Lecture 3 | 10.03.202

Statistical inference in a multivariate regression model

Notation overview

□ balanced longitudinal profiles $\mathcal{D}_B \equiv \{ (\mathbf{Y}_i, \mathbf{X}_{i1}^{\top}, \dots, \mathbf{X}_{in}^{\top})^{\top}; i = 1, \dots, N \}$

- \Box for $n_i = n \in \mathbb{N}$ for all $i = 1, \ldots, N$
- \Box random vectors $(\mathbf{Y}_i, \mathbf{X}_{i1}^{\top}, \dots, \mathbf{X}_{in}^{\top})^{\top}$ are independent with the same length
- □ for longitudinal data we do not assume that subject specific measurements are taken at the same time $\Rightarrow D_B$ generally not a random sample!
- □ for multivariate regression model we already assume that the observations in \mathcal{D}_B form a random sample (same error structure) \Rightarrow notation \mathcal{D}_S

population and data model formulation (generic vs. sample model)

$$\mathbf{Y} = \mathbf{X}^{\top} \mathbb{B} + \boldsymbol{\varepsilon}$$
 $\mathbb{Y} = \mathbb{X} \mathbb{B} + \mathbb{U}$

for generic random vectors $\mathbf{Y} \in \mathbb{R}^n$ and $\mathbf{X} \in \mathbb{R}^p$ and some matrix with the unknown parameters $\mathbb{B} \in \mathbb{R}^{p \times n}$

The corresponding data (i.e., random sample): $\mathbb{Y} = (\mathbf{Y}_1, \dots, \mathbf{Y}_N)^\top$, $\mathbb{X} = (\mathbf{X}_1, \dots, \mathbf{X}_N)^\top$, and $\mathbb{U} = (\mathbf{u}_1, \dots, \mathbf{u}_N)^\top \equiv (\boldsymbol{\varepsilon}_1, \dots, \boldsymbol{\varepsilon}_N)^\top$, $\mathbf{u}_i \sim F$

Statistical inference: Likelihood ratio test

- □ Inference in terms of confidence intervals/regions and hypothesis tests
- General form of the null hypothesis:

 $H_0: \mathbb{C}_1 \mathbb{B} \mathbb{M}_1 = \mathbb{D}$

where $\mathbb{C}_1, \mathbb{M}_1$, and \mathbb{D} are some (suitable) matrices

- \Box The rows of \mathbb{C}_1 do inference on the effects of independent variables while the columns of \mathbb{M}_1 do inference on particular linear combinations of dependent variables
- □ In practical applications it is common that D is a zero matrix (all elements are zeros) and $M_1 = I$ (i.e. a unit matrix with ones on the main diagonal) \hookrightarrow alternatively, the model of the form $\mathbb{Y}M_1 = \mathbb{X}\mathbb{B}M_1 + \mathbb{U}M_1$
- □ Thus, the null hypothesis reduces to

$$H_0: \mathbb{C}_1\mathbb{B} = \mathbf{0}$$

against a general alternative hypothesis of the form $H_A : \mathbb{C}_1 \mathbb{B} \neq \mathbf{0} \in \mathbb{R}^{q \times n}$ (with the rank of the matrix \mathbb{C}_1 being equal to $q \in \mathbb{N}$)

Inference: Likelihood ratio test

- □ consider the null hypothesis of the form H_0 : $\mathbb{C}_1\mathbb{B} = \mathbb{D}$ (for some matrix $\mathbb{C} \in \mathbb{R}^{q \times p}$, for some $q \in \mathbb{N}$, such that q < p)
- \Box the model $\mathbb{Y} = \mathbb{XB} + \mathbb{U}$ can be equivalently expressed as

$$\widetilde{\mathbb{Y}} = \mathbb{Z}\widetilde{\mathbb{B}} + \mathbb{U},$$

for $\widetilde{\mathbb{Y}} = \mathbb{Y} - \mathbb{X}\mathbb{B}_0$, where $\mathbb{C}_1\mathbb{B}_0 = \mathbb{D}$ (satisfies the null hypothesis), $\mathbb{Z} = \mathbb{X}\mathbb{C}^{-1}$ where $\mathbb{C}^\top = (\mathbb{C}_1^\top, \mathbb{C}_2^\top)$ and $\widetilde{\mathbb{B}} = (\widetilde{\mathbb{B}}_1^\top, \widetilde{\mathbb{B}}_2^\top)^\top = \mathbb{C}(\mathbb{B} - \mathbb{B}_0)$

□ the null hypothesis $\mathbb{C}_1 \mathbb{B} = \mathbb{D}$ gives that $\widetilde{\mathbb{B}}_1 = \mathbf{0}$ and for the matrix partition $\mathbb{C}^{-1} = (\mathbb{C}^{(1)}, \mathbb{C}^{(2)})$ the projection matrix

$$\mathbb{P}_1 = \mathbb{I} - \mathbb{X}\mathbb{C}^{(2)} (\mathbb{C}^{(2)\top}\mathbb{X}^\top \mathbb{X}\mathbb{C}^{(2)})^{-1} \mathbb{C}^{(2)\top}\mathbb{X}^\top$$

defines the projection onto the linear subspace orthogonal to the columns of the matrix $\mathbb{XC}^{(2)}$ (i.e., residuals for the regression onto $\mathbb{C}^{(2)}$ – under the null hypothesis, thus $\widetilde{\mathbb{B}}_1=0)$

LRT: Likelihood under the null and alternative

maximized likelihood under the null hypothesis

$$\ell_0 = |2\pi N^{-1} \widetilde{\mathbb{Y}}^\top \mathbb{P}_1 \widetilde{\mathbb{Y}}|^{-N/2} \cdot \exp\{-\frac{1}{2}Nn\}$$

maximized likelihood under the alternative hypothesis

$$\ell_1 = |2\pi N^{-1} \widetilde{\mathbb{Y}}^\top \widetilde{\mathbb{P}} \widetilde{\mathbb{Y}}|^{-N/2} \cdot \exp\{-\frac{1}{2}Nn\}$$

the likelihood ratio test statistic is given as

 $\lambda^{2/N} = |\widetilde{\mathbb{Y}}^{\top} \widetilde{\mathbb{P}} \widetilde{\mathbb{Y}}| / |\widetilde{\mathbb{Y}}^{\top} \mathbb{P}_1 \widetilde{\mathbb{Y}}| = |\widetilde{\mathbb{Y}}^{\top} \widetilde{\mathbb{P}} \widetilde{\mathbb{Y}}| / |\widetilde{\mathbb{Y}}^{\top} \widetilde{\mathbb{P}} \widetilde{\mathbb{Y}} + \widetilde{\mathbb{Y}}^{\top} \mathbb{P}_2 \widetilde{\mathbb{Y}}|$

and it follows the $\Lambda(n, N - p, q)$ distribution, where $q \in \mathbb{N}$ is the number of rows in \mathbb{C}_1 (for $\mathbb{P}_2 = \mathbb{P}_1 - \widetilde{\mathbb{P}}$ – what does it mean geometrically?)

Examples

□ Repeated measurements for two groups (two-sample problems):

$$oldsymbol{Y}_i^{(1)} \sim N_n(oldsymbol{\mu}_1, \Sigma), \qquad i = 1, \dots, N_1$$

 $oldsymbol{Y}_i^{(2)} \sim N_n(oldsymbol{\mu}_2, \Sigma), \qquad i = 1, \dots, N_2$

Typical testing problems

- parallel profiles of two groups
- identical profiles for both groups
- treatment effect

 $\begin{array}{l} H_0 : \mathbb{C}(\mu_1 - \mu_2) = \mathbf{0} \\ H_0 : \mathbf{1}^\top (\mu_1 - \mu_2) = \mathbf{0} \\ H_0 : \mathbb{C}(\mu_1 + \mu_2) = \mathbf{0} \end{array}$

Multiple testing problem

The statistical test for identical profiles only makes sense if the profiles are parallel; Similarly, if the profiles are parallel, is there any treatment effect at all?

Some useful overview

- □ statistical tests about some (multivariate) mean vector $\mu \in \mathbb{R}^n$ can be often expressed in terms of the null hypothesis H_0 : $\mathbb{A}\mu = a$ against a general alternative H_A : $\mathbb{A}\mu \neq a$ where $\mathbb{A} \in \mathbb{R}^{q \times n}$ and $a \in \mathbb{R}^q$
- □ for a random sample $X_i \sim N_n(\mu, \Sigma)$ for i = 1, ..., N, with $\Sigma \in \mathbb{R}^{n \times n}$ known, it holds that $A\overline{X}_N \sim N_n(\mathbb{A}\mu, \frac{1}{N}\mathbb{A}\Sigma\mathbb{A}^\top)$ and the corresponding log-likelihood based test statistic equals $-2 \log \lambda = N(\overline{AX}_N a)^\top (\mathbb{A}\Sigma\mathbb{A}^\top)^{-1} (\mathbb{A}\overline{X}_N a)$ and it follows (exactly) the χ^2 distribution with $q \in \mathbb{N}$ degrees of freedom
- □ for $X_i \sim N_n(\mu, \Sigma)$ with $\Sigma \in \mathbb{R}^{n \times n}$ unknown, the log-likelihood test statistic equals to $-2 \log \lambda = N \log \left\{ 1 + (\mathbb{A}\overline{X}_N - a)^\top (\mathbb{A}\widehat{\Sigma}_N \mathbb{A}^\top)^{-1} (\mathbb{A}\overline{X}_N - a) \right\}$ and it follows asymptotically the χ^2 distribution with $q \in \mathbb{N}$ degrees of freedom where $\widehat{\Sigma}_N$ is the sample estimate of the variance-covariance matrix Σ defined as

$$\widehat{\boldsymbol{\Sigma}}_N = rac{1}{N}\sum_{i=1}^N (oldsymbol{X}_i - \overline{oldsymbol{X}}_N) (oldsymbol{X}_i - \overline{oldsymbol{X}}_N)^ op$$

□ alternatively, the estimate $\widehat{\Sigma}_N$ can be also expressed (using the whole data matrix $\mathbb{X} \in \mathbb{R}^{N \times n}$) as $\widehat{\Sigma}_N = \frac{1}{N} \mathbb{X}^\top \mathcal{H} \mathbb{X}$, where $\mathcal{H} \in \mathbb{R}^{N \times N}$ is the so-called centering matrix $\mathcal{H} = \mathbb{I} - \frac{1}{N} \mathbb{1}^\top$, for the unit matrix $\mathbb{I} \in \mathbb{R}^{N \times N}$ and $\mathbb{1}^\top = (1, ..., 1) \in \mathbb{R}^N$

Wishart and Hotelling distributions

- □ under the normality assumption $X_1, ..., X_N \sim N_n(\mu, \Sigma)$ with Σ unknown there also exists an exact test (i.e., a multivariate generalization of the *t*-test)
- Wishart distribution

(distribution of random matrices)

— for $X_1, \ldots, X_N \sim N_n(\mathbf{0}, \Sigma)$ and $\mathbb{X} = (X_1, \ldots, X_N)^\top \in \mathbb{R}^{N \times n}$, it holds that $S = \sum_{i=1}^N X_i X_i^\top = \mathbb{X}^\top \mathbb{X} \sim W_n(\Sigma, N)$

where S is called the scatter matrix and $W_p(\Sigma, N)$ is the *n*-dimensional Wishart distribution with N degrees of freedom and the scale matrix Σ (note, that $W_1(1, N)$ is equivalent to the χ^2 -distribution with N degrees of freedom)

- for $X_1, \ldots, X_N \sim N_n(\mu, \Sigma)$ if can be shown that $\mathbb{X}^\top \mathcal{H} \mathbb{X} \sim W_n(\Sigma, N-1)$
- $\text{ if } \mathcal{S} \sim W_n(\Sigma, N), \, \mathbb{C} \in \mathbb{R}^{q \times n} \text{ (rank } q \in \mathbb{N}) \Longrightarrow \mathbb{C}\mathcal{S}\mathbb{C}^\top \sim W_q(\mathbb{C}\mathcal{S}\mathbb{C}^\top, N)$
- Hotelling distribution

(generalization of the univariate *t*-test)

— for $X \sim N_n(0, \mathbb{I})$ and $S \sim W_n(\mathbb{I}, N)$ with $\mathbb{I} \in \mathbb{R}^{n \times n}$ being a unit matrix and $X \perp S$, it holds that

$$N \mathbf{X}^{\top} \mathcal{S}^{-1} \mathbf{X} \sim T^2(n, N),$$

which is the Hotelling's T^2 distribution with parameters $n \in \mathbb{N}$ and $N \in \mathbb{N}$

— for $\mathbf{X} \sim N_n(\mu, \Sigma)$ and $S \sim W_n(\Sigma, N)$ (Σ with full rank) such that $\mathbf{X} \perp S$, it holds that $\Sigma^{-1/2}(\mathbf{X} - \mu) \sim N_n(\mathbf{0}, \mathbb{I})$ and $\Sigma^{-1/2}S\Sigma^{-1/2} \sim W_n(\mathbb{I}, N)$ and, therefore, also $N(\mathbf{X} - \mu)^\top S^{-1}(\mathbf{X} - \mu) \sim T^2(n, N)$

Hotelling's **T**² test

- □ for $X_i \sim N_n(\mu, \Sigma)$ with $\Sigma \in \mathbb{R}^{n \times n}$ unknown, the log-likelihood test statistic equals (as already stated before) to $-2 \log \lambda = N \log \left\{ 1 + (\mathbb{A} \overline{X}_N - \mathbf{a})^\top (\mathbb{A} \widehat{\Sigma}_N \mathbb{A}^\top)^{-1} (\mathbb{A} \overline{X}_N - \mathbf{a}) \right\}$ and it follows asymptotically the χ^2 distribution with $q \in \mathbb{N}$ degrees of freedom
- □ it can be also easily proved that all of the following hold
 - $\overline{\boldsymbol{X}}_N \sim N_n(\mu, \frac{1}{N} \Sigma) \text{ and also } (\mathbb{A} \overline{\boldsymbol{X}}_N \underline{\boldsymbol{a}}) \sim N_q(\mathbb{A} \mu \boldsymbol{a}, \frac{1}{N} \mathbb{A} \Sigma \mathbb{A}^\top)$
 - under the hull hypothesis it holds $(\mathbb{A}\overline{X}_N a) \sim N_n(\mathbf{0}, \frac{1}{N}\mathbb{A}\Sigma\mathbb{A}^\top)$
 - sample covariance matrix can be obtained as $\widehat{\Sigma}_N = \frac{1}{N} \mathbb{X}^\top \mathcal{H} \mathbb{X}$ and it holds that $N\widehat{\Sigma}_N = \mathbb{X}^\top \mathcal{H} \mathbb{X} \sim W_n(\Sigma, N-1)$ and, moreover, $\overline{X}_N \perp \widehat{\Sigma}_N$
 - thus, for $\mathbb{A}\widehat{\Sigma}_{N}\mathbb{A}^{\top}$, it holds that $\mathbb{A}\widehat{\Sigma}_{N}\mathbb{A}^{\top} \sim W_{q}(\Sigma, N-1)$
- bringing now everything together, the test statistic defined as

$$\mathcal{T} = (N-1)(\mathbb{A}\overline{\boldsymbol{X}}_N - \boldsymbol{a})^\top (\mathbb{A}\widehat{\boldsymbol{\Sigma}}_N \mathbb{A}^\top)^{-1} (\mathbb{A}\overline{\boldsymbol{X}}_N - \boldsymbol{a})$$

follows (under the null hypothesis $H_0 : \mathbb{A}\mu = a$) exactly the Hotelling's T^2 distribution with parameters n and N - 1 (i.e., $\mathcal{T} \sim T^2(n, N - 1)$)

□ it also holds, that if $\mathcal{T} \sim T^2(n, N)$ then $\frac{N-n+1}{Nn}\mathcal{T} \sim F_{n,N-n+1}$ (where $F_{...}$ denotes the F distribution with the corresponding degrees of freedom)

Two sample problems:

Returning now back to the statistical tests for longitudinal profiles, the following test statistics (with the exact Hotelling T^2 distribution under the null hypothesis) are obtained:

Parallel profiles

$$T = \frac{N_1 N_2}{(N_1 + N_2)^2} (N_1 + N_2 - 2) \left[\mathbb{C}(\overline{\mathbf{Y}}^{(1)} - \overline{\mathbf{Y}}^{(2)}) \right]^\top \left(\mathbb{C}\widehat{\boldsymbol{\Sigma}}\mathbb{C}^\top \right)^{-1} \left[\mathbb{C}(\overline{\mathbf{Y}}^{(1)} - \overline{\mathbf{Y}}^{(2)}) \right]$$

where $\widehat{\boldsymbol{\Sigma}} = \frac{1}{N_1 + N_2} \left[\mathbb{Y}_1^\top \mathcal{H} \mathbb{Y}_1 + \mathbb{Y}_2^\top \mathcal{H} \mathbb{Y}_2 \right]$ (i.e., pooled covariance estimate) such that
 $(N_1 + N_2)\widehat{\boldsymbol{\Sigma}} \sim W_n(\boldsymbol{\Sigma}, N_1 + N_2 - 2)$ and $\mathbb{Y}_1 = (\mathbf{Y}_{i,j}^{(1)})_{i,j=1}^{N_1,n}$ and $\mathbb{Y}_2 = (\mathbf{Y}_{i,j}^{(2)})_{i,j=1}^{N_2,n}$ and the
centering matrix \mathcal{H} with proper dimensions
 \Longrightarrow under the null hypothesis, it holds that, $T \sim T^2(n - 1, N_1 + N_2 - 2)$

Equality of two levels

$$T = \frac{N_1 N_2}{(N_1 + N_2)^2} (N_1 + N_2 - 2) \frac{\left[\mathbf{1}^\top (\overline{\mathbf{Y}}^{(1)} - \overline{\mathbf{Y}}^{(2)})\right]^2}{\mathbf{1}^\top \widehat{\mathbf{\Sigma}} \mathbf{1}}$$

and (under the null hypothesis) ${\it T} \sim {\it T}^2(1, {\it N}_1 + {\it N}_2 - 2)$

Same treatment effect

$$\mathcal{T} = (N_1 + N_2 - 2)(\mathbb{C}\overline{\boldsymbol{Y}})^\top \left(\mathbb{C}\widehat{\boldsymbol{\Sigma}}\mathbb{C}^\top\right)^{-1}\mathbb{C}\overline{\boldsymbol{Y}}, \quad \mathrm{for} \ \overline{\boldsymbol{Y}} = \frac{N_1\overline{\boldsymbol{Y}}^{(1)} + N_2\overline{\boldsymbol{Y}}^{(2)}}{N_1 + N_2}$$

and (under the null hypothesis) ${\it T} \sim {\it T}^2(n-1, {\it N}_1 + {\it N}_2 - 2)$

Longitudinal and Panel data | March 10, 2025

Multivariate model vs. general linear model

$\square Multivariate regression model \mathbb{Y} = \mathbb{XB} + \mathbb{U}$

(wide data format)

- □ $n \in \mathbb{N}$ repeated measurements within $N \in \mathbb{N}$ subjects (random sample)
- □ repeated measurements taken at the same time-points across subjects
- \Box time evolution modeled by the set of $\beta_j \in \mathbb{R}^p$ parameters (j = 1, ..., n)
- \Box the vector of subject's specific covariates $X_i \in \mathbb{R}^p$ fixed over time
- \Box covariance structure modeled by the matrix Σ , where $u_i \sim N_n(\mathbf{0}, \Sigma)$
- \Box the data usually form a random sample from the joint distribution $F_{\mathbf{Y},\mathbf{X}}$

General linear model for correlated errors $\mathbf{Y} = \mathbb{X}eta + eta$ (long data format)

- \square $n \in \mathbb{N}$ repeated measurements within $N \in \mathbb{N}$ subjects (balanced data)
- \square the vector of unknown parameters $\beta \in \mathbb{R}^p$ is fixed over time
- □ subject's specific covariates $X_{ij} \in \mathbb{R}^p$ may vary with $j \in \{1, ..., n\}$
- \Box subjects' independence and within subject's covariance modeled by the variance covariance Σ , where $\varepsilon \sim N(\mathbf{0}, \Sigma)$ (overall dimensionality: *Nn*)
- \Box the model can be further generalized for unbalanced data (with $n_i \in \mathbb{N}$)

General linear model with correlated errors

- □ instead of time-varying β_j and fixed $X_j \in \mathbb{R}^p$ the time evolution can be modeled in terms of the time-varying covariates $X_{ij} \in \mathbb{R}^p$ and fixed $\beta \in \mathbb{R}^p$
 - Simplification in terms of the vectors of unknown parameters $\beta_j \in \mathbb{R}^p$ for j = 1, ..., n (in the matrix $\mathbb{B} \in \mathbb{R}^{p \times n}$): $\Rightarrow \beta = \beta_1 = \cdots = \beta_n$
 - Relaxation in terms of the subject's specific covariates $\mathbf{X}_{ij} \in \mathbb{R}^p$ that are now allowed to change with $j \in \{1, ..., n\}$: $\Rightarrow \mathbf{X}_{ij} = (X_{ij1}, ..., X_{ijp})^\top \in \mathbb{R}^p$
- □ this allows for an alternative formulation of the multivariate (data) model (where 𝒱 = 𝔅𝔅 + 𝔅 follows as a special case) in a form

$$\begin{pmatrix} Y_{11} \\ \vdots \\ Y_{1n} \\ Y_{21} \\ \vdots \\ Y_{Nn} \end{pmatrix} = \begin{pmatrix} X_{111} & \dots & X_{11p} \\ \vdots & \ddots & \vdots \\ X_{1n1} & \dots & X_{1np} \\ X_{211} & \dots & X_{21p} \\ \vdots & \ddots & \vdots \\ X_{Nn1} & \dots & X_{Nnp} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_{11} \\ \vdots \\ \varepsilon_{1n} \\ \varepsilon_{21} \\ \vdots \\ \varepsilon_{Nn} \end{pmatrix}$$

U What are the advantages/disadvantages of both model formulations?

Matrix formulation

typical notation (under the multivariate normal distributional assumption) takes the form

 $\boldsymbol{Y} \sim N_{Nn}(\mathbb{X}\boldsymbol{\beta}, \sigma^2\mathbb{V}),$

where \mathbb{V} is a block-diagonal matrix with non-zero blocks of size $n \times n$ (each block $\sigma^2 \mathbb{V}_0 \equiv \Sigma$ represents the variance-covariance structure of the repeated measurements within one single subject)

- □ the variance-covariance matrix σ² V is estimated by borrowing power across subjects (i.e., replication of σ² V₀ across independent units)
- \Box there can be no specific (parametric) structure assumed for \mathbb{V}_0 but it is common to postulate some parametric structure of the matrix \mathbb{V}_0
- □ the estimation of the underlying correlation structure within $\sigma^2 \mathbb{V}$ is crucial for a proper statistical inference

Uniform correlation model

- □ Assumption: positive correlation $\rho \in (0, 1)$ between any two repeated observations within a given subject
- **D** Matrix notation: $\mathbb{V}_0 = (1 \rho)\mathbb{I}_{n \times n} + \rho \mathbf{1}_{n \times n}$
- **D** Motivation: the response (random) variable Y_{ij} can be decomposed as

 $Y_{ij} = \mu_{ij} + Z_i + V_{ij},$

where $\mu_{ij} = EY_{ij}$ and $Z_i \sim N(0, \nu^2)$ independent of $V_{ij} \sim N(0, \tau^2)$ and it holds that $\rho = \nu^2/(\nu^2 + \tau^2)$ and $\sigma^2 = \nu^2 + \tau^2$ (for $\varepsilon_{ij} = Z_i + V_{ij}$)

□ Interpretation: linear model for the mean of the response with a random intercept (with the variance between subjects $\nu^2 > 0$)

Exponential correlation model

Assumption: covariance between Y_{ij} and Y_{ik} for $i \neq k$ is of the form

 $v_{jk} = \sigma^2 \exp\{-\phi|t_j - t_k|\}$

and it decays towards zero as the time separation between repeated observations increases (with the rate of decay given by $\phi > 0$)

D Matrix notation: $\mathbb{V}_0 = (v_{jk})_{j,k=1}^n$

Motivation: the response (random) variable Y_{ij} can be decomposed as

$$Y_{ij}=\mu_{ij}+W_{ij},$$

where $W_{ij} = \rho W_{i(j-1)} + Z_{ij}$ for $Z_{ij} \sim N(0, \sigma^2(1-\rho^2))$ independent (verify, that it holds that $VarY_{ij} = VarW_{ij} = \sigma^2$)

- □ Interpretation: linear model for the mean of the response with with the first order autoregressive correlation structure
- □ Generalization: $Y_{ij} = \mu_{ij} + W_i(t_j)$ for continuous time Gaussian processes $\{X_i(t); t \in \mathbb{R}\}$ independent for i = 1, ..., N and general time points $t_1 < \cdots < t_{ni}$

Towards least squares – two step estimation

- □ For simplification assume the model $Y_{ij} = a + bX_{ij} + \varepsilon_{ij}$ with no distributional assumption for the error vector $\varepsilon = (\varepsilon_{11}, ..., \varepsilon_{Nn})^{\top}$
- Two-stage least squares as a simple estimation method for models where it is needed to distinguish the variance sources (within/between subjects)
- **Stage 1:** longitudinal profiles for each subject $i \in \{1, ..., N\}$ individually

$$Y_{ij}=A_i+B_iX_{ij}+W_{ij}, \quad j=1,\ldots,n, \quad ext{and} \ W_{ij}\sim (0, au^2), \ i.i.d.$$

to obtain $\widehat{A}_i = A_i + Z_{ai}$ and $\widehat{B}_i = B_i + Z_{bi}$, for $Z_{ai} \sim (0, v_{ai}^2)$, $Z_{bi} \sim (0, v_{bi}^2)$

Stage 2: OLS analysis of the subject's specific parameter estimates

 $A_i = a + \delta_{ai}$ and $B_i = b + \delta_{bi}$

for independent errors $\delta_{ai} \sim (0, \sigma_a^2)$ and $\delta_{bi} \sim (0, \sigma_b^2)$ \Box Therefore: $\widehat{A}_i = a + (\delta_{ai} + Z_{ai})$ and $\widehat{B}_i = b + (\delta_{bi} + Z_{bi})$

Two stage regression model

both stages can be straightforwardly combined together as

$$Y_{ij} = A_i + B_1 + W_{ij}$$

= $(a + \delta_i) + (b + \delta_{bi})X_{ij} + W_{ij}$
= $a + bX_{ij} + \delta_{ai} + \delta_{bi}X_{ij} + W_{ij}\underbrace{(\delta_{ai} + \delta_{bi}X_{ij} + W_{ij})}_{\varepsilon_{ij}}$
= $a + bX_{ii} + \varepsilon_{ii}$

- \Box What is the variance of the of Y_{ij} ?
- □ What is the covariance of two observations Y_{ij} and Y_{ik} , for $j \neq k$?
- □ What is the covariance of Y_{ij} and Y_{lk} , for $i \neq l$ and $j \neq k$?

Summary

Two alternative but not equivalent multivariate model formulations

 $\mathbb{Y} = \mathbb{XB} + \mathbb{U}$ versus $\mathbf{Y} = X\beta + \varepsilon$

- □ Estimation of the unknown parameters in B ∈ R^{p×n} or β ∈ R^p (either in terms of the least squares or the maximum likelihood estimation)
- Decomposition of the overall data variability into two different sources (the within subject's variability and the between subjects' variability)
- □ Marginal or hierarchical inference (in terms of the confidence intervals/regions or the statistical tests)
- Two stage estimation approach in the model Y = Xβ + β (towards the mixed effect model with fixed and random effects)