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e input data [z;,y;], 1 =1,...,n

e Observations |X,y| = (xl,...,xn)T,(yl,...,yn)T} are consid-

ered to be measured with additive errors |4, €]

e unobservable true values [x+4, y +¢] satisfy an unknown func-

tional relationship

e we want a modelling technique to be applicable on various types (large

number) of data = nonparametric approach

ldea & Motivation

e unknown function f is thought to be smooth

e searching for a suitable estimator f ... misfit needs to be as

small as possible

Regression

Estimator, Properties and Examples

e using Riesz representation theorem, Arzela-Ascoli theorem and

solving ODE one may easily derive so-called representor matrix
¥ =W¥(x+9)...see[2]
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Infinite Dimension Into Finite

e obtaining solution ¢ ~ always exists a unique estimator f ... rel-

atively easy to compute, but complicated formulas

e consistency (assumption: variables “spread out” fast enough)

sup | (1) = 1 0) 20, n— oo

e moreover, if the distribution of the rows of |J, €] possesses finite

fourth moment ~~ asymptotic normality
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e smoothness of unknown function f needs to be ensured ... but kernels,

splines or wavelets can be too restrictive

= fit a function from a general class of smooth functions ~» Sobolev spaces
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e the better the fit, the wilder the function and vice versa, i.e.
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= find a reasonable compromise between misfit (Euclidean norm of the er-
ror vector) and smoothness (Sobolev norm of the estimator function) ...

choice of a smoothing parameter y > 0
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Optimizing

e Euclidean norm of errors « orthogonal regression = Total Least Squares
(TLS) approach

e statistical assumptions for so-called Errors-in-Variables (EIV) model:

—rows of the errors |9, €| are iid with common zero mean and covariance

matrix 02Is where o2 > 0 is unknown

Mathematical Background & Statistical Setup

—no special distributional assumptions (i.e. no normality of errors)

Graphical lllustration
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e assumption of common variance o“ is not restrictive ~» Scaled TLS with

scaling parameter v > 0 (see [1])
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Remarks

e this method works without a prior knowledge of functional relation or

error distribution; extendable into multivariate case
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