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• input data [xi, yi], i = 1, . . . , n

• observations [x,y] ≡
[

(x1, . . . , xn)⊤ , (y1, . . . , yn)⊤
]

are consid-

ered to be measured with additive errors [δ, ε]

• unobservable true values [x+δ,y+ε] satisfy an unknown func-

tional relationship

yi + εi = f (xi + δi), i = 1, . . . , n

Regression
• unknown function f is thought to be smooth

• searching for a suitable estimator f̂ . . . misfit needs to be as

small as possible

M
at

h
em

at
ic

al
B

ac
kg

ro
u

n
d

&
S

ta
ti

st
ic

al
S

et
u

p

•we want a modelling technique to be applicable on various types (large

number) of data =⇒ nonparametric approach

• smoothness of unknown function f needs to be ensured . . . but kernels,

splines or wavelets can be too restrictive

⇒ fit a function from a general class of smooth functions Sobolev spaces

(

Hm, ‖·‖Sob,m

)
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• the better the fit, the wilder the function and vice versa, i.e.
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‖f‖Sob,m

⇒ find a reasonable compromise between misfit (Euclidean norm of the er-

ror vector) and smoothness (Sobolev norm of the estimator function) . . .

choice of a smoothing parameter χ > 0

min
f∈Hm,δ∈Rn,ε∈Rn
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+ χ ‖f‖2
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, s.t. y + ε = f(x + δ)

Optimizing
• Euclidean norm of errors! orthogonal regression≡ Total Least Squares

(TLS) approach

• statistical assumptions for so-called Errors-in-Variables (EIV) model:

– rows of the errors [δ, ε] are iid with common zero mean and covariance

matrix σ2I2 where σ2 > 0 is unknown

– no special distributional assumptions (i.e. no normality of errors)
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[xi + δi, f (xi + δi)]

[xi, yi]

y = f ′(xi + δi)x + c

Graphical Illustration
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• using Riesz representation theorem, Arzelà-Ascoli theorem and

solving ODE one may easily derive so-called representor matrix

Ψ ≡ Ψ(x + δ) . . . see [2]
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f∈Hm,δ∈Rn,ε∈Rn
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, s.t. y + ε = f(x + δ)

m

min
c∈Rn,δ∈Rn

{

‖y − Ψc‖2
2 + ‖δ‖2

2 + χc⊤Ψc
}

Infinite Dimension Into Finite
• obtaining solution ĉ always exists a unique estimator f̂ . . . rel-

atively easy to compute, but complicated formulas

• consistency (assumption: variables “spread out” fast enough)

sup
t

|f̂ (t) − f (t)|
P
→ 0, n → ∞

•moreover, if the distribution of the rows of [δ, ε] possesses finite

fourth moment asymptotic normality
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Easter Island and Darwin, Australia

El Niño – Southern Oscillation
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• assumption of common variance σ2 is not restrictive Scaled TLS with

scaling parameter γ > 0 (see [1])

min
f∈Hm,δ∈Rn,ε∈Rn

{

‖δ‖2
2 + γ ‖ε‖2

2 + χ ‖f‖2
Sob,m

}

, s.t. y + ε = f(x + δ)

• this method works without a prior knowledge of functional relation or

error distribution; extendable into multivariate case
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