Lecture 3 | 10.03.202

Statistical inference
in @ multivariate regression model
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Notation overview

O balanced longitudinal profiles Dg = {(Yi, Xi1,..., Xa)"; i=1,...,N}

d fornj=neNforalli=1,...,N
random vectors (Y, Xi—{, ceey Xl.—,'; T are independent with the same length

are taken at the same time = Dpg generally not a random sample!
for multivariate regression model we already assume that the observations
in Dg form a random sample (same error structure) = notation Dgs

a
A for longitudinal data we do not assume that subject specific measurements
a

[ population and data model formulation (generic vs. sample model)
Y=X"B+e Y =XB+U

for generic random vectors Y € R" and X € R” and some matrix with
the unknown parameters B € RP*"

The corresponding data (i.e., random sample): Y = (Y1,..., Ya)',
X=(X,...,Xn) ", and U= (tn,...,un)" = (e1,...,en) 5~ F
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Statistical inference: Likelihood ratio test

[ Inference in terms of confidence intervals/regions and hypothesis tests

[ General form of the null hypothesis:
Ho : (ClBMl =D

where C1, M, and D are some (suitable) matrices

[ The rows of C; do inference on the effects of independent variables while
the columns of Ml; do inference on particular linear combinations of
dependent variables

[ In practical applications it is common that D is a zero matrix (all elements
are zeros) and M; =1 (i.e. a unit matrix with ones on the main diagonal)
< alternatively, the model of the form YM; = XBM; + UM;

[ Thus, the null hypothesis reduces to
Ho . (ClB = 0
against a general alternative hypothesis of the form Hu : CiB # 0 € R9*”

(with the rank of the matrix C; being equal to g € N)
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Inference: Likelihood ratio test

[ consider the null hypothesis of the form Hy : C:B =D
(for some matrix C € R9*?, for some q € 1, such that g < p)

[ the model Y = XB + U can be equivalently expressed as
Y=7ZB+U,

for Y=Y — XBo, where C:By = D (satisfies the null hypothesis),
Z =XC ! where C" = (C{,C; ) and B = (B ,B; )" = C(B — Bo)

(4 the null hypothesis C;B = D gives that Iﬁl = 0 and for the matrix
partition C~! = ((C(l), (C(Z)) the projection matrix

P; =1 - XCP(CPTXTxC?®)1cPTXT

defines the projection onto the linear subspace orthogonal to the columns
of the matrix XC® (i.e., residuals for the regression onto C® — under the
null hypothesis, thus B; = 0)
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LRT: Likelihood under the null and alternative

[d maximized likelihood under the null hypothesis

N R (L)

1 maximized likelihood under the alternative hypothesis

= ‘27TN_1§{Tﬁ§{|7N/2 ~exp{f%Nn}

[ the likelihood ratio test statistic is given as
AN = [ YTPY|/[YTP,Y| = |YTPY|/|YTPY + Y PLY

and it follows the A(n, N — p, q) distribution, where g € N is the number
of rows in C; (for P, =Py — P — what does it mean geometrically?)
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Examples

(1 Repeated measurements for two groups (two-sample problems):

)/1(1) ~ N"(u17z)7 = 17 s
YI(Z) ~ N"(u27z)7 i= 17 s

[ Typical testing problems

[ parallel profiles of two groups
[ identical profiles for both groups
[ treatment effect

1 Multiple testing problem

, Ny
, N>

Ho : C(p1 — p2) =0
Ho : 17 (1 — p2) =0
Ho : C(p1 + p2) =0

The statistical test for identical profiles only makes sense if the profiles are
parallel; Similarly, if the profiles are parallel, is there any treatment effect

at all?
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Some useful overview

(1 statistical tests about some (multivariate) mean vector . € R" can be often
expressed in terms of the null hypothesis Hy : Ap = a against a general
alternative Hy : Ap # a where A € R9%" and a € RY

[ for a random sample X; ~ Np(p, X) for i =1,..., N, with £ € R™™" known, it
holds that AXy ~ Np(Ap, %AZAT) and the corresponding log-likelihood based
test statistic equals —2log A = N(AXy —a)T (AXAT)"1(AXy — a) and it
follows (exactly) the x? distribution with g € N degrees of freedom

[ for Xj ~ Np(p, X) with ¥ € R"X" unknown, the log-likelihood test statistic
equals to —2log A = N log {1 + (AXy — a)T(A/}fNAT)*l(A?N — a)} and it
follows asymptotically the x? distribution with g € N degrees of freedom where
Y y is the sample estimate of the variance-covariance matrix X defined as

N

~ 1 _ _

Yy = N E (Xi — Xp)(Xi — Xn) T
i=1

1 alternatively, the estimate fN can be also expressed (using the whole data matrix
X e RVXM) as ¥y = ﬁXTHX, where H € RVXN s the so-called centering
matrix H =1— %IIT, for the unit matrix T € RV*N and 17 = (1,...,1) € RV
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Wishart and Hotelling distributions

[ under the normality assumption X,
also exists an exact test (i.e

1 Wishart distribution
— for Xi,..., Xy ~ Ny(0,%) and X = (X1,
N
S= ZX,-X,-T = XX ~ Wo(E, N)
i=1
where S is called the scatter matrix and W, (X, N) is the n-dimensional
Wishart distribution with N degrees of freedom and the scale matrix

(note, that W4 (1, N) is equivalent to the x2-distribution with N degrees of freedom)
— for Xi, ..

ooy XN ~ Nn(p, ) with £ unknown there

., a multivariate generalization of the t-test)
(distribution of random matrices)

R X,\,)—r € RVX it holds that

s XN ~ Na(p, X) if can be shown that XTHX ~ W, (X, N — 1)
— if S ~ W,(Z, N), C € RI*" (rank g € N) = CSCT ~ W,(CSCT, N)

1 Hotelling distribution (generalization of the univariate t-test)

— for X ~ Np(0,I) and S ~ W, (I, N) with T € R"*" being a unit matrix and
X L S, it holds that
NXTS™1X ~ T?(n, N),
which is the Hotelling’s T2 distribution with parameters n € N and N € N
— for X ~ Np(p, X) and S ~ Wi(X, N) (X with full rank) such that X L S,
it holds that ¥ =1/2(X — ) ~ N,(0,T) and T~1/28¥—1/2 ~ W, (I, N) and,
therefore, also N(X — p) TS™H(X — p) ~ T?(n, N)
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Hotelling’s T2 test

a for X; ~ Na(p, ) with & € R"™" unknown, the log-likelihood test
statistic equals (as already stated before) to

—2log A = Nlog {1 + (AXy — a) (AZNAT) H(AXy — a)} and it
follows asymptotically the x? distribution with g € N degrees of freedom

[ it can be also easily proved that all of the following hold
— Xp ~ Nn(p, $ ) and also (AXy — a) ~ Ng(Ap — a, ATAT)
— under the hull hypothesis it holds (AXy — a) ~ N,(0, %AZAT)
— sample covariance matrix can be obtained as /Z\N = ﬁXT’HX and it holds
that N/Z\N =XTHX ~ W,(Z,N — 1) and, moreover, Xy L /Z\N
— thus, for AZyAT, it holds that AT yAT ~ W,(X, N — 1)

[ bringing now everything together, the test statistic defined as
T =(N—1)(AXy — a) (ASyAT) H(AXy — a)

follows (under the null hypothesis Hp : A = a) exactly the Hotelling's
T2 distribution with parameters n and N — 1 (i.e., T ~ T%(n, N — 1))

U it also holds, that if 7 ~ T?(n, N) then Y="1T ~ Fy vy
(where F.. denotes the F distribution with the corresponding degrees of freedom)
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Two sample problems:

Returning now back to the statistical tests for longitudinal profiles, the following test
statistics (with the exact Hotelling T2 distribution under the null hypothesis) are obtained:

[ Parallel profiles

B N1 N> 1) <@\ 7 [(~SAT) L v v

- m(/\h + N —2)[c(V) = ¥?)] (czcT) T [e(v? - ¥
where E = W [YlT’HYl + Y;HYZ] (i.e., pooled covariance estimate) such that
(N1 + N2)E ~ Wo(E, Ny + N —2) and Y1 = (V)M and ¥, = (¥2)12"] and the
centering matrix H with proper dimensions

=> under the null hypothesis, it holds that, T ~ T2(n —1,Ny + N> — 2)

d Equality of two levels
T v _ 242
N1 N, [1 (v -v )]
T=—"""(N+N—2)————
(N1 + N2) 1731
and (under the null hypothesis) T ~ T2(1, Ny + No — 2)
1 Same treatment effect
v v
- S < NYY LNy
T = (N, + Ny — 2)(CY) (czc ) Y, for V= =
and (under the null hypothesis) T ~ T2(n — 1, Ny 4+ Np — 2)
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Multivariate model vs. general linear model

[ Multivariate regression model Y = XB + U (wide data format)

n € N repeated measurements within N € N subjects (random sample)
repeated measurements taken at the same time-points across subjects
time evolution modeled by the set of 8; € RP parameters (j =1,...,n)
the vector of subject’s specific covariates X; € RP fixed over time
covariance structure modeled by the matrix X, where u;j ~ N,(0,X)
the data usually form a random sample from the joint distribution Fy x

pooodoo

[ General linear model for correlated errors Y = X3 + ¢ (long data format)

(]

n € N repeated measurements within N € N subjects (balanced data)

[d the vector of unknown parameters 8 € RP is fixed over time

[0 subject’s specific covariates Xj; € RP may vary with j € {1,...,n}

1 subjects’ independence and within subject’s covariance modeled by the
variance covariance X, where € ~ N(0,X) (overall dimensionality: Nn)

[d the model can be further generalized for unbalanced data (with n; € N)
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General linear model with correlated errors

[ instead of time-varying B, and fixed X; € R” the time evolution can be
modeled in terms of the time-varying covariates Xj; € R” and fixed 8 € R”

— Simplification in terms of the vectors of unknown parameters B; € RP for

j=1,...,n(in the matrix B€ RP*"): = B =01 =---=f,
— Relaxatlon in terms of the subject’s specnflc covariates Xj; € RP that are
now allowed to change with j € {1,...,n}: = X;j = (Xj1,..., Xjp) | € RP

[ this allows for an alternative formulation of the multivariate (data) model
(where Y = XB + U follows as a special case) in a form

Yll Xlll cee Xllp €11
. . . . Bl .
Yln _ Xlnl e Xlnp . 4 E1in
Yor Xo11 ... Xoip . €21

: . : Be
YNn Xan e Xan ENn

[d What are the advantages/disadvantages of both model formulations?
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Matrix formulation

[ typical notation (under the multivariate normal distributional assumption)
takes the form
Y ~ Nun(XB,0%V),

where V is a block-diagonal matrix with non-zero blocks of size n x n
(each block 0°Vy = ¥ represents the variance-covariance structure of the
repeated measurements within one single subject)

[0 the variance-covariance matrix o2V is estimated by borrowing power
across subjects (i.e., replication of 6°Vy across independent units)

[ there can be no specific (parametric) structure assumed for Vo but it is
common to postulate some parametric structure of the matrix Vo

[ the estimation of the underlying correlation structure within oV is crucial
for a proper statistical inference
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Uniform correlation model

(1 Assumption: positive correlation p € (0, 1) between any two repeated
observations within a given subject

[d Matrix notation: Vo = (1 — p)laxn + plaxa

1 Motivation: the response (random) variable Yj; can be decomposed as
Yij = wij + Zi + Vi,

where p;j = EYj; and Z; ~ N(0,?) independent of Vj; ~ N(0,72) and it
holds that p = 12/(v* 4+ 72) and 0° = 12 + 72 (for g5 = Z; + V)

[ Interpretation: linear model for the mean of the response with a random
intercept (with the variance between subjects v° > 0)
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Exponential correlation model

[d Assumption: covariance between Yj; and Yj for i # k is of the form

vik = 0" exp{—o|t; — t|}
and it decays towards zero as the time separation between repeated
observations increases (with the rate of decay given by ¢ > 0)
[ Matrix notation: Vo = (vjx)/ k=1
[d Motivation: the response (random) variable Yj can be decomposed as
Yi = i+ Wi,
where W = pWj(;_1) + Zj for Zj ~ N(0,0°(1 — p*)) independent
(verify, that it holds that VarYj = VarWj; = o?)

[ Interpretation: linear model for the mean of the response with with the
first order autoregressive correlation structure

1 Generalization: Yj; = pu;j + Wi(t;) for continuous time Gaussian processes
{Xi(t); t € R} independent for i =1,..., N and general time points
t <o < i
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Towards least squares — two step estimation

1 For simplification assume the model Yj; = a + bXj + ¢ with no
distributional assumption for the error vector € = (e11,...,Enn) "

[ Two-stage least squares as a simple estimation method for models where
it is needed to distinguish the variance sources (within/between subjects)

(1 Stage 1: longitudinal profiles for each subject i € {1,..., N} individually
Yy =A+BX;+W;, j=1,....n, and W;~ (0,7°), i.i.d.
to obtain A; = A; + Z.; and B; = B; + Zb;, for Zsj ~ (0,v2), Zsi ~ (0, vZ)
1 Stage 2: OLS analysis of the subject’s specific parameter estimates
Ai = a-+ 0. and B; = b + 6p;

for independent errors 85 ~ (0,02) and 8y ~ (0,0%)

1 Therefore: 7\,- = a+ (8 + Zsi) and E,- = b+ (0vi + Zbi)
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Two stage regression model

(1 both stages can be straightforwardly combined together as
Yi=A+B1+W;
=(a+ )+ (b4 o)Xy + W
= a+ bXjj + 0ai + 06 Xij + Wi (dai + 96 Xij + W)
—_—————

€jj

:a—i—bX,-j—i-s,-j

[d What is the variance of the of Yj;?
[ What is the covariance of two observations Yj and Yj, for j # k7
[ What is the covariance of Yj; and Yi, for i # | and j # k?
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Summary

1 Two alternative but not equivalent multivariate model formulations
Y=XB+U versus Y=XB+e¢
[d Estimation of the unknown parameters in B € RP*" or 8 € R
(either in terms of the least squares or the maximum likelihood estimation)

1 Decomposition of the overall data variability into two different sources
(the within subject’s variability and the between subjects’ variability)

[d Marginal or hierarchical inference (in terms of the confidence
intervals/regions or the statistical tests)

[d Two stage estimation approach in the model Y = X3 + 8
(towards the mixed effect model with fixed and random effects)
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