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Introduction & Motivation

Motivation: Parvovirus B19 Data

O University of Hasselt, Belgium (2008)
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& Motivation

Introduction

Parvovirus B19 Data
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Introduction & Motivation

Parvovirus B19 Data - LOWESS
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Introduction & Motivation

Parvovirus B19 Data - LOWESS
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[ data analyzed by many authors using various modeling approaches;
(Hens et al. (2010), Maciak (2008), Nardone et al.(2007), etc.)

[d mostly, authors expect some change-points to be present;
(different theoretical and practical limitations)

Change-point Estimation and Inference in Nonparametric Regression

5 /31



Introduction & Motivation

Parvovirus B19 Data

B19 virus: mostly known for causing a
disease in a pediatric population;

Transmission: respiratory droplets,
mostly children at the age of 6 to 10;

Infectivity: individuals after infection
generally assumed to be immune;

Epidemiology: increase in the number of
cases is seen every three to four years;

Data: over 3000 patients collected in
Belgium (November 2001 — March 2003);
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Change-points and Structural Breaks in Statistics

Change-points in Regression

[ One-sided estimates = segmented estimation;
Antoch et al. (2006); Csérgo and Horvath (1997);

1 Jump detection algorithms = segmented estimation;
Horvath and Kokoszka (2002); Qui and Yandell (1998);

1 Permutation tests = segmented estimation;
Kim at al. (2009, 2000);

1 Bayesian approach =- segmented estimation;
Martinez-Beneito et al. (2011); Carlin et al. (1992);
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Change-points and Structural Breaks in Statistics

Change-points in Regression

[ One-sided estimates = segmented estimation;
Antoch et al. (2006); Csérgo and Horvath (1997);

1 Jump detection algorithms = segmented estimation;
Horvath and Kokoszka (2002); Qui and Yandell (1998);

1 Permutation tests = segmented estimation;
Kim at al. (2009, 2000);

1 Bayesian approach =- segmented estimation;
Martinez-Beneito et al. (2011); Carlin et al. (1992);

[ Total Variation Penalty = automatic selection using sparsity;
Harchaoui and Lévy-Leduc (2010);
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Motivation of the Model

The Underlying Model

O random sample {(X;, Yi); i =1,...,n € N}, true population Fx y);
[ the alertdependence structure of Y given X is assumed to take a form

Yi=m(X))+e, i=1,...,n,
[ where function m can be additively decomposed as:

m(x) = mo(x) + 3 5.
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@y The Underlying Model

O random sample {(X;, Yi); i =1,...,n € N}, true population Fx y);

[ the alertdependence structure of Y given X is assumed to take a form

Yi=m(X))+e, i=1,...,n,

[ where function m can be additively decomposed as:

m(x) = mo(x) + 3 5.

d — different smoothing assumptions posed on mo, So, . . ., Sp—1;
(smooth function mqg with some background shock processes sg, ..., Sp—1)
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Motivation of the Model

The Underlying Model

random sample {(Xi, Y;); i=1,...,n € N}, true population Fix,y);

the alertdependence structure of Y given X is assumed to take a form

Yi=m(X))+e, i=1,...,n,

where function m can be additively decomposed as:

m(x) = mo(x) + 3 5.

— different smoothing assumptions posed on mg, so, . . ., Sp—1;
(smooth function mqg with some background shock processes sg, ..., Sp—1)

— for identifiability reasons we also assume that

Zs}f)(xi):o, Vj=0,...,p—1, and £=0,...,],

i=1
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Fed Nominee
Alan Greenspan
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o Y

odel Estimation Using Splines

M
O available data: {(X;,Y;); i=1,...,n}

O function to estimate: m(x) = mo(x) + f;ol si(x)
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!moothing !pline Models ! Change-points

Model Estimation Using Splines

O available data: {(X;,Y;); i=1,...,n}
p—1

O function to estimate: m(x) = mo(x) + > " 5i(x)

d Smoothing Splines approach (with change-points):
[ X;'s observations — knots {¢;; i =1,...,n} = basis functions 9;(x);
< basis coefficients Bs € R¥, where mo(x) = Z,K:1 ﬁg)qp;(x);

1 jump function sp(x) — grid of (hypothetical) jump-locations o1, - . ., ok,
< jump generating basis: zero order truncated basis vo;(x) = (x — £0,)7;

QO (p — 1)-order jump function sp_1(x) — grid points £, _1)1,- .- E(p—1)kp_y
< (p — 1)-order jump generating basis: 1(,_1);(x) = (x — E(p_l)’j)ﬁ__l;
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Smoothing Spline Models & Change-points

Model Estimation Using Splines

O available data: {(X;,Y;); i=1,...,n}
p—1

0 function to estimate: m(x) = mo(x) + > 5i(x)

d Smoothing Splines approach (with change-points):
[ X;'s observations — knots {¢;; i =1,...,n} = basis functions 9;(x);
< basis coefficients Bs € R¥, where mo(x) = Z,K:1 ﬁg)w;(x);

1 jump function sp(x) — grid of (hypothetical) jump-locations o1, - . ., ok,
< jump generating basis: zero order truncated basis vo;(x) = (x — £0,)7;

QO (p — 1)-order jump function sp_1(x) — grid points £, _1)1,- .- s E(p—1)ky_1

< (p — 1)-order jump generating basis: 1(,_1);(x) = (x — §(P—1)J)i ;

O ideally, we have ko = -+ = kp—1 = kand §o; = =§,_y; forall j=1,..., k;

J Smoothing spline coefficients Bs with a corresponding design matrix Xg and
jump generating (sparse) coefficients 3, with a corresponding design matrix X;
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moothing Spline Models & Change-points

Minimization formulation

[ finite dimensional minimization problem

2
+ A1
2

2
+ X[l Byll1
2

w(5)

O for some A;, A2 >0 and W = V'V, where V = (Vi,,)e;.¢,, such that

Minimize HY - (XsX)) ( gj )

Bs. By

Virey = / UL () (x)dx
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Smoothing Spline Models & Change-points

Minimization formulation via LASSO

[ for any given A1 > 0 one can apply simple algebra to express the original
Minimize

minimization as
' Y\ Xs Xy Bs
i 0 VAW VAW, By

where (W1, W,) = W.

2
+ ol Bullx
2
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Smoothing Spline Models & Change-points

Minimization formulation via LASSO

[ for any given A1 > 0 one can apply simple algebra to express the original

minimization as
Y\ Xs Xy Bs
0 VAW VAW, By

where (W1, W,) = W.

2
+ A8yl
2

Minimize
Bs. By

4 defining
e () [(n ) ()] () o
VAW, VAW, VAW, VAW,

M = (I — H), we can express the solution Xsﬁs + X_]EJ of the original

Y X, . _
problem as H ( 0 > + (I —H) ( VAW, ) BJ, where 3, solves

2
Y X
g o) (o )

+ A2l
2
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ey Change point Structure/Hierarchy

([ various penalization concepts are possible for in real situations;

[ different implementation and interpretations of change-point occurrences;
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L;-Norm Based Regularization

Change-point Structure/Hierarchy

([ various penalization concepts are possible for in real situations;

[ different implementation and interpretations of change-point occurrences;

1 Mutually Independent Change-points

[ Simultaneous Change-points

[ Hierarchical Change-points
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L;-Norm Based Regularization

Change-point Structure/Hierarchy

[ various penalization concepts are possible for in real situations;

[ different implementation and interpretations of change-point occurrences;

[ Mutually Independent Change-points

O functions sp, ..., Sp—1 are not (mutually) related;
[ for every s; = a separate sequence of change-point locations 1, ... ,§jkj;

[ Simultaneous Change-points

[ Hierarchical Change-points
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L;-Norm Based Regularization

Change-point Structure/Hierarchy

([ various penalization concepts are possible for in real situations;

[ different implementation and interpretations of change-point occurrences;

1 Mutually Independent Change-points
1 multiple L penalties - one for each level (0,1,...,p —1);
Q penalty form: )qHﬂSO)H +-+ Ap—].”ﬂ.(]p_l)”;

[ Simultaneous Change-points

[ Hierarchical Change-points
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VO, L;-Norm Based Regularization

Change-point Structure/Hierarchy

[ various penalization concepts are possible for in real situations;

[ different implementation and interpretations of change-point occurrences;

(1 Mutually Independent Change-points

[ multiple L1 penalties - one for each level (0,1,...,p —1);
1 penalty form: )qHﬂ_(,O)H +--- 4+ >\p—1||ﬂ5p71)||;

[ Simultaneous Change-points
3 functions sp, ..., s,—1 are all connected through the change-point locations;

[J one sequence of locations &1,...,& = in each & every s; has a "jump”;

[ Hierarchical Change-points
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L;-Norm Based Regularization

Change-point Structure/Hierarchy

([ various penalization concepts are possible for in real situations;

[ different implementation and interpretations of change-point occurrences;

1 Mutually Independent Change-points
1 multiple L penalties - one for each level (0,1,...,p —1);
Q penalty form: )qHﬂSO)H +-+ )\p71||/33p_1)||;

[ Simultaneous Change-points
[ Group LASSO penalty, where each group is defined by the location &;

1 penalty form: )\Ze \ /Bge +-+ ,3(2,,_1)[;

[ Hierarchical Change-points
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L;-Norm Based Regularization

Change-point Structure/Hierarchy

[ various penalization concepts are possible for in real situations;

1 different implementation and interpretations of change-point occurrences;

[ Mutually Independent Change-points
1 multiple L1 penalties - one for each level (0,1,...,p —1);
3 penalty form: )qHﬂSO)H + -+ >\p_1||ﬂ5p71)||;

[ Simultaneous Change-points
d Group LASSO penalty, where each group is defined by the location &g;

Q penalty form: A", /B2, + -+ 5(2p_1)[;

4 Hierarchical Change-points

[ lower to higher order discontinuity is considered (change-point hierarchy);
1 if there is a jump in s;, for some j =0,...,p—1 = jump in all s, for £ > j;
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L;-Norm Based Regularization

Change-point Structure/Hierarchy

([ various penalization concepts are possible for in real situations;

[ different implementation and interpretations of change-point occurrences;

1 Mutually Independent Change-points
1 multiple L penalties - one for each level (0,1,...,p —1);
a penalty form: )qHﬂSO)H + -4 )\p71||/33p71)||;

[ Simultaneous Change-points
[ Group LASSO penalty, where each group is defined by the location &;

1 penalty form: )\Ze 53@ +-+ ,3(2,,_1)[;

[ Hierarchical Change-points

3 Overlap Group LASSO, where each group is defined by the location &g;
1 penalty form: )\Ze infg G(Be);
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Grou LO vs. Overlap LASSO

G(B1) = /B2y + By T By + A/ Bl + By + By T/ Blier + By + By
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> Group LO vs. Overlap LASSO

G(B1) = /B2y + By T By + A/ Bl + By + By T/ Blier + By + By

such, that
Bor = Boia)» and Boi) = Boie) = 0,
Bu = Bua) + By and Biie) =0,

Bar = Baia) + Bauw) + Baie)-
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LARS Algorithm - geometry

[ LARS - Least Angle Regression - Efron et al.(2004)
([ straightforward modification to accommodate LASSO approach;
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LARS Algorlthm geometry

[ LARS - Least Angle Regression - Efron et al.(2004)
[ straightforward modification to accommodate LASSO approach;

X2

[0,0] X1

Change-point Estimation and Inference in Nonparametric Regression 1531




LARS Algorlthm geometry

[ LARS - Least Angle Regression - Efron et al.(2004)
[ straightforward modification to accommodate LASSO approach;

X2

Y12
X 91
N
Ho
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LARS Algorlthm geometry

[ LARS - Least Angle Regression - Efron et al.(2004)
[ straightforward modification to accommodate LASSO approach;

X2

A
Y12

X Y1
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LARS Algorlthm geometry

[ LARS - Least Angle Regression - Efron et al.(2004)
[ straightforward modification to accommodate LASSO approach;

X2 X2

A
Y12

X Y1

Change-point Estimation and Inference in Nonparametric Regression

15 /31



LARS Algorlthm geometry

[ LARS - Least Angle Regression - Efron et al.(2004)
([ straightforward modification to accommodate LASSO approach;

X1 A
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0.0

-1.0 -05

LARS Algorlthm - example

0 Data: X; ~ Unif[0,1], for i =1,...,100;
Yi = mo(Xi) + Zf:o si(Xi) +¢ei;

O Error: € ~ N(0,1/400);

[ Background functions:

so(x) = 0.49I(x > 0.7) —0.3[(x > 0.3)
s1(x) = =3.9xI(x > 0.7)
s2(x) = —30x%I(x > 0.7)
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!!!! = !omplete !O ution !atl!s or !!!!!

LARS Algorithm - example

e Q Data: X; ~ Unif[0,1], for i =1,...,100;
o | o Yi=mo(X)) + 37 (X)) + i

o |/ a Error: € ~ N(0,1/400);

: | [ Background functions:

¢ so(x) = 0.49I(x > 0.7) —0.3I(x > 0.3)
? | s1(x) = =3.9xI(x > 0.7)

s2(x) = —30x%I(x > 0.7)

d Mutually Independent Change-points, for &g =&i=Xi, i=1,..., N,
[ Regularization parameters As > 0 and Ag, A1 > 0;
O LASSO Penalty: Ao||B9]| + A1|B4]] — LARS solution paths;
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> LARS Algorithm - Solution Paths
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“® LARS Algorithm - Solution Paths
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> LARS Algorithm - Solution Paths
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“® LARS Algorithm - Solution Paths
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LARS Algorithm - Solution Paths
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LARS - Complete Solution Paths for LASSO

LARS Algorithm - Solution Paths
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LARS - Complete Solution Paths for LASSO

LARS Algorithm - Solution Paths
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[ piece-wise linear solution paths along a sequence \1 > A2 > --- > A\ > 0;
(these “knot points” depend on Y and X)

O piece-wise linear decrease in maximum (current) correlation X' (Y — fix);
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[ How to choose the final model from the set of plausible ones?
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A little bit of inference

on change-points
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A little bit of inference

on change-points

[ consistency;
[ hypothesis tests;

[ confidence regions;
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n|erence on !I!ange—pomts n !p ine I! o!els

Degrees of Freedom

0 Degrees of freedom: df(fit) = % > " | Cov (\A/,, Y,»);

[ linear regression = trace of the hat matrix = number of parameters;
—1
[ smoothing splines = trace of X (XTX - \/X1WIW1) X

[ LASSO regression = average number of effective parameters;
(result generalized by Tibshirani and Taylor (2012) even for p > n ;

[ splines with change-points: =- hat matrix trace + number of changes;
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Inference on Change-points in Spline Models

Degrees of Freedom

O Degrees of freedom: df(fit) = % Y7 | Cov (Vi, Vi);

[ linear regression = trace of the hat matrix = number of parameters;
—1
[ smoothing splines = trace of X (XTX - \/X1WIW1) X

[ LASSO regression = average number of effective parameters;
(result generalized by Tibshirani and Taylor (2012) even for p > n ;

[ splines with change-points: =- hat matrix trace + number of changes;

1 Mutually Independent Change-points: df = [Ag| + -+ + [Ap—1];
[ Simultaneous Change-points: df =3 x |A[;
Q Hierarchical Change-points: df = [Ag| + -+ + [Ap—1
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nrerence on ange-points in Spline Models

Consistency of Estimates

O for now, only consistency with respect to change-points estimates;
(considering a model B, = Argmin||Y — X857 + M| Bull1)

[ restriction on the number of change-points (including their positions);
(in general, we assume at most K € N change-points)
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Consistency of Estimates

O for now, only consistency with respect to change-points estimates;
(considering a model B, = Argmin||Y — X, + \|BJ]1)

[ restriction on the number of change-points (including their positions);
(in general, we assume at most K € N change-points)

Under some common assumptions, for all n > lzand C>2V2,
we have with a probability larger than 1 — n'=C"/8, that

n

% (Bsrn) - 85)|| < CoKBa) 2 ("’g)/

where A\, = Co \/w, with an active set of pamameters A.

[ idea of the proof: extension of proof in Bickel, Ritov and Tsybakov (2009);
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Consistency of Locations
L again, consistency with respect to change-points locations;
(considering a model B, = Argmin||Y — X,8,% + M| Bull1)

1 two change-point locations are not too much close to each other;
(in general, we need enough data points to estimate each change-point)

It can be shown that

n—oo

B — t1] < n5,,> 1230 1.

- (maxlﬂs@um

for some nonincreasing, positive sequence {d,}n>1 tending to zero,
such that né,

[ generalization of the result of Harchaoui and Lévy-Leduc (2010)
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Inference on Change-points in Spline Models

Significance Test for LASSO

A classical theory based on RSS drop between two models not applicable;
< test statistics: R; = (RSSw — RSSuuy;y)/0” — X distribution

O in situations where p > n the sets M and M U {j} are not fixed any more;
< using classical approach is way too far liberal (large type I. error)

[ alternative approach must account for adaptivity of the LASSO procedure;
— adaptiveness vs. shrinkage

[ covariance test statistic proposed by Lockhart et at. (2013);
s test statistics: Ty = ((v, XB(hesr)) — (Y, XAEA(AM») /o?

I under the null hypothesis (supp(8*) C A) it holds that:
<> test statistic Tx — Exp(1) in distribution;
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Inference on Change-points in !pline Models

Confidence Regions

1 Point-wise Confidence Bands

3 for the vector of parameters (ﬁ;—,ﬂ]—) we have a pseudo design matrix;
[ we can define a sandwich estimate for the covariance matrix;
O if variance o2 is unknown = need for an estimate 62;

d Uniform Confidence Bands

[ the idea is to obtain a band Bj(x) for mg (sp,...,Sp—1 resp.), such that
P(f(x) € Bp¢(x)) =1—«a, for f € {mg,s0,...,5p-1};

[ idea of the band construction: Hotelling (1939);
(also Krivobokova et al. (2013) and Koenker (2011))

[ however, requires continuity at least = not applicable for sy yet;
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Finite Sample Properties

Some Simulation Results
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Finite Sample Properties

Some Simulation Results
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Finite Sample Properties

Independent Change-points

Independent Change-points o2=0 o?2=01 o2 =0.2 o2 =0.5 o2 =1
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Finite Sample Properties

Mutually Related Change-points

Mutually Related Change-point: c2=0 o02=01 o2=02 o2=05 o2 =1
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Finite Sample Properties

Back to Parvovirus B19 Data

[ intercept corrected smoothing B-spline basis 4+ change-point basis;
= smoothness degree p = 3, change-points up to the order p — 1 = 2;

1 mutually independent change-points assumed,;
= four smoothing parameters \s, Ao, A1, A2 > 0;
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0
1
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Finite Sample Properties

Back to Parvovirus B19 Data

[ intercept corrected smoothing B-spline basis 4+ change-point basis;
= smoothness degree p = 3, change-points up to the order p — 1 = 2;

1 mutually independent change-points assumed,;
= four smoothing parameters \s, Ao, A1, A2 > 0;

Current correlation
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Current correlation

Finite Sample Properties

Back to Parvovirus B19 Data

intercept corrected smoothing B-spline basis + change-point basis;
= smoothness degree p = 3, change-points up to the order p — 1 = 2;

mutually independent change-points assumed,;
= four smoothing parameters \s, Ao, A1, A2 > 0;

6000
100 200 300 400
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o
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one change-point in location (roughly at the age of 20);
in addition, also a change-point in direction revealed (age 8 — 9);

(even <sionificant n-value helow {?Iﬂ'ﬁe‘—point Estimation and Inference in Nonparametric Regression 20 /31
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Thank you...
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Thank you...
...any questions?
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#  Koenker, R. (2011). Additive Models for Quantile
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