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Particle processes

The outcome space

• Cd . . . the system of all compact subsets in Rd (equipped with
the Hausdorff metric), C(d) := Cd \ {∅}

• Nd . . . the space of all configurations (all locally finite, integer
valued measures on C(d))

• N d . . . the standard σ-algebra on Nd defined by

N d = σ
({

x ∈ Nd : card{K ∈ x : K ∈ B} = m
}
,B ∈ B(Cd) bounded,m ∈ N

)
Particle process

Definition (Particle process)

Particle process is a point process on C(d), i.e. a random element

ξ : (Ω,A,P)→ (Nd ,N d)
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Particle distribution

Reference particle distribution

• Let Q be a probability measure on C(d) such that

Q({K ∈ C(d) : c(K ) = 0}) = 1

• Assume Q({K ∈ C(d) : B(K ) ⊂ B(0,R)}) = 1 for some R > 0

Reference measure

• Let λ be a measure on C(d) defined by

λ(B) =

∫
C(d)

∫
Rd

1[K+x∈B] dx Q(dK ), B ∈ B(Cd)
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Papangelou conditional intensity

Definition (Papangelou conditional intensity)

Let µ be a point process on X with distribution Pµ. Let C ! is a
measure on X×N that is absolutely continuous with respect to
σ ⊗ Pµ, satisfying for all Borel B ⊂ X and A ∈ N

C ![B × A] = E
[∑

x∈µ 1{x ∈ B}1{µ− δx ∈ A}
]
.

Then the Radon-Nikodým derivative λ∗ : X×N → R+ of the
measure C ! w.r.t measure σ ⊗ Pµ is called the Papangelou conditional
intensity of the point process µ.

• λ∗ is defined to satisfy for every Borel B ⊂ X and A ∈ N

C ![B × A] =

∫
B
E [λ∗(u, µ)1{µ ∈ A}]σ(du).
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Gibbs particle process

• Gibbs particle process can be defined via Dobrushin-Lanford-Ruelle
(DLR) equation or via Georgii-Nguyen-Zessin (GNZ) equation

Definition (Gibbs particle process)

Stationary Gibbs particle process µ with Papangelou conditional intensity λ∗,
intensity measure λ and activity τ > 0 is a particle process with distribution
Pτ,β that satisfies∫

Nd

∑
K∈x

f (K , x \ {K})Pτ,β(dx) =

∫
Nd

∫
C(d)

f (K , x)λ∗(K , x)λ(dK )Pτ,β(dx)

for any measurable function f : C(d) ×Nd → R+.

• In [Novotná, Beneš], the existence of stationary Gibbs particle process

was proved.
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Pair potential

Definition (Pair potential)

Pair potential is a measurable, translation invariant function
g : Cd → [0,∞), with the property g(∅) = 0.

• We deal with the Papangelou intensity λ∗ of the form

λ∗(K , x) := τ exp

{
−β
∑
L∈x

g(K ∩ L)

}
, K ∈ C(d), x ∈ Nd

where τ > 0 is called the activity and β ≥ 0 is called the inverse
temperature.
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Innovation

Definition (Innovation)

We define the innovation of a Gibbs particle process µ as a random
variable

Iµ(ϕ) =
∑
K∈µ

ϕ(K , µ \ {K})−
∫
C(d)

ϕ(K , µ)λ∗(K , µ)λ(dK )

for any measurable ϕ : C(d) ×Nd → R, for which |Ix(ϕ)| <∞ for
µ-a.a. x ∈ Nd .

• From the Georgii-Nguyen-Zessin formula: E[Iµ(ϕ)] = 0

• We are interested in estimates of the Wasserstein distance dW
between an innovation Iµ and a standard Gaussian random
variable Z .
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Main result

Theorem (Bound on the Wasserstein distance)

Let µ be a stationary Gibbs particle process given by the conditional
intensity as above with activity τ > 0, inverse temperature β ≥ 0 and
with pair potential g which is bounded from above by some positive
constant a. Let ϕ : C(d) → R be a measurable function that does not
depend on x ∈ Nd and

ϕ ∈ L1(C(d), λ) ∩ L2(C(d), λ).

Then

dW (Iµ(ϕ),Z ) ≤
√

2
π

√
1− 2τ(1− βb)||ϕ||2

L2(C(d),λ)
+ τ2||ϕ||4

L2(C(d),λ)

+τ ||ϕ||3
L3(C(d),λ)

+
√

2
π τ

2||ϕ||2
L1(C(d),λ)

|1− e−βa|
+2τ2||ϕ||2

L2(C(d),λ)
||ϕ||L1(C(d),λ)|1− e−βa|+ τ3||ϕ||3

L1(C(d),λ)
|1− e−βa|2.
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The space of all segments

• Let S ⊂ C(2) be the space of all segments in R2 and S0 be the
subsystem of segments centered in the origin.

• Fix a reference probability measure Q on S0, which corresponds
to Qφ ⊗QL, where Qφ,QL are the reference distributions of
lengths and directions of segments.

• Recall the assumption

Q({K ∈ C(d) : B(K ) ⊂ B(0,R)}) = 1

for some R > 0, from which the support of QL is (0, 2R].
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Gibbs segment process
• Define the pair potential by

g(K ) := 1{K 6= ∅}, K ∈ C2

Under this setting, g is nonnegative, translation invariant,
bounded from above by a and g(∅) = 0, ergo satisfies conditions
of Theorem 1.

Definition (Gibbs segment process)

We define the Gibbs segment process ξ as a stationary Gibbs particle
process in R2 with the conditional intensity

λ∗(K , x) = τ exp

{
−β
∑
L∈x

1{K ∩ L 6= ∅}

}
K ∈ S , x ∈ N2.

• λ∗(K , x) = τe−βNx(K), where Nx(K ) denotes the number of
intersections of K with segments in x
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CLT for a stationary Gibbs segment process

Wn
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CLT for a stationary Gibbs segment process

Theorem

Consider for each n ∈ N a stationary Gibbs planar segment process ξ(n) with the
conditional intensity as above with parameters τn > 0 and βn ≥ 0. Suppose that
βn → 0 and 0 < c1 < τn < c2 <∞ for some c1, c2 ∈ R and that the common
reference particle distribution Q for all ξ(n) has a uniform directional distribution.
Let {Wn, n ∈ N} be a convex averaging sequence in R2 such that
Leb(Wn) = O(β−1

n ). For n ∈ N and K ∈ S, define

ϕn(K) = 1√
τnLeb(Wn)

· 1{K ∩Wn 6= ∅}, ψn(K) = l(K)√
EL l

2
ϕn(K).

where l(K) denotes the length of the segment K, l is a random variable that
follows the law of QL and EL denotes the expectation with respect to QL. Then

dW (Iξ(n)(ϕn),Z)→ 0, dW (Iξ(n)(ψn),Z)→ 0.

Daniela Novotná ROBUST 2018 25.1.2018 17 / 19



References

[1] Torrisi G. L. (2017). Probability approximation of point processes
with Papangelou conditional intensity. Bernoulli 23, 2210–2256.
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Thank you for your attention.
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