

Change-point Estimation and Inference in Nonparametric Regression Using Different Regularization Concepts

Jetřichovice, January 24th, 2014

Matúš Maciak

Change-point Estimation and Inference in Nonparametric Regression Using Different Regularization Concepts

Jetřichovice, January 24th, 2014

Matúš Maciak

Rundle

Change-point Estimation and Inference in Nonparametric Regression Using Different Regularization Concepts

Jetřichovice, January 24th, 2014

Matúš Maciak

Rundle Observation Pk.

Change-point Estimation and Inference in Nonparametric Regression Using Different Regularization Concepts

Jetřichovice, January 24th, 2014

Matúš Maciak

Rundle Observation Pk. Bow Pk.

Change-point Estimation and Inference in Nonparametric Regression Using Different Regularization Concepts

Jetřichovice, January 24th, 2014

Matúš Maciak

Rundle Observation Pk. Bow Pk. Utopia Mt.

Change-point Estimation and Inference in Nonparametric Regression Using Different Regularization Concepts

Jetřichovice, January 24th, 2014

Matúš Maciak

Rundle Observation Pk. Bow Pk. Utopia Mt. Sarbach Mt.

Change-point Estimation and Inference in Nonparametric Regression Using Different Regularization Concepts

Jetřichovice, January 24th, 2014

Matúš Maciak

Change-point Estimation and Inference in Nonparametric Regression Using Different Regularization Concepts

Jetřichovice, January 24th, 2014

Matúš Maciak

Joint work with Ivan Mizera

Mt. Temple (3.543 meters)

July 26, 2013

Motivation: Parvovirus B19 Data

☐ University of Hasselt, Belgium (2008)

Parvovirus B19 Data

Parvovirus B19 Data - LOWESS

Parvovirus B19 Data - LOWESS

- □ data analyzed by many authors using various modeling approaches; (Hens et al. (2010), Maciak (2008), Nardone et al. (2007), etc.)
- ☐ mostly, authors expect some change-points to be present; (different theoretical and practical limitations)

Parvovirus B19 Data

- **B19 virus:** mostly known for causing a disease in a pediatric population;
- ☐ Transmission: respiratory droplets, mostly children at the age of 6 to 10;
- ☐ Infectivity: individuals after infection generally assumed to be immune;
- ☐ **Epidemiology:** increase in the number of cases is seen every three to four years;
- □ **Data:** over 3000 patients collected in Belgium (November 2001 March 2003);

Change-points in Regression

One-sided estimates ⇒ segmented estimation;
 Antoch et al. (2006); Csörgo and Horváth (1997);
 Jump detection algorithms ⇒ segmented estimation;
 Horváth and Kokoszka (2002); Qui and Yandell (1998);
 Permutation tests ⇒ segmented estimation;
 Kim at al. (2009, 2000);
 Bayesian approach ⇒ segmented estimation;
 Martinez-Beneito et al. (2011); Carlin et al. (1992);

Change-points in Regression

One-sided estimates ⇒ segmented estimation; Antoch et al. (2006); Csörgo and Horváth (1997);
Jump detection algorithms ⇒ segmented estimation; Horváth and Kokoszka (2002); Qui and Yandell (1998);
Permutation tests \Rightarrow segmented estimation; Kim at al. (2009, 2000);
Bayesian approach \Rightarrow segmented estimation; Martinez-Beneito et al. (2011); Carlin et al. (1992);
Total Variation Penalty ⇒ automatic selection using sparsity; Harchaoui and Lévy-Leduc (2010):

The Underlying Model

- \square random sample $\{(X_i, Y_i); i = 1, ..., n \in \mathbb{N}\}$, true population $F_{(X,Y)}$;
- \Box the alertdependence structure of Y given X is assumed to take a form

$$Y_i = m(X_i) + \varepsilon_i, \quad i = 1, \ldots, n,$$

 \Box where function m can be additively decomposed as:

$$m(x) = m_0(x) + \sum_{i=0}^{p-1} s_i(x),$$

The Underlying Model

- \square random sample $\{(X_i, Y_i); i = 1, ..., n \in \mathbb{N}\}$, true population $F_{(X,Y)}$;
- \Box the alertdependence structure of Y given X is assumed to take a form

$$Y_i = m(X_i) + \varepsilon_i, \quad i = 1, \ldots, n,$$

 \Box where function m can be additively decomposed as:

$$m(x) = m_0(x) + \sum_{i=0}^{p-1} s_i(x),$$

 \square \hookrightarrow different smoothing assumptions posed on $m_0, s_0, \ldots, s_{p-1}$; (smooth function m_0 with some background shock processes s_0, \ldots, s_{p-1})

The Underlying Model

- \square random sample $\{(X_i, Y_i); i = 1, ..., n \in \mathbb{N}\}$, true population $F_{(X,Y)}$;
- \Box the alertdependence structure of Y given X is assumed to take a form

$$Y_i = m(X_i) + \varepsilon_i, \quad i = 1, \ldots, n,$$

 \Box where function m can be additively decomposed as:

$$m(x) = m_0(x) + \sum_{j=0}^{p-1} s_j(x),$$

- \square \hookrightarrow different smoothing assumptions posed on $m_0, s_0, \ldots, s_{p-1}$; (smooth function m_0 with some background shock processes s_0, \ldots, s_{p-1})
- \square \hookrightarrow for identifiability reasons we also assume that

$$\sum_{i=1}^{n} s_{j}^{(\ell)}(X_{i}) = 0, \quad \forall j = 0, \ldots, p-1, \text{ and } \ell = 0, \ldots, j,$$

•

Model Estimation Using Splines

```
\square available data: \{(X_i, Y_i); i = 1, ..., n\}
```

$$\Box$$
 function to estimate: $m(x) = m_0(x) + \sum_{j=0}^{p-1} s_j(x)$

Model Estimation Using Splines

- \square available data: $\{(X_i, Y_i); i = 1, ..., n\}$
- \Box function to estimate: $m(x) = m_0(x) + \sum_{i=0}^{p-1} s_i(x)$
- Smoothing Splines approach (with change-points):
 - □ X_i 's observations \rightarrow knots $\{\xi_i; i = 1, ..., n\}$ \Rightarrow basis functions $\psi_i(x)$; \hookrightarrow basis coefficients $\beta_S \in \mathbb{R}^K$, where $m_0(x) = \sum_{i=1}^K \beta_S^{(i)} \psi_i(x)$;
 - □ jump function $s_0(x) \to \text{grid}$ of (hypothetical) jump-locations $\xi_{01}, \dots, \xi_{0k_0}$; \hookrightarrow jump generating basis: zero order truncated basis $\psi_{0j}(x) = (x \xi_{0,j})_+^0$;
 - □
 - $\begin{array}{l} \square \ \ (p-1) \text{-order jump function } s_{p-1}(x) \to \text{grid points } \xi_{(p-1)1}, \dots, \xi_{(p-1)k_{p-1}}; \\ \hookrightarrow (p-1) \text{-order jump generating basis: } \psi_{(p-1)j}(x) = (x \xi_{(p-1),j})_+^{p-1}; \end{array}$

Model Estimation Using Splines

- \square available data: $\{(X_i, Y_i); i = 1, ..., n\}$
- \Box function to estimate: $m(x) = m_0(x) + \sum_{j=0}^{p-1} s_j(x)$
- Smoothing Splines approach (with change-points):
 - □ X_i 's observations \rightarrow knots $\{\xi_i; i = 1, ..., n\} \Rightarrow$ basis functions $\psi_i(x)$; \hookrightarrow basis coefficients $\beta_S \in \mathbb{R}^K$, where $m_0(x) = \sum_{i=1}^K \beta_S^{(i)} \psi_i(x)$;
 - □ jump function $s_0(x)$ → grid of (hypothetical) jump-locations $\xi_{01}, \dots, \xi_{0k_0}$; \hookrightarrow jump generating basis: zero order truncated basis $\psi_{0j}(x) = (x - \xi_{0,j})_+^n$;
 - **...**
 - $\begin{array}{l} \square \ \ (p-1) \text{-order jump function } s_{p-1}(x) \to \text{grid points } \xi_{(p-1)1}, \dots, \xi_{(p-1)k_{p-1}}; \\ \hookrightarrow (p-1) \text{-order jump generating basis: } \psi_{(p-1)j}(x) = (x-\xi_{(p-1),j})_{p}^{p-1}; \end{array}$
- \square ideally, we have $k_0 = \cdots = k_{p-1} \equiv k$ and $\xi_{0,j} = \cdots = \xi_{(p-1)j}$ for all $j = 1, \ldots, k$;
- \square Smoothing spline coefficients β_S with a corresponding design matrix \mathbb{X}_S and jump generating (sparse) coefficients β_J with a corresponding design matrix \mathbb{X}_J ;

Minimization formulation

☐ finite dimensional minimization problem

$$\underset{\beta_{S}, \beta_{J}}{\textit{Minimize}} \quad \left\| \mathbf{Y} - (\mathbb{X}_{S} \mathbb{X}_{J}) \begin{pmatrix} \beta_{S} \\ \beta_{J} \end{pmatrix} \right\|_{2}^{2} + \lambda_{1} \left\| \mathbb{W} \begin{pmatrix} \beta_{S} \\ \beta_{J} \end{pmatrix} \right\|_{2}^{2} + \lambda_{2} \|\beta_{J}\|_{1}$$

 $oxed{\Box}$ for some $\lambda_1,\lambda_2>0$ and $\mathbb{W}=\mathbb{V}^{\top}\mathbb{V}$, where $\mathbb{V}=(V_{\ell_1\ell_2})_{\ell_1,\ell_2}$, such that

$$V_{\ell_1\ell_2} = \int \psi_{\ell_1}^{''}(x)\psi_{\ell_2}^{''}(x)\mathsf{d}x$$

Minimization formulation via LASSO

fill for any given $\lambda_1>0$ one can apply simple algebra to express the original minimization as

$$\begin{array}{ll} \textit{Minimize} & \left\| \left(\begin{array}{c} \mathbf{Y} \\ \mathbf{0} \end{array} \right) - \left(\begin{array}{cc} \mathbb{X}_{5} & \mathbb{X}_{J} \\ \sqrt{\lambda_{1}} \mathbb{W}_{1} & \sqrt{\lambda_{1}} \mathbb{W}_{2} \end{array} \right) \left(\begin{array}{c} \beta_{5} \\ \beta_{J} \end{array} \right) \right\|_{2}^{2} + \lambda_{2} \|\beta_{J}\|_{1} \\ \text{where } \left(\mathbb{W}_{1}, \mathbb{W}_{2} \right) = \mathbb{W}. \end{array}$$

Minimization formulation via LASSO

 $\hfill \Box$ for any given $\lambda_1>0$ one can apply simple algebra to express the original minimization as

$$\begin{array}{ll} \textit{Minimize} & \left\| \begin{pmatrix} \mathbf{Y} \\ \mathbf{0} \end{pmatrix} - \begin{pmatrix} \mathbb{X}_S & \mathbb{X}_J \\ \sqrt{\lambda_1} \mathbb{W}_1 & \sqrt{\lambda_1} \mathbb{W}_2 \end{pmatrix} \begin{pmatrix} \beta_S \\ \beta_J \end{pmatrix} \right\|_2^2 + \lambda_2 \|\beta_J\|_1 \\ \text{where } (\mathbb{W}_1, \mathbb{W}_2) = \mathbb{W}. \end{array}$$

defining

$$\begin{split} \mathbb{H} &= \left(\begin{array}{c} \mathbb{X}_{\mathcal{S}} \\ \sqrt{\lambda_1} \mathbb{W}_1 \end{array} \right) \left[\left(\begin{array}{c} \mathbb{X}_{\mathcal{S}} \\ \sqrt{\lambda_1} \mathbb{W}_1 \end{array} \right)^\top \left(\begin{array}{c} \mathbb{X}_{\mathcal{S}} \\ \sqrt{\lambda_1} \mathbb{W}_1 \end{array} \right) \right] \left(\begin{array}{c} \mathbb{X}_{\mathcal{S}} \\ \sqrt{\lambda_1} \mathbb{W}_1 \end{array} \right)^\top \text{ and } \\ \mathbb{M} &= (\mathbb{I} - \mathbb{H}), \text{ we can express the solution } \mathbb{X}_{\mathcal{S}} \widehat{\beta}_{\mathcal{S}} + \mathbb{X}_{\mathcal{J}} \widehat{\beta}_{\mathcal{J}} \text{ of the original } \\ \text{problem as } \mathbb{H} \left(\begin{array}{c} \mathbf{Y} \\ \mathbf{0} \end{array} \right) + (\mathbb{I} - \mathbb{H}) \left(\begin{array}{c} \mathbb{X}_{\mathcal{J}} \\ \sqrt{\lambda_1} \mathbb{W}_2 \end{array} \right) \widehat{\beta}_{\mathcal{J}}, \text{ where } \widehat{\beta}_{\mathcal{J}} \text{ solves} \\ \\ \text{\textit{Minimize}} & \left\| \mathbb{M} \left(\begin{array}{c} \mathbf{Y} \\ \mathbf{0} \end{array} \right) - \mathbb{M} \left(\begin{array}{c} \mathbb{X}_{\mathcal{J}} \\ \sqrt{\lambda_1} \mathbb{W}_2 \end{array} \right) \beta_{\mathcal{J}} \right\|^2 + \lambda_2 \|\beta_{\mathcal{J}}\|_1 \end{split}$$

- various penalization concepts are possible for in real situations;
- different implementation and interpretations of change-point occurrences;

- urrious penalization concepts are possible for in real situations;
- $oldsymbol{\square}$ different implementation and interpretations of change-point occurrences;
- Mutually Independent Change-points

■ Simultaneous Change-points

☐ Hierarchical Change-points

L_1 -Norm Based Regularization

Change-point Structure/Hierarchy

- urrious penalization concepts are possible for in real situations;
- ☐ different implementation and interpretations of change-point occurrences;
- Mutually Independent Change-points
 - \square functions s_0, \ldots, s_{p-1} are not (mutually) related;
 - \square for every $s_j \Rightarrow$ a separate sequence of change-point locations $\xi_{j1}, \ldots, \xi_{jk_j}$;
- Simultaneous Change-points

☐ Hierarchical Change-points

- various penalization concepts are possible for in real situations;
- ☐ different implementation and interpretations of change-point occurrences;

- Mutually Independent Change-points
 - \square multiple L_1 penalties one for each level $(0, 1, \ldots, p-1)$;
- Simultaneous Change-points

☐ Hierarchical Change-points

- urrious penalization concepts are possible for in real situations;
- different implementation and interpretations of change-point occurrences;

- Mutually Independent Change-points
 - \square multiple L_1 penalties one for each level $(0, 1, \dots, p-1)$;
 - \square penalty form: $\lambda_1 \|\beta_I^{(0)}\| + \cdots + \lambda_{p-1} \|\beta_I^{(p-1)}\|$;
- Simultaneous Change-points
 - $oldsymbol{\square}$ functions s_0,\ldots,s_{p-1} are all connected through the change-point locations;
 - \beth one sequence of locations $\xi_1, \dots, \xi_k \Rightarrow$ in each ξ_ℓ every s_i has a "jump";
- ☐ Hierarchical Change-points

- urrious penalization concepts are possible for in real situations;
- different implementation and interpretations of change-point occurrences;
- Mutually Independent Change-points
 - \square multiple L_1 penalties one for each level $(0, 1, \ldots, p-1)$;
- Simultaneous Change-points
 - \Box Group LASSO penalty, where each group is defined by the location ξ_{ℓ} ;
 - \Box penalty form: $\lambda \sum_{\ell} \sqrt{\beta_{0\ell}^2 + \cdots + \beta_{(p-1)\ell}^2}$;
- ☐ Hierarchical Change-points

- various penalization concepts are possible for in real situations;
- different implementation and interpretations of change-point occurrences;

- Mutually Independent Change-points
 - \square multiple L_1 penalties one for each level $(0,1,\ldots,p-1)$;
- Simultaneous Change-points
 - \Box Group LASSO penalty, where each group is defined by the location ξ_{ℓ} ;
 - \Box penalty form: $\lambda \sum_{\ell} \sqrt{\beta_{0\ell}^2 + \cdots + \beta_{(p-1)\ell}^2}$;
- ☐ Hierarchical Change-points
 - ☐ lower to higher order discontinuity is considered (change-point hierarchy);
 - \square if there is a jump in s_j , for some $j=0,\ldots,p-1\Rightarrow$ jump in all s_ℓ , for $\ell>j$;

- various penalization concepts are possible for in real situations;
- different implementation and interpretations of change-point occurrences;

- Mutually Independent Change-points
 - \square multiple L_1 penalties one for each level $(0, 1, \ldots, p-1)$;
- ☐ Simultaneous Change-points
 - \Box Group LASSO penalty, where each group is defined by the location ξ_{ℓ} ;
 - \Box penalty form: $\lambda \sum_{\ell} \sqrt{\beta_{0\ell}^2} + \cdots + \beta_{(p-1)\ell}^2$;
- ☐ Hierarchical Change-points
 - ullet Overlap Group LASSO, where each group is defined by the location ξ_{ℓ} ;
 - \square penalty form: $\lambda \sum_{\ell} \inf_{g} \mathcal{G}(\beta_{\ell})$;

Group LASSO vs. Overlap LASSO

$$\mathcal{G}(\beta_{l}) = \sqrt{\beta_{0l(a)}^{2} + \beta_{1l(a)}^{2} + \beta_{2l(a)}^{2}} + \sqrt{\beta_{0l(b)}^{2} + \beta_{1l(b)}^{2} + \beta_{2l(b)}^{2}} + \sqrt{\beta_{0l(c)}^{2} + \beta_{1l(c)}^{2} + \beta_{2l(c)}^{2}},$$

Group LASSO vs. Overlap LASSO

$$\mathcal{G}(\beta_l) = \sqrt{\beta_{0l(a)}^2 + \beta_{1l(a)}^2 + \beta_{2l(a)}^2} + \sqrt{\beta_{0l(b)}^2 + \beta_{1l(b)}^2 + \beta_{2l(b)}^2} + \sqrt{\beta_{0l(c)}^2 + \beta_{1l(c)}^2 + \beta_{2l(c)}^2},$$

such, that

$$\begin{split} \beta_{0l} &= \beta_{0l(a)}, & \text{and} & \beta_{0l(b)} &= \beta_{0l(c)} = 0, \\ \beta_{1l} &= \beta_{1l(a)} + \beta_{1l(b)}, & \text{and} & \beta_{1l(c)} = 0, \\ \beta_{2l} &= \beta_{2l(a)} + \beta_{2l(b)} + \beta_{2l(c)}. & \end{split}$$

- ☐ LARS Least Angle Regression Efron et al.(2004)
- ☐ straightforward modification to accommodate LASSO approach;

- ☐ LARS Least Angle Regression Efron et al.(2004)
- ☐ straightforward modification to accommodate LASSO approach;

- □ LARS Least Angle Regression Efron et al.(2004)
- ☐ straightforward modification to accommodate LASSO approach;

- ☐ LARS Least Angle Regression Efron et al.(2004)
- ☐ straightforward modification to accommodate LASSO approach;

- ☐ LARS Least Angle Regression Efron et al.(2004)
- ☐ straightforward modification to accommodate LASSO approach;

- ☐ LARS Least Angle Regression Efron et al.(2004)
- ☐ straightforward modification to accommodate LASSO approach;

LARS Algorithm - example

▲

- □ Data: $X_i \sim Unif[0,1]$, for i = 1, ..., 100; $Y_i = m_0(X_i) + \sum_{i=0}^2 s_i(X_i) + \varepsilon_i$;
- \square Error: $\varepsilon \sim N(0, 1/400)$;
- Background functions:

$$\begin{array}{l} s_0(x) = 0.49\mathbb{I}(x \geq 0.7) - 0.3\mathbb{I}(x \geq 0.3) \\ s_1(x) = -3.9x\mathbb{I}(x \geq 0.7) \\ s_2(x) = -30x^2\mathbb{I}(x \geq 0.7) \end{array}$$

LARS Algorithm - example

- □ Data: $X_i \sim Unif[0,1]$, for i = 1, ..., 100; $Y_i = m_0(X_i) + \sum_{i=0}^2 s_i(X_i) + \varepsilon_i$;
- \square Error: $\varepsilon \sim N(0, 1/400)$;
- Background functions:

$$\begin{array}{l} s_0(x) = 0.49\mathbb{I}(x \geq 0.7) - 0.3\mathbb{I}(x \geq 0.3) \\ s_1(x) = -3.9x\mathbb{I}(x \geq 0.7) \\ s_2(x) = -30x^2\mathbb{I}(x \geq 0.7) \end{array}$$

- \square Mutually Independent Change-points, for $\xi_{0i} = \xi_{1i} = X_i$, i = 1, ..., N;
- \square Regularization parameters $\lambda_S > 0$ and $\lambda_0, \lambda_1 > 0$;
- \square LASSO Penalty: $\lambda_0 \|\beta_J^0\| + \lambda_1 \|\beta_J^1\| \longrightarrow \text{LARS}$ solution paths;

- \Box piece-wise linear solution paths along a sequence $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k \geq 0$; (these "knot points" depend on \mathbf{Y} and \mathbb{X})
- \square piece-wise linear decrease in maximum (current) correlation $\mathbb{X}^{\top}(Y-\widehat{\mu}_k)$;

☐ How to choose the final model from the set of plausible ones?

A little bit of inference on change-points

A little bit of inference on change-points

- consistency;
- hypothesis tests;
- confidence regions;

Degrees of Freedom

□ Degrees of freedom: $df(fit) = \frac{1}{\sigma^2} \sum_{i=1}^n Cov (\hat{Y}_i, Y_i);$ □ linear regression ⇒ trace of the hat matrix ⇒ number of parameters;
□ smoothing splines ⇒ trace of $\mathbb{X} (\mathbb{X}^\top \mathbb{X} - \sqrt{\lambda_1} \mathbb{W}_1^\top \mathbb{W}_1)^{-1} \mathbb{X}^\top;$ □ LASSO regression ⇒ average number of effective parameters; (result generalized by Tibshirani and Taylor (2012) even for $p \ge n$;
□ splines with change-points: ⇒ hat matrix trace + number of changes;

Degrees of Freedom

 \square Degrees of freedom: $df(fit) = \frac{1}{\sigma^2} \sum_{i=1}^n Cov(\hat{Y}_i, Y_i);$ linear regression \Rightarrow trace of the hat matrix \Rightarrow number of parameters; \square smoothing splines \Rightarrow trace of $\mathbb{X} (\mathbb{X}^{\top} \mathbb{X} - \sqrt{\lambda_1} \mathbb{W}_1^{\top} \mathbb{W}_1)^{-1} \mathbb{X}^{\top}$; LASSO regression ⇒ average number of effective parameters; (result generalized by Tibshirani and Taylor (2012) even for p > n; □ splines with change-points: ⇒ hat matrix trace + number of changes; \square Mutually Independent Change-points: $df = |\mathcal{A}_0| + \cdots + |\mathcal{A}_{p-1}|$; □ Simultaneous Change-points: $df = 3 \times |\mathcal{A}|$; \Box Hierarchical Change-points: $df = |A_0| + \cdots + |A_{p-1}|$;

Consistency of Estimates

- \Box for now, only consistency with respect to change-points estimates; (considering a model $\widehat{\beta}_J = Argmin \| \mathbf{Y} \mathbb{X}_J \beta_J \|^2 + \lambda \|\beta_J\|_1$)
- \square restriction on the number of change-points (including their positions); (in general, we assume at most $\mathcal{K} \in \mathbb{N}$ change-points)

Consistency of Estimates

- \Box for now, only consistency with respect to change-points estimates; (considering a model $\hat{\beta}_J = Argmin \| \mathbf{Y} \mathbb{X}_J \beta_J \|^2 + \lambda \|\beta_J\|_1$)
- \square restriction on the number of change-points (including their positions); (in general, we assume at most $\mathcal{K} \in \mathbb{N}$ change-points)

Theorem (Consistency 1)

Under some common assumptions, for all $n \ge 1$ and $C > 2\sqrt{2}$, we have with a probability larger than $1 - n^{1-C^2/8}$, that

$$\left\| \mathbb{X}_J \left(\widehat{\beta}_J(\lambda_n) - \beta_J \right) \right\| \leq \left(2 C \sigma \mathcal{K} \beta_{max} \right)^{1/2} \cdot \left(\frac{\log n}{n} \right)^{1/4}$$

where $\lambda_n = C\sigma\sqrt{\log n/n}$, with an active set of pamameters \mathcal{A} .

☐ idea of the proof: extension of proof in Bickel, Ritov and Tsybakov (2009);

Consistency of Locations

- \square again, consistency with respect to change-points locations; (considering a model $\widehat{\beta}_J = Argmin \| \mathbf{Y} \mathbb{X}_J \beta_J \|^2 + \lambda \| \beta_J \|_1$)
- ☐ two change-point locations are not too much close to each other; (in general, we need enough data points to estimate each change-point)

Theorem (Consistency 2)

It can be shown that

$$\mathbb{P}\left(\mathsf{max}_{1 < k < |\widehat{\mathcal{A}}(\lambda_I)|} | \widehat{t}_k - t_k^\star| \leq \mathsf{n}\delta_\mathsf{n} \right) \overset{\mathsf{n} \to \infty}{\longrightarrow} 1$$

for some nonincreasing, positive sequence $\{\delta_n\}_{n\geq 1}$ tending to zero such that $n\delta_n$

☐ generalization of the result of Harchaoui and Lévy-Leduc (2010)

Significance Test for LASSO

classical theory based on RSS drop between two models not applicable; \hookrightarrow test statistics: $R_j = (RSS_M - RSS_{M \cup \{j\}})/\sigma^2 \to \chi^2$ distribution in situations where $p \ge n$ the sets M and $M \cup \{j\}$ are not fixed any more; \hookrightarrow using classical approach is way too far liberal (large type I. error) alternative approach must account for adaptivity of the LASSO procedure; \hookrightarrow adaptiveness vs. shrinkage covariance test statistic proposed by Lockhart et at. (2013); \hookrightarrow test statistics: $T_k = \left(\langle \mathbf{Y}, \mathbb{X}\widehat{\boldsymbol{\beta}}(\lambda_{k+1}) \rangle - \langle \mathbf{Y}, \mathbb{X}_A\widetilde{\boldsymbol{\beta}}_A(\lambda_{k+1}) \rangle\right)/\sigma^2$ under the null hypothesis $(supp(\boldsymbol{\beta}^*) \subseteq \mathcal{A})$ it holds that: \hookrightarrow test statistic $T_k \longrightarrow Exp(1)$ in distribution;

Confidence Regions

- Point-wise Confidence Bands
 - \Box for the vector of parameters $(\beta_S^\top, \beta_I^\top)$ we have a pseudo design matrix;
 - ue can define a sandwich estimate for the covariance matrix;
 - \Box if variance σ^2 is unknown \Rightarrow need for an estimate $\widehat{\sigma}_n^2$;

- □ Uniform Confidence Bands
 - \square the idea is to obtain a band $B_n(x)$ for m_0 (s_0, \ldots, s_{p-1} resp.), such that $\mathbb{P}(f(x) \in B_{n,f}(x)) = 1 \alpha$, for $f \in \{m_0, s_0, \ldots, s_{p-1}\}$;
 - ☐ idea of the band construction: Hotelling (1939); (also Krivobokova et al. (2013) and Koenker (2011))
 - \square however, requires continuity at least \Rightarrow not applicable for s_0 yet;

Some Simulation Results

0.8

0.2 0.4

Some Simulation Results

Mutually independent change-points

Simultaneous change-points

Independent Change-points

Independent Change-points		$\sigma^2 = 0$	$\sigma^2 = 0.1$	$\sigma^2 = 0.2$	$\sigma^2 = 0.5$	$\sigma^2 = 1$
$\lambda_{G}=0.1$	$\xi_1^{(0)} = 0.3, \xi_2^{(0)} = 0.7$ $\xi_1^{(0)} = \xi_1^{(1)} = 0.3, \xi_2^{(0)} = 0.7$ $\xi_1^{(0)} = \xi_1^{(1)} = 0.3, \xi_2^{(0)} = \xi_2^{(1)} = 0.7$ $\xi_1^{(0)} = \xi_1^{(1)} = 0.3, \xi_2^{(0)} = 0.7, \xi_1^{(1)} = 0.5$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.8 1.8 69.2 31.8 100 12.2 100 24.5	49.4 25.8 85.8 58.5.0 100 31.5 100 37.2	69.6 38.5 100 69.2 100 37.6 100 41.2	94.5 49.3 100 68.1 100 52.9 100 59.5
$\lambda_{G}=0.01$	$\begin{array}{l} \boldsymbol{\xi}_{1}^{(0)} = 0.3, \boldsymbol{\xi}_{2}^{(0)} = 0.7 \\ \boldsymbol{\xi}_{1}^{(0)} = \boldsymbol{\xi}_{1}^{(1)} = 0.3, \boldsymbol{\xi}_{2}^{(0)} = 0.7 \\ \boldsymbol{\xi}_{1}^{(0)} = \boldsymbol{\xi}_{1}^{(1)} = 0.3, \boldsymbol{\xi}_{2}^{(0)} = \boldsymbol{\xi}_{2}^{(1)} = 0.7 \\ \boldsymbol{\xi}_{1}^{(0)} = \boldsymbol{\xi}_{1}^{(1)} = 0.3, \boldsymbol{\xi}_{2}^{(0)} = 0.7, \boldsymbol{\xi}_{1}^{(1)} = 0.5 \end{array}$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.6 1.0 71.0 33.3 100 30.4 100 38.7	38.5 20.18 87.2 60.0 100 55.4 100 58.4	65.8 35.4 100 63.6 100 60.2 100 64.7	82.1 49.1 100 68.5 100 66.7 100 69.2
$\lambda_{G}=0.001$	$\begin{array}{l} \boldsymbol{\xi}_{1}^{(0)} = 0.3, \boldsymbol{\xi}_{2}^{(0)} = 0.7 \\ \boldsymbol{\xi}_{1}^{(0)} = \boldsymbol{\xi}_{1}^{(1)} = 0.3, \boldsymbol{\xi}_{2}^{(0)} = 0.7 \\ \boldsymbol{\xi}_{1}^{(0)} = \boldsymbol{\xi}_{1}^{(1)} = 0.3, \boldsymbol{\xi}_{2}^{(0)} = \boldsymbol{\xi}_{2}^{(1)} = 0.7 \\ \boldsymbol{\xi}_{1}^{(0)} = \boldsymbol{\xi}_{1}^{(1)} = 0.3, \boldsymbol{\xi}_{2}^{(0)} = 0.7, \boldsymbol{\xi}_{1}^{(1)} = 0.5 \end{array}$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.3 1.4 82.2 56.8 100 58.7 100 61.2	52.3 27.0 92.2 70.8 100 73.7 100 77.1	77.9 43.7 100 75.3 100 75.4 100 80.2	97.6 57.0 100 77.3 100 78.2 100 79.1
$\lambda_G=0.0001$	$\begin{array}{l} \boldsymbol{\xi}_{1}^{(0)} = 0.3, \boldsymbol{\xi}_{2}^{(0)} = 0.7 \\ \boldsymbol{\xi}_{1}^{(0)} = \boldsymbol{\xi}_{1}^{(1)} = 0.3, \boldsymbol{\xi}_{2}^{(0)} = 0.7 \\ \boldsymbol{\xi}_{1}^{(0)} = \boldsymbol{\xi}_{1}^{(1)} = 0.3, \boldsymbol{\xi}_{2}^{(0)} = \boldsymbol{\xi}_{2}^{(1)} = 0.7 \\ \boldsymbol{\xi}_{1}^{(0)} = \boldsymbol{\xi}_{1}^{(1)} = 0.3, \boldsymbol{\xi}_{2}^{(0)} = 0.7, \boldsymbol{\xi}_{1}^{(1)} = 0.5 \end{array}$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.6 0.9 98.7 70.2 100 75.2 99.9 71.0	62.5 35.2 99.9 71.7 99.9 74.6 99.9 69.9	87.4 52.9 100 76.6 100 77.1 100 78.2	98.7 59.3 100 76.6 100 76.2 100 79.1

Mutually Related Change-points

Mutually Related Change-points	$\sigma^2 = 0$	$\sigma^2 = 0.1$	$\sigma^2 = 0.2$	$\sigma^2 = 0.5$	$\sigma^2 = 1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	100	100	100	100
	100	100	100	100	100
	0.0 0.0	4.1 2.8	51.4 27.7	70.6 40.5	90.0 50.3
	100	100	100	100	100
$\begin{array}{lll} \Xi & \xi_1^{(0)} = 0.3, \xi_2^{(0)} = 0.7 \\ \circ & \xi_1^{(0)} = \xi_1^{(1)} = 0.3, \xi_2^{(0)} = 0.7 \\ \checkmark & \xi_1^{(0)} = \xi_1^{(1)} = 0.3, \xi_2^{(0)} = \xi_2^{(1)} = 0.7 \\ & \xi_1^{(0)} = \xi_1^{(1)} = 0.3, \xi_2^{(0)} = 0.7, \xi_1^{(1)} = 0.5 \end{array}$	100	100	100	100	100
	100	100	100	100	100
	0.0 0.0	3.8 3.1	49.1 29.3	72.1 40.5	93.7 51.9
	100	100	100	100	100
$\begin{array}{lll} & \xi_1^{(0)} = 0.3, \xi_2^{(0)} = 0.7 \\ 0 & \xi_1^{(0)} = \xi_1^{(1)} = 0.3, \xi_2^{(0)} = 0.7 \\ 0 & \xi_1^{(0)} = \xi_1^{(1)} = 0.3, \xi_2^{(0)} = \xi_2^{(1)} = 0.7 \\ 0 & \xi_1^{(0)} = \xi_1^{(1)} = 0.3, \xi_2^{(0)} = 0.7, \xi_1^{(1)} = 0.5 \end{array}$	100	100	100	100	100
	100	100	100	100	100
	0.0 0.0	4.0 2.2	55.5 29.2	74.2 45.5	97.2 54.0
	100	100	100	100	100
$\begin{array}{lll} & \xi_1^{(0)} = 0.3, \xi_2^{(0)} = 0.7 \\ 0 & \xi_1^{(0)} = \xi_1^{(1)} = 0.3, \xi_2^{(0)} = 0.7 \\ \vdots & \xi_1^{(0)} = \xi_1^{(1)} = 0.3, \xi_2^{(0)} = \xi_2^{(1)} = 0.7 \\ 0 & \xi_1^{(0)} = \xi_1^{(1)} = 0.3, \xi_2^{(0)} = 0.7, \xi_1^{(1)} = 0.5 \end{array}$	100	100	100	100	100
	100	100	100	100	100
	0.0 0.0	3.0 1.2	63.1 37.3	85.2 55.4	98.3 59.9
	100	100	100	100	100

Back to Parvovirus B19 Data

- \Box intercept corrected smoothing B-spline basis + change-point basis;
 - \Rightarrow smoothness degree p=3, change-points up to the order p-1=2;
- mutually independent change-points assumed;
 - \Rightarrow four smoothing parameters $\lambda_S, \lambda_0, \lambda_1, \lambda_2 > 0$;

Back to Parvovirus B19 Data

- \Box intercept corrected smoothing B-spline basis + change-point basis;
 - \Rightarrow smoothness degree p=3, change-points up to the order p-1=2;
- mutually independent change-points assumed;
 - \Rightarrow four smoothing parameters $\lambda_{S}, \lambda_{0}, \lambda_{1}, \lambda_{2} > 0$;

Back to Parvovirus B19 Data

- ☐ intercept corrected smoothing B-spline basis + change-point basis;
 - \Rightarrow smoothness degree p=3, change-points up to the order p-1=2;
- mutually independent change-points assumed;
 - \Rightarrow four smoothing parameters $\lambda_{S}, \lambda_{0}, \lambda_{1}, \lambda_{2} > 0$;

- one change-point in location (roughly at the age of 20);
- □ in addition, also a change-point in direction revealed (age 8 9); (even significant - p-value below 0.1059 point Estimation and Inference in Nonparametric Regression

Thank you...

Thank you... ...any questions?

- Efron, B., Hastie, T. and Tibshirani, R. (2004). Least Angle Regression, Annals of Statistics, 32, 407 – 499.
- Jacob, L., Obozinski, G. and Vert, J.P. (2009). Group Lassso with Overlap and Graph Lasso. Proceedings of the 26th International Conference on Machine Learning (ICML 26), Montreal, Canada.
- Lockhart, R., Taylor, J., Tibshirani, R. and Tibshirani, R. (2013). A significance Test for the Lasso. (preprint)
- Koenker, R. (2011). Additive Models for Quantile Regression: Model Selection and Confidence Bandaids. Brazilian Journal of Probability and Statistics, 25, No.3, 239 – 262.
- Tibshirani, R. and Taylor, J. (2012). Degrees of Freedom in Lasso Problems, Annals of Statistics, 40, 1198 – 1232.

Change-point Estimation and Inference in Nonparametric Regression