COVARIATE EFFECTS IN EXTREMES – REMARKS AND THEORY¹

Jan Dienstbier

e-mail: dienstbier.jan@gmail.com

Technical University in Liberec

Nemˇ ci ˇ cky, 9.9.2012 ˇ

1The author and the research team KLIMATEXT benefited from project CZ.1.07/2.3.00/20.0086 co-financed by the European Social Fund and the state budget of Czech Republic.K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Motivation – sample data

Index

イロト (部) (変) (変) 重 299

Condroz data

Dataset of Calcium content vs. pH in soil in Condroz region in Belgium.

pH

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Condroz data

Dataset of Calcium content vs. pH in soil in Condroz region in Belgium.

See Goegebeur et al. (2005), Vandewalle, Beirlant, Hubert (2006), Beirlant et al. (2004).

Heavy-tailed data – univariate case

Have E_i i.i.d. random variables. We say

$$
E_i \in \mathcal{D}(G_{\gamma}), G_{\gamma} = \exp\left(-\left(1 + \gamma x\right)^{-1/\gamma}\right)
$$

i.e. there exists $a_n > 0$ and $b_n \in \mathbb{R}$

$$
P(X_{n:n} \le a_n x + b_n) \to G_{\gamma}(x).
$$

for all $x \in \mathbb{R}$.

We are chiefly interested in the heavy-tailed errors ($\gamma > 0$), i.e. $F^{-1}(1-x)$ is regularly varying at zero (RV_γ^0) .

$$
\lim_{t \to \infty} \frac{F^{-1}(1 - tx)}{F^{-1}(1 - t)} = x^{-\gamma}
$$

. . . and as usual (to get more precise asymptotic), suppose we have a constant signed $A(t)$ and the second order approximation with some

$$
\lim_{t \searrow 0} \frac{\frac{F^{-1}(1-tx)}{F^{-1}(1-t)} - x^{-\gamma}}{A(t)} = x^{-\gamma} \cdot \frac{1-x^{\rho}}{\rho} =: K_{\gamma, \rho}(x).
$$

Heavy-tailed data – univariate case

Have E_i i.i.d. random variables. We say

$$
E_i \in \mathcal{D}(G_\gamma), G_\gamma = \exp\left(-\left(1 + \gamma x\right)^{-1/\gamma}\right)
$$

i.e. there exists $a_n > 0$ and $b_n \in \mathbb{R}$

$$
P(X_{n:n} \le a_n x + b_n) \to G_{\gamma}(x).
$$

for all $x \in \mathbb{R}$.

We are chiefly interested in the heavy-tailed errors ($\gamma > 0$), i.e. $F^{-1}(1-x)$ is regularly varying at zero (RV_γ^0) .

$$
\lim_{t \to \infty} \frac{F^{-1}(1 - tx)}{F^{-1}(1 - t)} = x^{-\gamma}
$$

. . . and as usual (to get more precise asymptotic), suppose we have a constant signed $A(t)$ and the second order approximation with some $\rho \in \mathbb{R}^+$

$$
\lim_{t \searrow 0} \frac{\frac{F^{-1}(1-tx)}{F^{-1}(1-t)} - x^{-\gamma}}{A(t)} = x^{-\gamma} \cdot \frac{1-x^{\rho}}{\rho} =: K_{\gamma, \rho}(x).
$$

Heavy-tailed data – Drees (1998)

Suppose that E_i , $i = 1, \ldots, n$ are i.i.d. random variables fulfilling the second order condition for some $\gamma, \rho > 0$ and $k = k(n)$ is an intermediate sequence. Then we can define a sequence of Wiener processes $W_n(t)$, $t \in [0,1]$ such that for $\varepsilon > 0$ sufficiently small

$$
\sup_{0 \le t \le 1} t^{\gamma + 1/2 + \varepsilon} \left| k^{1/2} \left(\frac{E_{n-[kt],n}}{F^{-1} (1 - \frac{k}{n})} - t^{-\gamma} \right) - \gamma t^{-\gamma - 1} W_n(t) - k^{1/2} A \left(\frac{k}{n} \right) t^{-\gamma} \frac{1 - t^{\rho}}{\rho} \right| \xrightarrow[n \to \infty]{\mathbf{P}} 0.
$$

■ wide range of applications – consider functional $T(E_{n-[kt],n})$ with T being location and scale invariant smooth functional

KORKA ERKER EL POLO

- a more complicated version for $\gamma \in \mathbb{R}$ exists
- Q: can something similar be established for linear models?

Simple linear model with heavy tails

$$
\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times d} \boldsymbol{\beta}_{d\times 1} + \mathbf{E}_{n\times 1}
$$

 $\mathbf{X}_{n\times d}$ known covariate matrix **E**_{n×1} i.i.d. errors

$$
\blacksquare E_i \in \mathcal{D}(G_\gamma), G_\gamma = \exp\left(-\left(1 + \gamma x\right)^{-1/\gamma}\right)
$$

i.e. there exists $a_n > 0$ and $b_n \in \mathbb{R}$

$$
P(X_{n:n} \le a_n x + b_n) \to G_{\gamma}(x).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

for all $x \in \mathbb{R}$.

 \blacksquare $\gamma > 0$.

Regression quantiles

regression quantiles for $\alpha \in (0,1)$ and loss $\rho_{\alpha}(u) = u(\alpha - I(u < 0))$ are defined

$$
\widehat{\boldsymbol{\beta}}_n(\alpha) = \widehat{\boldsymbol{\beta}}_n\left(\left.\alpha\right|\mathbf{Y}, \mathbf{X}\right) := \arg\min_{b \in \mathbb{R}^d} \sum_{i=1}^n \rho_\alpha\left(Y_i - \mathbf{x}_i\right).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @

Extreme regression quantiles

the largest regression quantile

$$
\widehat{\boldsymbol{\beta}}_n(1) = \widehat{\boldsymbol{\beta}}_n\left(1\right|\mathbf{Y}, \mathbf{X}\right) := \arg\min_{b \in \mathbb{R}^d} \sum_{i=1}^n \left(Y_i - \mathbf{x}_i b\right)^+,
$$

cf. Smith (1994), Portnoy and Jurečková (1999), Jurečková (2000), Knight (2002).

\n- $$
\alpha_n^* \to 1
$$
 with a given order
\n- **extreme order regression quantiles** $(1 - \alpha)n \to k > 0$, $n \to \infty$,
\n- **intermediate order regression quantiles** $(1 - \alpha)n \to \infty$, $\alpha \to 0$, cf. Chernozhukov (2005).
\n

Example: asymptotic for intermediate regression quantiles by Chernozhukov (2005)

$$
\frac{\sqrt{\alpha n}}{\mu_{\mathbf{X}}^{\top}(\beta(\alpha) - \beta(m\alpha))} \left(\hat{\beta}(\alpha) - \beta(\alpha)\right) \underset{n \to \infty}{\xrightarrow{\mathcal{D}}} \mathcal{N}(0, \Omega(\gamma))
$$
\nwhere $\mu_{\mathbf{X}} = E_{\mathbf{X}}$, $\beta(\alpha) = (\beta_1 + F^{-1}(\alpha), \beta_2, \dots, \beta_d)$, $m < 1$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Tail quantile function vs. Regression quantile process

the tail quantile function

$$
Q_{n,k}(t) := F_n^{-1} \left(1 - \frac{kt}{n} \right) = E_{n-[k_n t]:n}, \quad t \in [0,1].
$$

the sample quantile process

$$
q_n(\alpha) = n^{1/2} (F_n^{-1}(\alpha) - F^{-1}(\alpha)), \quad 0 < \alpha \le 1.
$$

 \otimes the tails of regression quantiles

$$
\hat{\mathbf{Q}}_{n,k}(t) := \hat{\boldsymbol{\beta}}_n\left(1 - \frac{tk}{n}\right), \qquad t \in [0,1],
$$

 \otimes the process of regression quantiles

$$
\hat{\mathbf{q}}_n(\alpha) := n^{\frac{1}{2}} f(F^{-1}(\alpha)) \left(\hat{\boldsymbol{\beta}}_n(\alpha) - \boldsymbol{\beta}(\alpha) \right), \qquad 0 < \alpha < 1,
$$

where $\boldsymbol{\beta}(\alpha) := (\beta_1 + F^{-1}(\alpha), \beta_2, \dots, \beta_d).$

Tail quantile function vs. Regression quantile process

the tail quantile function

$$
Q_{n,k}(t) := F_n^{-1} \left(1 - \frac{kt}{n} \right) = E_{n-[k_n t]:n}, \quad t \in [0, 1].
$$

the sample quantile process

$$
q_n(\alpha) = n^{1/2} (F_n^{-1}(\alpha) - F^{-1}(\alpha)), \quad 0 < \alpha \le 1.
$$

 \circledR the tails of reparametrized regression quantiles

$$
\hat{Q}_{n,k}(t) := \overline{\mathbf{x}}^{\top} \hat{\boldsymbol{\beta}}_n \left(1 - \frac{tk}{n} \right), \qquad t \in [0,1],
$$

 the process of reparametrized regression quantiles

$$
\hat{q}_n(\alpha) := n^{\frac{1}{2}} f(F^{-1}(\alpha)) \overline{\mathbf{x}}^\top \left(\widehat{\boldsymbol{\beta}}_n(\alpha) - \boldsymbol{\beta}(\alpha) \right), \qquad 0 < \alpha < 1,
$$
\nwhere $\boldsymbol{\beta}(\alpha) = (\beta_1 + F^{-1}(\alpha), \beta_2, \dots, \beta_d)$ and $\overline{\mathbf{x}} := \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i, \quad i \geq 1, \quad i \geq 2, \dots, n$

Main results – an outline

KORKAPRASHASH SAGA

- **1** Approximate $\mathbf{q}_n(\alpha)$, on $[\alpha_n^*, 1 \alpha_n^*]$, $\alpha_n^* \to 0$.
- **2** Approximate $\hat{q}_n(\alpha)$ on $[1-\alpha_n^*, 1-1/n]$.
- Approximate $\hat{Q}_{n,k}(t)$ in the same way as $Q_{n,k}(t)$, cf. Drees (1998).
- Describe estimators of γ as functionals of $Q_{n,k}(t)$.
- The functionals have same properties on $\hat{Q}_{n,k}(t)$.

1. Approximation of regression quantile process

Under suitable conditions it holds

$$
\sup_{\alpha_n^* \le \alpha \le 1-\alpha_n^*} \left| \sigma_\alpha^{-1}(\widehat{\boldsymbol{\beta}}_n\left(\alpha | Y,\mathbf{x}\right)-\boldsymbol{\beta}(\alpha)) \right| = O_P(n^{-1/2}(\log \log n)^{\frac{1}{2}}),
$$

and

$$
n^{1/2}\sigma_{\alpha}^{-1}(\widehat{\boldsymbol{\beta}}_n(\alpha|\mathbf{Y},\mathbf{X})-\boldsymbol{\beta}(\alpha)) =
$$

$$
n^{-1/2}(\alpha(1-\alpha))^{-1/2}\mathbf{D}_n^{-1}\sum_{i=1}^n\mathbf{x}_i(\alpha-I[E_i-F^{-1}(\alpha)<0])+o_P(1)
$$

where $\sigma_\alpha:=(\alpha(1-\alpha))^{1/2}/f(F^{-1}(\alpha))$ and $\alpha_n^*=(\frac{1}{n}{\log^{2+\delta}n})$ for any $\delta > 0$

cf. Gutenbrunner et al. (1993) and Jurečková (1999), where $\alpha_n^* = n^{-1+\varepsilon}$ is used.

KORKAPRASHASH SAGA

Assumptions

Distribution function

- (F.1) F is absolutely continuous with the positive density on (x_*, x^*) . There exists f' , the derivative of density f .
- (F.2) There exists some $0 < K_{\gamma} < \infty$ such that

$$
\sup_{x_* < x < x^*} F(x)(1 - F(x)) \left| \frac{f'(x)}{f^2(x)} \right| \le K_\gamma.
$$

(F.3)

$$
\limsup_{x \uparrow x^*} \frac{(1 - F(x))f'(x)}{f^2(x)} = -1 - \gamma^*.
$$

for some γ^* > $-1/2$ (lower tail index γ_* similarly).

Covariance matrix

 $(X.1)$ $x_{i1} = 1, \quad i = 1, \ldots, n.$ $(X.2)$ lim_{n→∞} $D_n = D$, where $D_n = n^{-1} \mathbf{X}_n^\top \mathbf{X}_n$ and D is a positive definite $(d \times d)$ matrix. (X.3) $n^{-1} \sum_{i=1}^{n} |\mathbf{x}_{ni}|^4 = O(1)$ as $n \to \infty$. $(X.4)$ max_{1 $\le i \le n$} $|\mathbf{x}_{ni}| = O((\log \log n)^{1/2})$ as $n \to \infty$.

Proof

Prove that $\sup \{|r_n(\mathbf{t}, \alpha)| : \alpha_n^* \le \alpha \le 1 - \alpha_n^*, \|\mathbf{t}\| \le (\log \log n)^{1/2}\} = o_P(1)$,

$$
r_n(\mathbf{t}, \alpha) := (\alpha (1 - \alpha))^{-1/2} \sigma_{\alpha}^{-1} \sum_{i=1}^n \left[\rho_\alpha \left(E_{i\alpha} - n^{-1/2} \sigma_\alpha \mathbf{x}_i^\top \mathbf{t} \right) - \rho_\alpha(E_{i\alpha}) \right]
$$

$$
+ n^{-1/2} (\alpha (1 - \alpha))^{-1/2} \mathbf{t}^\top \sum_{i=1}^n \mathbf{x}_i \psi_\alpha(E_{i\alpha}) - \frac{1}{2} \mathbf{t}^\top \mathbf{D}_n \mathbf{t}
$$

and $E_{i\alpha} := E_i - F^{-1}(\alpha)$, $i = 1, ..., n$, $0 < \alpha < 1$, $\psi_{\alpha}(u) := \alpha - I(u < 0)$.

- approximate the mean of $r_n(\mathbf{t}, \alpha)$ for any suitable α and \mathbf{t} .
- Bernstein inequality gives a probabilistic bound for any α and t.
- Chaining arguments give the uniform bound.

 $n^{1/2}\sigma_{\alpha}^{-1}(\hat{\boldsymbol{\beta}}_n(\alpha)-\boldsymbol{\beta}(\alpha))$ minimizes the convex function

$$
G_{n\alpha}(\mathbf{t}) = (\alpha(1-\alpha))^{-1/2} \sigma_{\alpha}^{-1} \sum_{i=1}^{n} \left[\rho_{\alpha} (E_{i\alpha} - n^{-1/2} \sigma_{\alpha} \mathbf{x}_{i}^{\top} \mathbf{t}) - \rho_{\alpha} (E_{i\alpha}) \right]
$$

use the properties of $r_n(\alpha, \mathbf{t})$ to calculate the solution for $\|\mathbf{t}\| \leq (\log \log n)^{1/2}$. convexity of $G_{n\alpha}$ $G_{n\alpha}$ $G_{n\alpha}$ (**t**) implies that the minimum cann[ot](#page-14-0) [b](#page-14-0)e a[tt](#page-14-0)[ain](#page-15-0)[ed](#page-16-0) [el](#page-0-0)[se](#page-44-0)[whe](#page-0-0)[re.](#page-44-0)

2. Regression quantile process at the tails

Suppose that $\gamma^* > 0$. Then

$$
\sup_{1-\alpha_n^* \leq \alpha \leq \frac{n-1}{n}} \left| \overline{\mathbf{x}}^\top \mathbf{q}_n(\alpha) \right| = \sup_{1-\alpha_n^* \leq \alpha \leq \frac{n-1}{n}} \left| n^{1/2} f\left(F^{-1}(\alpha) \right) \overline{\mathbf{x}}^\top \left(\widehat{\boldsymbol{\beta}}_n(\alpha) - \boldsymbol{\beta}(\alpha) \right) \right|
$$

= $\mathcal{O}_P(n^{-1/2} (\log n)^{(2+\delta)(1 \vee \gamma^*)}) = o_P(1).$

and if $\gamma_* > 0$ is the tail index of the lower tail it holds also

$$
\sup_{1/n \leq \alpha \leq \alpha_n^{*}} \left| \overline{\mathbf{x}}^{\top} \mathbf{q}_n(\alpha) \right| = \sup_{1/n \leq \alpha \leq \alpha_n^{*}} \left| n^{1/2} f\left(F^{-1}(\alpha)\right) \overline{\mathbf{x}}^{\top} \left(\widehat{\boldsymbol{\beta}}_n(\alpha) - \boldsymbol{\beta}(\alpha) \right) \right|
$$

= $\mathcal{O}_P(n^{-1/2} (\log n)^{(2+\delta)(1 \vee \gamma_*)}) = o_P(1),$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

Proof

 $\overline{\mathbf{x}}^{\top} \boldsymbol{\beta}_n(\alpha_1) \leq \overline{\mathbf{x}}^{\top} \boldsymbol{\beta}_n(\alpha_2)$ **iff** $\alpha_1 \leq \alpha_2$ **,** \blacksquare similarly as in Portnoy and Jurečková (1999) get

$$
P_{\boldsymbol{\beta}}\left(\sum_{i=1}^n\mathbf{x}_i^{\top}\left(\boldsymbol{\beta}(1)-\boldsymbol{\beta}\right)\geq nt\right) \leq P\left(E_{n:n}\geq t\right),
$$

assuming $\gamma = \gamma^* > 0$ it follows

$$
P\left(\frac{E_{n:n}}{F^{-1}\left(1-1/n\right)} \ge \zeta\right) \xrightarrow[n \to \infty]{\mathcal{D}} 1 - \exp\left(-\zeta^{-\frac{1}{\gamma}}\right),
$$

KOD KAD KED KED E VOOR

use von Mises condition and Lemma 4.5.2. of Csörgő and Révész (1977) for п transition from $f(F^{-1}(1 - kt/n))$ to $f(F^{-1}(1 - k/n))$.

3. Tails of regression quantiles

Assume

n model with i.i.d. errors fulfilling the second order condition, $\gamma, \rho > 0$,

\n- \n
$$
k = k(n) \to \infty
$$
, $k/n \to 0$ and $\sqrt{k}A(k/n) = \lambda$,\n
\n- \n $k \geq \log^{\Delta(1 \vee \gamma)}(n)$, $\Delta > 4 + 2\delta$.\n
\n- \n $\|z\|_{\gamma,\varepsilon} := \sup_{t \in [0,1]} |t^{1/2 + \gamma + \varepsilon}z(t)|$, $z \in D[0,1]$.\n
\n

There are Wiener processes $W_n(t)$, $\tilde{W}_n(t)$, and $\mathbf{W}(t)$ such that for any $\varepsilon > 0$.

$$
\left\| k^{1/2} \left(\frac{\overline{\mathbf{x}}^{\top} \left(\widehat{\boldsymbol{\beta}}_n \left(1 - \frac{kt}{n} \right) - \boldsymbol{\beta} \right)}{F^{-1} \left(1 - \frac{k}{n} \right)} - t^{-\gamma} \right) - \gamma t^{-\gamma - 1} W_n(t) \right\|_{\gamma, \varepsilon} \n= k^{1/2} A \left(\frac{k}{n} \right) t^{-\gamma} \frac{1 - t^{\rho}}{\rho} \right\|_{\gamma, \varepsilon} \n\leq \left\| \gamma t^{-\gamma} \overline{\mathbf{x}}^{\top} \mathbf{D}^{-1} \mathbf{W}(t) \right\|_{\gamma, \varepsilon} + \left\| \gamma t^{-\gamma} \tilde{W}_n(t) \right\|_{\gamma, \varepsilon} + op(1),
$$

. . . which is an analogy to Drees(1998).

$$
\sup_{0 \le t \le 1} t^{\gamma + 1/2 + \varepsilon} \left| k^{1/2} \left(\frac{E_{n-[kt],n}}{F^{-1} (1 - \frac{k}{n})} - t^{-\gamma} \right) - \gamma t^{-\gamma - 1} W_n(t) - k^{1/2} A \left(\frac{k}{n} \right) t^{-\gamma} \frac{1 - t^{\rho}}{\rho} \right| \xrightarrow[n \to \infty]{\mathbf{P}} 0.
$$

Kロ K イロ K K モ X K モ X モ コ エ アクリーム

Proof

- combination of the previous results on approximations of regression quantiles, п
- von Mises condition and Lemma 4.5.2. of Csörgő and Révész (1981) used for transition from $f(F^{-1}(1 - kt/n))$ to $f(F^{-1}(1 - k/n)),$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

direct procedure – just a rough approximation.п

4. Functionals of tail quantile functions

Have $\gamma \in \mathbb{R}$ and a functional $T: span(\mathcal{H}_M, 1) \to \mathbb{R}$ satisfying

- $\mathbf{1}$ H_M is semimetric space, where the tail quantile function and its relatives live
- 2 $T(az + b) = T(z)$, for all $z \in \mathcal{H}_M$, $a > 0$, $b \in \mathbb{R}$,

$$
\boxed{3} \ T(z_{\gamma}) = T(\frac{x^{-\gamma} - 1}{\gamma}) = \gamma
$$

 \blacksquare $T_{\mathcal{H}_M}$ is Hadamard differentiable tangentially to suitable continuous $\mathcal{C}_{\mathcal{M}} \subset \mathcal{H}_{\mathcal{M}}$, at z_{γ} with a derivative T'_{γ} , i.e. for some signed measure $\nu_{T,\gamma}$ it holds for all $0 < \varepsilon_n \to 0$ and all $y_n \in \mathcal{H}_\mathcal{M}$ such that $y_n \to y \in C_M$

$$
\lim_{\varepsilon_n \to 0} \frac{T(z_\gamma - \varepsilon_n y_n) - T(z_\gamma)}{\varepsilon_n} = T'_\gamma(y) = \int_0^1 y \mathrm{d} \nu_{T,\gamma}.
$$

KORKA ERKER EL POLO

Then $T(Q_{n,k}) \to \gamma$ and for intermediate sequence k_n with the rate parameter $\lambda = func.(\gamma, \rho, k_n)$ it holds

$$
\mathcal{L}(k_n^{1/2}(T(Q_{n,k})-\gamma))\to \mathcal{N}(\lambda\nu_{T,\gamma,\rho},\sigma_{T,\gamma}),
$$

c.f. Drees (1998).

Variance and bias of the estimation

Provided that $\sqrt{k}A(k/n) \rightarrow \lambda$ it holds

(i)
$$
T(Q_{n,k}) \to \gamma
$$

\n(ii) $\mathcal{L}(k_n^{1/2}(T(Q_{n,k}) - \gamma)) \to \mathcal{N}(\lambda \nu_{T,\gamma,\rho}, \sigma_{T,\gamma})$, where

$$
\mu_{T,\gamma,\rho} := \int_0^1 t^{-\gamma} \frac{1-t^{\rho}}{\rho} d \nu_{T,\gamma}
$$

\n
$$
\sigma_{T,\gamma} := Var \left(\int_0^1 t^{-\gamma-1} W(t) d \nu_{T,\gamma}(t) \right)
$$

\n
$$
= \int_0^1 \int_0^1 (st)^{\gamma-1} \min(s,t) d \nu_{T,\gamma}(s) d \nu_{T,\gamma}(t)
$$

KID KA KEKKEK E 1990

5. $T(\hat{Q}_{n,k}(t))$ is the estimator

Suppose that T fulfills the given assumptions. For $T(\hat{Q}_{n,k}(t))$ it follows:

- consitency:
	- follows immediately from continuity of T and approximations given previously.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q Q ^

- asymptotic normality:
	- requires Hadamard differentiability,
	- as we have an extra random remainder (with zero mean), asymptotic variance can be only roughly estimated,
	- asymptotic bias is the same one as in the i.i.d. case.

Available estimators

Examples:

Pickands estimator

$$
T_{\mathsf{Pick}}(z) := \frac{1}{\log 2}\log\left(\frac{z(1/4)-z(1/2)}{z(1/2)-z(1)}\right) I\left[\frac{z(1/4)-z(1/2)}{z(1/2)-z(1)}>0\right].
$$

Probability weighted moments estimator

$$
T_{\text{PWM}}(z) := \frac{\int_0^1 (z(t) - z(1))(1 - 4t)dt}{\int_0^1 (z(t) - z(1))(1 - 2t)dt} \, I\left[\int_0^1 (z(t) - z(1))(1 - 2t)dt > 0\right].
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

 $\mathcal{L}_{\mathcal{A}}$ Maximum likelihood estimator – generated by an implicitly given functional, see Drees (1998).

Functionals on $\overline{\mathbf{x}}^{\top} \overline{\boldsymbol{\beta}}_n (1 - tk/n)_{t \in [0,1]}$
 $\mathbf{r} = T(\overline{\mathbf{x}}^{\top} \hat{\mathbf{\beta}}_n (1 - tk/n)$ $T(\overline{\mathbf{x}}^{\top}\hat{\mathbf{Q}}_{n,k}) = T(\overline{\mathbf{x}}^{\top}\hat{\boldsymbol{\beta}}_n(1-tk/n)_{t\in[0,1]})$ are consistent and asymptotically normal estimators of γ .

ML-estimator of γ based on the k largest unique estimates of $\overline{\mathbf{x}}^{\top} \hat{\boldsymbol{\beta}}_n(\tau)$, $\tau \in (0,1)$, i.e. the estimator fits generalized Pareto distribution (GPD) on the exceedances of $\{\overline{\mathbf{x}}^{\top}\hat{\boldsymbol{\beta}}_n(\tau_i)\}_{i=m-k,\dots,m}$ over $\overline{\mathbf{x}}^{\top} \hat{\boldsymbol{\beta}}_{n}(\tau_{m-k-1}).$

Probability weighted moments estimator (PWM)

$$
\hat{\gamma}_{m,k}^{\textsf{RQ,PWM}} = \frac{\frac{1}{k}\sum_{j=1}^k\left(4\frac{j}{k+1}-3\right)\overline{\mathbf{x}}^\top\hat{\boldsymbol{\beta}}_n(\tau_{m-i+1})}{\frac{1}{k}\sum_{j=1}^k\left(2\frac{j}{k+1}-1\right)\overline{\mathbf{x}}^\top\hat{\boldsymbol{\beta}}_n(\tau_{m-i+1})}
$$

Pickands estimator

$$
\hat{\gamma}_{m,k}^{\textsf{RQ,P}} = \frac{1}{\log 2} \log \left(\frac{\overline{\mathbf{x}}^{\top} \hat{\boldsymbol{\beta}}_n(\tau_{m-[k/4]}) - \overline{\mathbf{x}}^{\top} \hat{\boldsymbol{\beta}}_n(\tau_{m-[k/2]})}{\overline{\mathbf{x}}^{\top} \hat{\boldsymbol{\beta}}_n(\tau_{m-[k/2]}) - \overline{\mathbf{x}}^{\top} \hat{\boldsymbol{\beta}}_n(\tau_{m-k})} \right)
$$

Where τ_1, \ldots, τ_m are such that $\widehat{\beta}_n \tau_i, i = 1, \cdots, m$ are m unique solution of minimazation problem $\argmin_{b\in\mathbb{R}^d} \sum_{i=1}^n \rho_\alpha (Y_i - \mathbf{x}_i\mathbf{b})$ $\argmin_{b\in\mathbb{R}^d} \sum_{i=1}^n \rho_\alpha (Y_i - \mathbf{x}_i\mathbf{b})$ $\argmin_{b\in\mathbb{R}^d} \sum_{i=1}^n \rho_\alpha (Y_i - \mathbf{x}_i\mathbf{b})$ f[or](#page-24-0) $\alpha\in [0,1]$ $\alpha\in [0,1]$ $\alpha\in [0,1]$ $\alpha\in [0,1]$ [.](#page-0-0) .
K E X X E X E → 19 Q Q

Reparametrization

Have

$$
\tilde{x}_{i,1} = 1,\n\tilde{x}_{i,j} = x_{i,j} - \frac{1}{n} \sum_{i=1}^{n} x_{i,j}, \qquad j = 2, \dots, p.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 19 Q Q

Hence, after reparametrization $\overline{\mathbf{x}} = (1, 0, \dots, 0)$.

Functionals on $\hat{\beta}_{n,1}(1 - tk/n)_{t \in [0,1]}$

 $T(\hat{Q}_{n,k}) = T(\hat{\beta}_{n,1}(1 - tk/n)_{t \in [0,1]})$ are consistent and asymptotically normal estimators of γ .

ML-estimator of γ based on the k largest unique estimates of $\beta_{n,1}(\tau)$, $\tau \in (0,1)$, i.e. the estimator fits generalized Pareto distribution (GPD) on the exceedances of $\{\hat{\beta}_{n,1}(\tau_i)\}_{i=m-k,\dots,m}$ over $\hat{\beta}_{n,1}(\tau_{m-k-1}).$

Probability weighted moments estimator (PWM)

$$
\hat{\gamma}_{m, k}^{\text{RQ,PWM}} = \frac{\frac{1}{k}\sum_{j=1}^{k}\left(4\frac{j}{k+1}-3\right)\hat{\beta}_{n, 1}(\tau_{m-i+1})}{\frac{1}{k}\sum_{j=1}^{k}\left(2\frac{j}{k+1}-1\right)\hat{\beta}_{n, 1}(\tau_{m-i+1})}
$$

Pickands estimator

$$
\hat{\gamma}_{m,k}^{\textsf{RQ,P}} = \frac{1}{\log 2} \log \left(\frac{\hat{\beta}_{n,1}(\tau_{m-[k/4]}) - \hat{\beta}_{n,1}(\tau_{m-[k/2]})}{\hat{\beta}_{n,1}(\tau_{m-[k/2]}) - \hat{\beta}_{n,1}(\tau_{m-k})} \right)
$$

Where τ_1,\ldots,τ_m are such that $\hat{\beta}_{n,1}(\tau_i), i=1,\cdots,m$ are m unique intercepts of regression quantiles in reparamet[riz](#page-26-0)[ed](#page-28-0)[mo](#page-27-0)[d](#page-28-0)[el.](#page-0-0)

Summary of previous

Achievements:

improvements of older approximations of regression quantiles

wider interval $[\alpha_n^*, 1-\alpha_n^*]$

at least a rough approximation for $[1-\alpha^*_n,1-1/n]$

general approximation methodology of γ based on regression quantiles

Open questions:

- **F** further improvements of approximations
	- use Hungarian construction instead of Bahadur representation

KORKARA SERKER YOUR

improve approximation of regression quantile process in

$$
[1-\alpha_n^*, 1-1/n]
$$

dependency of errors

Two-step regression quantiles

Step 1: Calculate R-estimate of the slope i.e. invert the rank statistics in Hodges-Lehmann manner. Have

\n- $$
R_{ni}(\mathbf{Y} - \mathbf{X}\mathbf{b})
$$
 be the rank of $Y_i - \mathbf{x}_i^{\top}\mathbf{b}$ among $(Y_1 - \mathbf{x}_1^{\top}\mathbf{b}, \ldots, Y_n - \mathbf{x}_n^{\top}\mathbf{b}), \mathbf{b} \in \mathbb{R}^p$
\n- $\varphi_{\alpha} = \alpha - I[x < 0], x \in \mathbb{R}$
\n

 \mathbf{x}_i be the *i*-th row of the $\mathbf{X}_{n \times d}$

Minimize the Jaeckel's measure of rank dispersion.

$$
\widehat{\boldsymbol{\beta}}_{nR} = \mathrm{argmin}_{\mathbf{b} \in \mathbb{R}^p} \sum_{i=1}^n (Y_i - \mathbf{x}_i' \mathbf{b}) \varphi_\alpha \left(\frac{R_{ni}(\mathbf{Y} - \mathbf{X} \mathbf{b})}{n+1} \right)
$$

KORKAPRASHASH SAGA

Step 2: Get the ordered residuals $\tilde{\beta}_{n0} = Y_i - \mathbf{x}_i^\top \hat{\boldsymbol{\beta}}_{nR}(\alpha)$ \Rightarrow two-step regression quantiles $\left(\tilde{\beta}_{n0},\hat{\boldsymbol{\beta}}_{nR}(\alpha)\right)$

Two step r.q. process and its tail approximation

$$
\hat{E}_{k:n} := \left(\{ Y_1 - \mathbf{x}_1^\top \hat{\boldsymbol{\beta}}_{nR}, \dots, Y_n - \mathbf{x}_n^\top \hat{\boldsymbol{\beta}}_{nR} \} \right)_{k:n}
$$

and

$$
\tilde{Q}_{n,k}(t):=F_n^{-1}\left(1-\frac{k_n}{n}t\right)=\hat{E}_{n-[k_n t];n},\quad t\in[0,1],
$$

Have again model with $E_i \sim F$, with F satisfying the second order condition for some $\gamma \in \mathbb{R}$ and $\rho \leq 0$. Then under suitable conditions on F and X we can define a sequence of Wiener processes ${W_n(t)}_{t>0}$ such that for suitable chosen functions A and a and each $\varepsilon > 0$.

$$
\sup_{t \in (0,1]} t^{\gamma + \frac{1}{2} + \varepsilon} \left| \frac{\tilde{Q}_{n,k}(t) - F^{-1} \left(1 - \frac{k}{n} \right) - \beta_0}{a(k/n)} - \left(z_\gamma(t) - k^{-\frac{1}{2}} t^{-(\gamma + 1)} W_n(t) + A \left(\frac{k}{n} \right) H(t) \right) \right| = o_P \left(k^{-1/2} + |A(k/n)| \right)
$$

 $n \to \infty$, provided $k = k(n) \to \infty$, $k/n \to 0$ and $\sqrt{k}A(k/n) = O(1)$ and $z_{\gamma}(t) = \frac{t^{-\gamma}-1}{\gamma}$, cf. Picek and Dienstbier (2010).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 수 있다.

Remark

under suitable condition, the method of proof can be used for any convergent estimate of *β* and its ordered residuals

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

 \blacksquare however, is not "suitable condition" = "neglecting real data structures"?

Remark

under suitable condition, the method of proof can be used for any convergent estimate of *β* and its ordered residuals

KORKARK (EXIST) DE VOOR

however, is not "suitable condition" = "neglecting real data structures"?

Simulations

Example: $Y_i = 1 + 5x_i + e_i$, where $x_i \sim U(0, 1)$, e_i have Burr distribution with shape $\gamma = 0.5$

Simulations

Example: $Y_i = 1 + 5x_i + e_i$, where $x_i \sim U(0, 1)$, e_i have Burr distribution with shape $\gamma = 0.5$

Simulations

Example: $Y_i = 1 + 5x_i + e_i$, where $x_i \sim U(0, 1)$, e_i have Burr distribution with shape $\gamma = 0.5$

Example: Condroz dataset again

(ロ) (個) (悪) (悪)

重

 299

Example: Condroz dataset again, estimator plots

k

イロトメ 御 トメ 君 トメ 君 トー

 \equiv 990

Example: Condroz dataset again, estimator plots

É

 299

Example: Condroz dataset again, estimator plots $6.6 \leq pH \leq 7.5$

k

(ロ) (個) (悪) (悪)

 \equiv 990

Example: Condroz dataset again, estimator plots $6.6 \leq pH \leq 7.3$

k

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @

Remarks

theory shows that if "thinks goes well" estimates based on quantile regression works

 \blacksquare i.e. if the model is same (or simpler) as we suppose

one additional interpretation of Condroz data *(hurray!)*

EXTERUS extremes in predictors matters

■ we often do not have the same number of observations for different predictors

KORKARA SERKER YOUR

- problem, if nice model for all responses desired
- get a nice model = root out enough data as outliers!
- **linear models tend not to be linear**

 \blacksquare at least, if we want to work with all responses

other possible problems...

Remarks

theory shows that if "thinks goes well" estimates based on quantile regression works

 \blacksquare i.e. if the model is same (or simpler) as we suppose

■ one additional interpretation of Condroz data *(hurray!)*

Something structural?

- extremes in predictors matters
- we often do not have the same number of observations for different predictors

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- problem, if nice model for all responses desired
- get a nice model = root out enough data as outliers!
- linear models tend not to be linear

 \blacksquare at least, if we want to work with all responses

other possible problems. . .

Further remarks & hypocrisy continued

- in EVT linear models, the choice of model matters, not the data
- which model is better than others depends strictly on the exact data settings and not the theory
- EVT can be a dangerous drug (do not abuse)

cf.

hypocrite *n. One who, professing virtues that he does not respect, secures the advantage of seeming to be what he despises.*

story *n. A narrative, commonly untrue.*

politeness *n. The most acceptable hypocrisy.*

– Ambrose Bierce, *Devil's Dictionary*

KORKARA SERKER YOUR

COVARIATE EFFECTS IN EXTREMES – REMARKS AND THEORY¹

Jan Dienstbier

e-mail: dienstbier.jan@gmail.com

Technical University in Liberec

Nemˇ ci ˇ cky, 9.9.2012 ˇ

¹The author and the research team KLIMATEXT benefited from project CZ.1.07/2.3.00/20.0086 co-financed by the European Social Fund and the state budget of Czech Republic.K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @