

Regression in Sobolev Spaces Using Total Least Squares

Michal Peˇsta ♯

CHARLES UNIVERSITY IN PRAGUE

 \bullet input data $[x_i,y_i],\, i=1,\ldots,n$ • observations $[x, y] \equiv$ $\sqrt{ }$ $(x_1, ..., x_n)^\top, (y_1, ..., y_n)^\top$ are considered to be measured with additive errors $[\delta, \varepsilon]$

Faculty of Mathematics and Physics, Department of Probability and Mathematical Statistics

 $\boldsymbol{\omega}$

 $\boldsymbol{\varpi}$

Statist

8

 $\overline{\textbf{C}}$

 $\mathbf O$

Backgl

ematica

Math

 $\boldsymbol{\omega}$

• unobservable true values $[x+\delta, y+\varepsilon]$ satisfy an unknown functional relationship

 \bullet unknown function f is thought to be smooth • searching for a suitable estimator \hat{f} ... misfit needs to be as small as possible

Mathematical Background & Statistical Setup • we want a modelling technique to be applicable on various types (large number) of data \Longrightarrow nonparametric approach

 \bullet smoothness of unknown function f needs to be ensured ... but kernels, splines or wavelets can be too restrictive

$y_i + \varepsilon_i = f(x_i + \delta_i), \quad i = 1, \dots, n$

Regression

- Euclidean norm of errors \leftarrow orthogonal regression \equiv Total Least Squares (TLS) approach
- statistical assumptions for so-called Errors-in-Variables (EIV) model:
- **–** rows of the errors $[\delta, \varepsilon]$ are iid with common zero mean and covariance matrix $\sigma^2 \mathbf{I}_2$ where $\sigma^2 > 0$ is unknown
- **–** no special distributional assumptions (i.e. no normality of errors)

$$
\left(\mathcal{H}^m, \| \cdot \|_{Sob,m} \right) := \left\{ g \in \mathsf{L}^2 \, : \, \| g \|_{Sob,m} := \left(\sum_{i=0}^m \int |g^{(i)}(t)|^2 \mathrm{d} t \right)^{1/2} < + \infty \right\}
$$

Estimator, Properties and Examples SD Example and $\boldsymbol{\omega}$ tie $\mathbf 0$ 0

• using Riesz representation theorem, Arzelà-Ascoli theorem and solving ODE one may easily derive so-called representor matrix $\Psi \equiv \Psi({\bf x} + {\bm \delta}) \ldots$ see [2]

• the better the fit, the wilder the function and vice versa, i.e.

$$
\frac{\text{small}}{\text{large}} \left\| \begin{bmatrix} \delta \\ \epsilon \end{bmatrix} \right\|_2 \right\|_2 \right\} \frac{\text{large}}{\text{small}} \|f\|_{Sob,m}
$$

 \Rightarrow find a reasonable compromise between misfit (Euclidean norm of the error vector) and smoothness (Sobolev norm of the estimator function) ... choice of a smoothing parameter $\chi > 0$

$$
f \in \mathcal{H}^m, \delta \in \mathbb{R}^n, \varepsilon \in \mathbb{R}^n \left\{ \left\| \begin{bmatrix} \delta \\ \varepsilon \end{bmatrix} \right\|_2^2 + \chi \|f\|_{Sob,m}^2 \right\}, \quad \text{s.t. } \mathbf{y} + \varepsilon = \mathbf{f}(\mathbf{x} + \delta)
$$

 $f \!\in\! \mathcal{H}^m, \!\boldsymbol{\delta} \!\!\in\! \mathbb{R}^n, \! \boldsymbol{\varepsilon} \!\in\! \mathbb{R}^n$ Sob,m

[1] Paige, C. C. and Strakoš, Z.: Core problems in linear algebraic systems, *SIAM J. on Matrix Analysis and Applications*, *27*, 861–875, 2006. [2] Yatchew, A. J. and Bos, L.: Nonparametric least squares estimation and testing of economic models, *J. of Quan. Economics*, *13*, 81–131, 1997.

Acknowledgments: The present work was supported by the Grant Agency of the Czech Republic (grant 201/05/H007). \sharp pesta@karlin.mff.cuni.cz, 2008

$$
\begin{aligned}\n\int_{f \in \mathcal{H}^m, \delta \in \mathbb{R}^n, \varepsilon \in \mathbb{R}^n} \left\{ \left\| \begin{bmatrix} \delta \\ \varepsilon \end{bmatrix} \right\|_2^2 + \chi \|f\|_{Sob,m}^2 \right\}, & \text{s.t. } \mathbf{y} + \varepsilon = \mathbf{f}(\mathbf{x} + \delta) \\
\downarrow & \qquad \qquad \downarrow & \qquad \downarrow &
$$

 \Rightarrow fit a function from a general class of smooth functions \rightsquigarrow Sobolev spaces

atively easy to compute, but complicated formulas • consistency (assumption: variables "spread out" fast enough) P $|\hat{f}(t) - f(t)|$ sup $\stackrel{\text{I}}{\rightarrow} 0, \quad n \rightarrow \infty$ t • moreover, if the distribution of the rows of $[\delta, \varepsilon]$ possesses finite fourth moment \rightsquigarrow asymptotic normality **Easter Island and Darwin, Australia** Atmospheric pressure differences differ $\frac{1}{5}$ 0 5 10 15 $\overline{10}$ $\bar{\Omega}$ S Atmosph \circ 0 50 100 150 Months El Niño – Southern Oscillation **National Institute of Standards and Technology, USA**

• this method works without a prior knowledge of functional relation or error distribution; extendable into multivariate case

• References: