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Motivation – sample data
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Condroz data
Dataset of Calcium content vs. pH in soil in Condroz region in Belgium.
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Condroz data

Dataset of Calcium content vs. pH in soil in Condroz region in Belgium.
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See Goegebeur et al. (2005), Vandewalle, Beirlant, Hubert (2006),

Beirlant et al. (2004).



Heavy-tailed data – univariate case
Have Ei i.i.d. random variables. We say

Ei ∈ D(Gγ), Gγ = exp
(
− (1 + γx)−1/γ

)
i.e. there exists an > 0 and bn ∈ R

P (Xn:n ≤ anx+ bn) → Gγ(x).

for all x ∈ R.

We are chiefly interested in the heavy-tailed errors (γ > 0), i.e.
F−1(1 − x) is regularly varying at zero (RV 0

γ ).

lim
t ↘ 0

F−1(1− tx)

F−1(1− t)
= x−γ

. . . and as usual (to get more precise asymptotic), suppose we have a
constant signed A(t) and the second order approximation with some
ρ ∈ R

+

lim
t ↘ 0

F−1(1−tx)
F−1(1−t) − x−γ

A(t)
= x−γ · 1− xρ

ρ
=: Kγ,ρ(x).
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Heavy-tailed data – Drees (1998)

Suppose that Ei, i = 1, . . . , n are i.i.d. random variables fulfilling the
second order condition for some γ, ρ > 0 and k = k(n) is an
intermediate sequence. Then we can define a sequence of Wiener
processes Wn(t), t ∈ [0, 1] such that for ε > 0 sufficiently small

sup
0≤t≤1

tγ+1/2+ε

∣∣∣∣∣k1/2
(

En−[kt],n

F−1
(
1− k

n

) − t−γ

)
− γt−γ−1Wn(t)

−k1/2A

(
k

n

)
t−γ 1− tρ

ρ

∣∣∣∣ P−→
n→∞ 0.

wide range of applications – consider functional T (En−[kt],n) with
T being location and scale invariant smooth functional

a more complicated version for γ ∈ R exists

Q: can something similar be established for linear models?



Simple linear model with heavy tails

Yn×1 = Xn×dβd×1 +En×1

Xn×d known covariate matrix

En×1 i.i.d. errors

Ei ∈ D(Gγ), Gγ = exp
(
− (1 + γx)−1/γ

)
i.e. there exists an > 0 and bn ∈ R

P (Xn:n ≤ anx+ bn) → Gγ(x).

for all x ∈ R.

γ > 0.



Regression quantiles

regression quantiles for α ∈ (0, 1) and loss ρα(u) = u(α− I(u < 0))
are defined

β̂n(α) = β̂n (α|Y,X) := arg min
b∈Rd

n∑
i=1

ρα (Yi − xib) .



Extreme regression quantiles

the largest regression quantile

β̂n(1) = β̂n (1|Y,X) := arg min
b∈Rd

n∑
i=1

(Yi − xib)
+ ,

cf. Smith (1994), Portnoy and Jurečková (1999), Jurečková (2000), Knight (2002).

α∗
n → 1 with a given order

extreme order regression quantiles (1− α)n → k > 0, n → ∞,
intermediate order regression quantiles (1− α)n → ∞, α → 0,

cf. Chernozhukov (2005).

Example: asymptotic for intermediate regression quantiles by Chernozhukov (2005)
√
αn

µ�X(β(α) − β(mα))

(
β̂(α) − β(α)

) D−→
n→∞N (0,Ω(γ))

where µX = Ex, β(α) = (β1 + F−1(α), β2, . . . , βd), m < 1.



Tail quantile function vs. Regression quantile process

© the tail quantile function

Qn,k(t) := F−1
n

(
1− kt

n

)
= En−[knt]:n, t ∈ [0, 1].

© the sample quantile process

qn(α) = n1/2(F−1
n (α) − F−1(α)), 0 < α ≤ 1.⊗

the tails of regression quantiles

Q̂n,k(t) := β̂n

(
1− tk

n

)
, t ∈ [0, 1],

⊗
the process of regression quantiles

q̂n(α) := n
1
2 f(F−1(α))

(
β̂n(α)− β(α)

)
, 0 < α < 1,

where β(α) := (β1 + F−1(α), β2, . . . , βd).



Tail quantile function vs. Regression quantile process
© the tail quantile function

Qn,k(t) := F−1
n

(
1− kt

n

)
= En−[knt]:n, t ∈ [0, 1].

© the sample quantile process

qn(α) = n1/2(F−1
n (α) − F−1(α)), 0 < α ≤ 1.⊗

the tails of reparametrized regression quantiles

Q̂n,k(t) := x�β̂n

(
1− tk

n

)
, t ∈ [0, 1],⊗

the process of reparametrized regression quantiles

q̂n(α) := n
1
2 f(F−1(α))x�

(
β̂n(α) − β(α)

)
, 0 < α < 1,

where β(α) = (β1 + F−1(α), β2, . . . , βd) and x := 1
n

∑n
i=1 xi.



Main results – an outline

1 Approximate qn(α), on [α∗
n, 1− α∗

n], α
∗
n → 0.

2 Approximate q̂n(α) on [1− α∗
n, 1− 1/n].

3 Approximate Q̂n,k(t) in the same way as Qn,k(t),
cf. Drees (1998).

4 Describe estimators of γ as functionals of Qn,k(t).

5 The functionals have same properties on Q̂n,k(t).



1. Approximation of regression quantile process

Under suitable conditions it holds

sup
α∗

n≤α≤1−α∗
n

∣∣∣σ−1
α (β̂n (α|Y,x)− β(α))

∣∣∣ = OP (n
−1/2(log logn)

1
2 ),

and

n1/2σ−1
α

(
β̂n (α|Y,X)− β(α)

)
=

n−1/2(α(1 − α))−1/2D−1
n

n∑
i=1

xi

(
α− I[Ei − F−1(α) < 0]

)
+ oP (1)

where σα := (α(1 − α))1/2/f(F−1(α)) and α∗
n = ( 1n log

2+δ n) for any
δ > 0

cf. Gutenbrunner et al. (1993) and Jurečková (1999), where α∗
n = n−1+ε is used.



Assumptions
Distribution function

(F.1) F is absolutely continuous with the positive density on (x∗, x∗).
There exists f ′, the derivative of density f .

(F.2) There exists some 0 < Kγ < ∞ such that

sup
x∗<x<x∗

F (x)(1 − F (x))

∣∣∣∣ f ′(x)
f2(x)

∣∣∣∣ ≤ Kγ .

(F.3)

lim sup
x↑x∗

(1− F (x))f ′(x)
f2(x)

= −1− γ∗.

for some γ∗ > −1/2 (lower tail index γ∗ similarly).

Covariance matrix

(X.1) xi1 = 1, i = 1, . . . , n.
(X.2) limn→∞ Dn = D, where Dn = n−1X�

nXn and D is a positive
definite (d× d) matrix.

(X.3) n−1
∑n

i=1 |xni|4 = O(1) as n → ∞.
(X.4) max1≤i≤n |xni| = O((log logn)1/2) as n → ∞.



Proof
Prove that sup

{|rn(t, α)| : α∗
n ≤ α ≤ 1− α∗

n, ‖t‖ ≤ (log logn)1/2
}
= oP (1),

rn(t, α) := (α(1 − α))−1/2σ−1
α

n∑
i=1

[
ρα
(
Eiα − n−1/2σαx

�
i t
)
− ρα(Eiα)

]

+n−1/2(α(1 − α))−1/2t�
n∑

i=1

xiψα(Eiα)− 1

2
t�Dnt

and Eiα := Ei − F−1(α), i = 1, . . . , n, 0 < α < 1, ψα(u) := α− I(u < 0).

approximate the mean of rn(t, α) for any suitable α and t.
Bernstein inequality gives a probabilistic bound for any α and t.
Chaining arguments give the uniform bound.

n1/2σ−1
α (β̂n(α)− β(α)) minimizes the convex function

Gnα (t) = (α(1 − α))−1/2σ−1
α

n∑
i=1

[
ρα(Eiα − n−1/2σαx

�
i t)− ρα(Eiα)

]
use the properties of rn(α, t) to calculate the solution for ‖t‖ ≤ (log logn)1/2.

convexity of Gnα (t) implies that the minimum cannot be attained elsewhere.



2. Regression quantile process at the tails

Suppose that γ∗ > 0. Then

sup
1−α∗

n≤α≤n−1
n

∣∣x�qn(α)
∣∣ = sup

1−α∗
n≤α≤n−1

n

∣∣∣n1/2f
(
F−1 (α)

)
x�
(
β̂n(α)− β(α)

)∣∣∣
= OP (n

−1/2(log n)(2+δ)(1∨γ∗)) = oP (1).

and if γ∗ > 0 is the tail index of the lower tail it holds also

sup
1/n≤α≤α∗

n

∣∣x�qn(α)
∣∣ = sup

1/n≤α≤α∗
n

∣∣∣n1/2f
(
F−1 (α)

)
x�
(
β̂n(α)− β(α)

)∣∣∣
= OP (n

−1/2(logn)(2+δ)(1∨γ∗)) = oP (1),



Proof

x�βn(α1) ≤ x�βn(α2) iff α1 ≤ α2,

similarly as in Portnoy and Jurečková (1999) get

Pβ

(
n∑

i=1

x�
i (β(1) − β) ≥ nt

)
≤ P (En:n ≥ t) ,

assuming γ = γ∗ > 0 it follows

P

(
En:n

F−1 (1− 1/n)
≥ ζ

)
D−→

n→∞ 1− exp
(
−ζ− 1

γ

)
,

use von Mises condition and Lemma 4.5.2. of Csörgő and Révész (1977) for
transition from f(F−1(1− kt/n)) to f(F−1(1 − k/n)).



3. Tails of regression quantiles
Assume

model with i.i.d. errors fulfilling the second order condition,
γ, ρ > 0,
k = k(n) → ∞, k/n → 0 and

√
kA(k/n) = λ,

k ≥ log∆(1∨γ)(n), ∆ > 4 + 2δ.
‖z‖γ,ε := supt∈[0,1]

∣∣t1/2+γ+εz(t)
∣∣, z ∈ D[0, 1].

There are Wiener processes Wn(t), W̃n(t), and W(t) such that for
any ε > 0.

∥∥∥∥∥∥k1/2
⎛⎝x�

(
β̂n

(
1− kt

n

)− β
)

F−1
(
1− k

n

) − t−γ

⎞⎠− γt−γ−1Wn(t)

−k1/2A

(
k

n

)
t−γ 1− tρ

ρ

∥∥∥∥
γ,ε

≤ ∥∥γt−γx�D−1W(t)
∥∥
γ,ε

+
∥∥∥γt−γW̃n(t)

∥∥∥
γ,ε

+ oP (1),



. . . which is an analogy to Drees(1998).

sup
0≤t≤1

tγ+1/2+ε

∣∣∣∣∣k1/2
(

En−[kt],n

F−1
(
1− k

n

) − t−γ

)
− γt−γ−1Wn(t)

−k1/2A

(
k

n

)
t−γ 1− tρ

ρ

∣∣∣∣ P−→
n→∞ 0.



Proof

combination of the previous results on approximations of regression quantiles,

von Mises condition and Lemma 4.5.2. of Csörgő and Révész (1981) used for
transition from f(F−1(1− kt/n)) to f(F−1(1 − k/n)),

direct procedure – just a rough approximation.



4. Functionals of tail quantile functions
Have γ ∈ R and a functional T : span(HM, 1) → R satisfying

1 HM is semimetric space, where the tail quantile function and its
relatives live

2 T (az + b) = T (z), for all z ∈ HM, a > 0, b ∈ R,

3 T (zγ) = T (x
−γ−1
γ ) = γ

4 T|HM is Hadamard differentiable tangentially to suitable
continuous CM ⊂ HM, at zγ with a derivative T ′

γ , i.e. for some
signed measure νT,γ it holds for all 0 < εn → 0 and all yn ∈ HM
such that yn → y ∈ CM

lim
εn→0

T (zγ − εnyn)− T (zγ)

εn
= T ′

γ(y) =

∫ 1

0

ydνT,γ .

Then T (Qn,k) → γ and for intermediate sequence kn with the rate
parameter λ = func.(γ, ρ, kn) it holds

L(k1/2n (T (Qn,k)− γ)) → N (λνT,γ,ρ, σT,γ),

c.f. Drees (1998).



Variance and bias of the estimation

Provided that
√
kA(k/n) → λ it holds

(i) T (Qn,k) → γ

(ii) L(k1/2n (T (Qn,k)− γ)) → N (λνT,γ,ρ, σT,γ), where

µT,γ,ρ :=

∫ 1

0

t−γ 1− tρ

ρ
d νT,γ

σT,γ := V ar

(∫ 1

0

t−γ−1W (t) dνT,γ(t)

)
=

∫ 1

0

∫ 1

0

(st)γ−1 min(s, t)d νT,γ(s) dνT,γ(t)



5. T (Q̂n,k(t)) is the estimator

Suppose that T fulfills the given assumptions. For T (Q̂n,k(t)) it
follows:

1 consitency:
follows immediately from continuity of T and approximations given
previously.

2 asymptotic normality:
requires Hadamard differentiability,
as we have an extra random remainder (with zero mean),
asymptotic variance can be only roughly estimated,
asymptotic bias is the same one as in the i.i.d. case.



Available estimators

Examples:

Pickands estimator

TPick(z) :=
1

log 2
log

(
z(1/4)− z(1/2)

z(1/2)− z(1)

)
I

[
z(1/4)− z(1/2)

z(1/2)− z(1)
> 0

]
.

Probability weighted moments estimator

TPWM(z) :=

∫ 1

0
(z(t)− z(1))(1− 4t)dt∫ 1

0
(z(t)− z(1))(1− 2t)dt

I

[∫ 1

0

(z(t)− z(1))(1− 2t)dt > 0

]
.

Maximum likelihood estimator – generated by an implicitly given
functional, see Drees (1998).



Functionals on x
β̂n(1− tk/n)t∈[0,1]
T (x�Q̂n,k) = T (x�β̂n(1− tk/n)t∈[0,1]) are consistent and
asymptotically normal estimators of γ.

ML-estimator of γ based on the k largest unique estimates of
x�β̂n(τ), τ ∈ (0, 1), i.e. the estimator fits generalized Pareto
distribution (GPD) on the exceedances of {x�β̂n(τj)}j=m−k,...,m

over x�β̂n(τm−k−1).

Probability weighted moments estimator (PWM)

γ̂RQ,PWM
m,k =

1
k

∑k
j=1

(
4 j
k+1 − 3

)
x�β̂n(τm−i+1)

1
k

∑k
j=1

(
2 j
k+1 − 1

)
x�β̂n(τm−i+1)

Pickands estimator

γ̂RQ,P
m,k =

1

log 2
log

(
x�β̂n(τm−[k/4])− x�β̂n(τm−[k/2])

x�β̂n(τm−[k/2])− x�β̂n(τm−k)

)
Where τ1, . . . , τm are such that β̂nτi, i = 1, · · · , m are m unique solution of

minimazation problem argminb∈Rd

∑n
i=1 ρα (Yi − xib) for α ∈ [0, 1].



Reparametrization

Have

x̃i,1 = 1,

x̃i,j = xi,j − 1

n

n∑
i=1

xi,j , j = 2, . . . , p.

Hence, after reparametrization x = (1, 0, . . . , 0).



Functionals on β̂n,1(1− tk/n)t∈[0,1]
T (Q̂n,k) = T (β̂n,1(1− tk/n)t∈[0,1]) are consistent and asymptotically
normal estimators of γ.

ML-estimator of γ based on the k largest unique estimates of
β̂n,1(τ), τ ∈ (0, 1), i.e. the estimator fits generalized Pareto
distribution (GPD) on the exceedances of {β̂n,1(τj)}j=m−k,...,m

over β̂n,1(τm−k−1).

Probability weighted moments estimator (PWM)

γ̂RQ,PWM
m,k =

1
k

∑k
j=1

(
4 j
k+1 − 3

)
β̂n,1(τm−i+1)

1
k

∑k
j=1

(
2 j
k+1 − 1

)
β̂n,1(τm−i+1)

Pickands estimator

γ̂RQ,P
m,k =

1

log 2
log

(
β̂n,1(τm−[k/4])− β̂n,1(τm−[k/2])

β̂n,1(τm−[k/2])− β̂n,1(τm−k)

)
Where τ1, . . . , τm are such that β̂n,1(τi), i = 1, · · · ,m are m unique
intercepts of regression quantiles in reparametrized model.



Summary of previous

Achievements:

improvements of older approximations of regression quantiles
wider interval [α∗

n, 1− α∗
n]

at least a rough approximation for [1− α∗
n, 1− 1/n]

general approximation methodology of γ based on regression
quantiles

Open questions:

further improvements of approximations
use Hungarian construction instead of Bahadur representation
improve approximation of regression quantile process in
[1− α∗

n, 1− 1/n]

dependency of errors



Two-step regression quantiles

Step 1: Calculate R-estimate of the slope i.e. invert the rank
statistics in Hodges-Lehmann manner. Have

Rni(Y −Xb) be the rank of Yi − x�
i b among

(Y1 − x�
1 b, . . . , Yn − x�

n b),b ∈ R
p

ϕα = α− I[x < 0], x ∈ R

xi be the i-th row of the Xn×d

Minimize the Jaeckel’s measure of rank dispersion.

β̂nR = argminb∈Rp

n∑
i=1

(Yi − x′
ib)ϕα

(
Rni(Y −Xb)

n+ 1

)

Step 2: Get the ordered residuals β̃n0 = Yi − x�
i β̂nR(α)

⇒ two-step regression quantiles
(
β̃n0, β̂nR(α)

)



Two step r.q. process and its tail approximation

Êk:n :=
(
{Y1 − x�

1 β̂nR, . . . , Yn − x�
n β̂nR}

)
k:n

and

Q̃n,k(t) := F−1
n

(
1− kn

n
t

)
= Ên−[knt]:n, t ∈ [0, 1],

Have again model with Ei ∼ F , with F satisfying the second order condition for some
γ ∈ R and ρ ≤ 0. Then under suitable conditions on F and X we can define a
sequence of Wiener processes {Wn(t)}t≥0 such that for suitable chosen functions A
and a and each ε > 0,

sup
t∈(0,1]

tγ+
1
2
+ε

∣∣∣∣∣∣
Q̃n,k(t) − F−1

(
1− k

n

)
− β0

a(k/n)
−
(
zγ(t) − k−

1
2 t−(γ+1)Wn(t)

+A

(
k

n

)
H(t)

)∣∣∣∣ = oP

(
k−1/2 + |A(k/n)|

)
n → ∞, provided k = k(n) → ∞, k/n→ 0 and

√
kA(k/n) = O(1) and

zγ(t) =
t−γ−1

γ
, cf. Picek and Dienstbier (2010).



Remark

under suitable condition, the method of proof can be used for any
convergent estimate of β and its ordered residuals

however, is not “suitable condition” = “neglecting real data
structures”?



Remark

under suitable condition, the method of proof can be used for any
convergent estimate of β and its ordered residuals

however, is not “suitable condition” = “neglecting real data
structures”?



Simulations
Example: Yi = 1 + 5xi + ei, where xi ∼ U(0, 1), ei have Burr distribution with shape

γ = 0.5
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Simulations
Example: Yi = 1 + 5xi + ei, where xi ∼ U(0, 1), ei have Burr distribution with shape
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Condroz
Example: Condroz dataset again
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Condroz
Example: Condroz dataset again, estimator plots
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Example: Condroz dataset again, estimator plots
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Condroz
Example: Condroz dataset again, estimator plots 6.6 ≤ pH ≤ 7.5
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Condroz
Example: Condroz dataset again, estimator plots 6.6 ≤ pH ≤ 7.3
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Remarks

theory shows that if “thinks goes well” estimates based on
quantile regression works

i.e. if the model is same (or simpler) as we suppose

one additional interpretation of Condroz data (hurray!)

Something structural?

extremes in predictors matters
we often do not have the same number of observations for
different predictors

problem, if nice model for all responses desired
get a nice model = root out enough data as outliers!

linear models tend not to be linear
at least, if we want to work with all responses

other possible problems. . .
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Further remarks & hypocrisy continued

in EVT linear models, the choice of model matters, not the data

which model is better than others depends strictly on the exact
data settings and not the theory

EVT can be a dangerous drug (do not abuse)

cf.

hypocrite n. One who, professing virtues that he does not
respect, secures the advantage of seeming to be what
he despises.

story n. A narrative, commonly untrue.

politeness n. The most acceptable hypocrisy.

– Ambrose Bierce, Devil’s Dictionary
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