$\mathbb{Q}(\{K\in\mathcal{C}^{(d)}:c(K)=0\})=1$$

• Assume $\mathbb{Q}(\{K \in \mathcal{C}^{(d)} : B(K) \subset B(0, R)\}) = 1$ for some R > 0

Reference measure

• Let λ be a measure on $\mathcal{C}^{(d)}$ defined by

$$\lambda(B) = \int_{\mathcal{C}^{(d)}} \int_{\mathbb{R}^d} \mathbf{1}_{[K+x \in B]} \, \mathrm{d}x \, \mathbb{Q}(\mathrm{d}K), \ B \in \mathcal{B}(\mathcal{C}^d)$$

Daniela Novotná

ROBUST 2018

< □ > < / > < 三 > <

Particle processes

The outcome space Definition of particle process

2 Gibbs particle processes

Papangelou conditional intensity Pair potential Definition of Gibbs particle process

3 Bounds on the Wasserstein distance

Innovation Main result

4 Application of the main result

	votná

Papangelou conditional intensity

Definition (Papangelou conditional intensity)

Let μ be a point process on \mathbb{X} with distribution P_{μ} . Let $C^{!}$ is a measure on $\mathbb{X} \times \mathbf{N}$ that is absolutely continuous with respect to $\sigma \otimes P_{\mu}$, satisfying for all Borel $B \subset \mathbb{X}$ and $A \in \mathcal{N}$

$$C^{!}[B \times A] = \mathbb{E} \left[\sum_{x \in \mu} \mathbf{1}\{x \in B\} \mathbf{1}\{\mu - \delta_{x} \in A\} \right].$$

Then the Radon-Nikodým derivative $\lambda^* : \mathbb{X} \times \mathcal{N} \to \mathbb{R}_+$ of the measure $C^!$ w.r.t measure $\sigma \otimes P_{\mu}$ is called the *Papangelou conditional intensity* of the point process μ .

• λ^* is defined to satisfy for every Borel $B \subset \mathbb{X}$ and $A \in \mathcal{N}$

$$C^{!}[B \times A] = \int_{B} \mathbb{E} \left[\lambda^{*}(u, \mu) \mathbf{1} \{ \mu \in A \} \right] \sigma(\mathrm{d}u).$$

পিথি

< □ > < / > < 三 > <

Gibbs particle process

• Gibbs particle process can be defined via Dobrushin-Lanford-Ruelle (DLR) equation or via Georgii-Nguyen-Zessin (GNZ) equation

Definition (Gibbs particle process)

Stationary Gibbs particle process μ with Papangelou conditional intensity λ^* , intensity measure λ and activity $\tau>0$ is a particle process with distribution $P^{\tau,\beta}$ that satisfies

$$\int_{\mathbf{N}^d} \sum_{K \in \mathbf{x}} f(K, \mathbf{x} \setminus \{K\}) P^{\tau, \beta}(\mathrm{d}\mathbf{x}) = \int_{\mathbf{N}^d} \int_{\mathcal{C}^{(d)}} f(K, \mathbf{x}) \lambda^*(K, \mathbf{x}) \lambda(\mathrm{d}K) P^{\tau, \beta}(\mathrm{d}\mathbf{x})$$

for any measurable function $f : C^{(d)} \times \mathbf{N}^d \to \mathbb{R}_+$.

 In [Novotná, Beneš], the existence of stationary Gibbs particle process was proved.

	< 🗗 🕨	- < ≣ ▶	
BUST 2018			25.1.201

প্ৰা

Pair potential

Definition (Pair potential)

Pair potential is a measurable, translation invariant function $g: \mathcal{C}^d \to [0, \infty)$, with the property $g(\emptyset) = 0$.

• We deal with the Papangelou intensity λ^* of the form

$$\lambda^*(K, \mathbf{x}) := au \exp\left\{-eta \sum_{L \in \mathbf{x}} g(K \cap L)
ight\}, \quad K \in \mathcal{C}^{(d)}, \ \mathbf{x} \in \mathbf{N}^d$$

where $\tau > 0$ is called the activity and $\beta \ge 0$ is called the inverse temperature.

< □ > < / > < 三 > <

Particle processes

The outcome space Definition of particle process

2 Gibbs particle processes

Papangelou conditional intensity Pair potential Definition of Gibbs particle process

3 Bounds on the Wasserstein distance Innovation

Main result

4 Application of the main result

	votná

Innovation

Definition (Innovation)

We define the innovation of a Gibbs particle process $\boldsymbol{\mu}$ as a random variable

$$I_{\mu}(arphi) = \sum_{K \in \mu} arphi(K, \mu \setminus \{K\}) - \int_{\mathcal{C}^{(d)}} arphi(K, \mu) \lambda^{*}(K, \mu) \lambda(\mathrm{d}K)$$

for any measurable $\varphi : \mathcal{C}^{(d)} \times \mathbf{N}^d \to \mathbb{R}$, for which $|I_{\mathbf{x}}(\varphi)| < \infty$ for μ -a.a. $\mathbf{x} \in \mathbf{N}^d$.

- From the Georgii-Nguyen-Zessin formula: $\mathbb{E}[I_{\mu}(\varphi)] = 0$
- We are interested in estimates of the Wasserstein distance d_W between an innovation I_{μ} and a standard Gaussian random variable Z.

Main result

Theorem (Bound on the Wasserstein distance)

Let μ be a stationary Gibbs particle process given by the conditional intensity as above with activity $\tau > 0$, inverse temperature $\beta \ge 0$ and with pair potential g which is bounded from above by some positive constant a. Let $\varphi : C^{(d)} \to \mathbb{R}$ be a measurable function that does not depend on $\mathbf{x} \in \mathbf{N}^d$ and

$$\varphi \in L^1(\mathcal{C}^{(d)},\lambda) \cap L^2(\mathcal{C}^{(d)},\lambda).$$

Then

$$\begin{aligned} &d_{W}(I_{\mu}(\varphi), Z) \leq \sqrt{\frac{2}{\pi}} \sqrt{1 - 2\tau(1 - \beta b) ||\varphi||^{2}_{L^{2}(\mathcal{C}^{(d)}, \lambda)} + \tau^{2} ||\varphi||^{4}_{L^{2}(\mathcal{C}^{(d)}, \lambda)}} \\ &+ \tau ||\varphi||^{3}_{L^{3}(\mathcal{C}^{(d)}, \lambda)} + \sqrt{\frac{2}{\pi}} \tau^{2} ||\varphi||^{2}_{L^{1}(\mathcal{C}^{(d)}, \lambda)} |1 - e^{-\beta a}| \\ &+ 2\tau^{2} ||\varphi||^{2}_{L^{2}(\mathcal{C}^{(d)}, \lambda)} ||\varphi||_{L^{1}(\mathcal{C}^{(d)}, \lambda)} |1 - e^{-\beta a}| + \tau^{3} ||\varphi||^{3}_{L^{1}(\mathcal{C}^{(d)}, \lambda)} |1 - e^{-\beta a}|^{2}. \end{aligned}$$

Particle processes

The outcome space Definition of particle process

2 Gibbs particle processes

Papangelou conditional intensity Pair potential Definition of Gibbs particle process

3 Bounds on the Wasserstein distance

Innovation Main result

4 Application of the main result

niela		

The space of all segments

- Let $S \subset C^{(2)}$ be the space of all segments in \mathbb{R}^2 and S_0 be the subsystem of segments centered in the origin.
- Fix a reference probability measure Q on S₀, which corresponds to Q_φ ⊗ Q_L, where Q_φ, Q_L are the reference distributions of lengths and directions of segments.
- Recall the assumption

$$\mathbb{Q}(\{K \in \mathcal{C}^{(d)} : B(K) \subset B(0,R)\}) = 1$$

for some R > 0, from which the support of \mathbb{Q}_L is (0, 2R].

পিথি

< □ > < 同 > < 三 > <

Gibbs segment process

• Define the pair potential by

$$g(K) := \mathbf{1}\{K \neq \emptyset\}, \quad K \in \mathcal{C}^2$$

Under this setting, g is nonnegative, translation invariant, bounded from above by a and $g(\emptyset) = 0$, ergo satisfies conditions of Theorem 1.

Definition (Gibbs segment process)

We define the Gibbs segment process ξ as a stationary Gibbs particle process in \mathbb{R}^2 with the conditional intensity

$$\lambda^*(K, \mathbf{x}) = au \exp\left\{-eta \sum_{L \in \mathbf{x}} \mathbf{1}\{K \cap L \neq \emptyset\}
ight\} \quad K \in S, \mathbf{x} \in \mathbf{N}^2.$$

λ*(K, x) = τe^{-βNx(K)}, where Nx(K) denotes the number of intersections of K with segments in x

CLT for a stationary Gibbs segment process

		1 E 1		1.124(0)
ROBUST 2018		25.1.20	18	16 / 10

Daniela Novotná

CLT for a stationary Gibbs segment process

Theorem

Consider for each $n \in \mathbb{N}$ a stationary Gibbs planar segment process $\xi^{(n)}$ with the conditional intensity as above with parameters $\tau_n > 0$ and $\beta_n \ge 0$. Suppose that $\beta_n \to 0$ and $0 < c_1 < \tau_n < c_2 < \infty$ for some $c_1, c_2 \in \mathbb{R}$ and that the common reference particle distribution \mathbb{Q} for all $\xi^{(n)}$ has a uniform directional distribution. Let $\{W_n, n \in \mathbb{N}\}$ be a convex averaging sequence in \mathbb{R}^2 such that $Leb(W_n) = O(\beta_n^{-1})$. For $n \in \mathbb{N}$ and $K \in S$, define

$$\varphi_n(K) = \frac{1}{\sqrt{\tau_n Leb(W_n)}} \cdot \mathbf{1}\{K \cap W_n \neq \emptyset\}, \qquad \psi_n(K) = \frac{l(K)}{\sqrt{\mathbb{E}_L l^2}} \varphi_n(K).$$

where I(K) denotes the length of the segment K, I is a random variable that follows the law of \mathbb{Q}_L and \mathbb{E}_L denotes the expectation with respect to \mathbb{Q}_L . Then

$$d_W(I_{\varepsilon^{(n)}}(\varphi_n), Z) \to 0, \qquad d_W(I_{\varepsilon^{(n)}}(\psi_n), Z) \to 0.$$

Daniela Novotná

ROBUST 2018

References

- [1] Torrisi G. L. (2017). *Probability approximation of point processes* with Papangelou conditional intensity. Bernoulli 23, 2210–2256.
- [2] Novotná D., Beneš V. (2018). Gaussian approximation for functionals of Gibbs particle processes. Preprint, arXiv: 1707.06872 [math.PR], submitted.
- [3] Schneider R. and Weil W. (2008). *Stochastic and Integral Geometry. Probability and Its Applications.* Springer, Berlin.
- [4] Dereudre D. (2017). Introduction to the theory of Gibbs point processes. Preprint, arXiv:1701.08105 [math.PR], submitted.

Thank you for your attention.

Daniela Novotná

ROBUST 2018