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Model diagnostics
(assessing the model qualities)

NMFM 334 | Lecture 7 1 / 16



Overview

❏ typical linear regression model (in a matrix notation) is of the form

Y = Xβ + ε

for the response (random) vector Y = (Y1, . . . , Yn)⊤ ∈ Rn, the model
matrix X ∈ Rn×p, and the vector of unknown (model) parameters β ∈ Rp

❏ typically, the model/design matrix X is of a full rank, meaning that the
rank(X) = p which also means that (X⊤X) is an invertible p × p matrix

❏ the model matrix/design X contains basis vectors (as columnts in X)
that generate the linear subspace M(X) ⊂ Rn for the projection of Y

❏ the projection matrix (i.e., a linear operator from Rn into M(X) ⊂ Rn

can be expressed as H = X(X⊤X)−1X⊤ and the fitted values Ŷ ∈ Rn can
be expressed as Ŷ = HY (i.e., the systematic part of the model)

❏ the remaining part of the model – the projection from Rn into M(X)⊥

(i.e., the orthogonal complement of M(X) in Rn) is called the residuals
and the can be expressed as U = (I − H)Y = MY ∈ Rn
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Model assumptions
↪→ from the overall point of view, we are interested in a conditional distribution
of the dependent variable Y ∈ R given the (observed) independent variables
X ∈ Rp ... however, from the practical reasons, we are usually only interested
in some distributional characteristics—e.g., the conditional expectation
E [Y |X]... but it is also a nice habit for statisticians in general to also control
for the second moment—the variance of Y given X—i.e., Var(Y |X)

Typical assumptions:
❏ Ordinary linear regression model

❏ independent observation (Yi , Xi ), respectively error terms εi
(typically {(Yi , X⊤

i )⊤; i = 1, . . . , n} is a random sample from the joint distribution F(Y ,X))
❏ mean specification E [Y |X] = Xβ, respectively E [Y |X] = X⊤β

(typically the regression model is used to make assertions about the (conditional) mean parameter)
❏ variance specification Var(Y |X) = σ2I, resp. Var(ε) = σ2I

(typically, a homoscedasticity assumption (equal variance) is adopted)

❏ Normal linear regression model
❏ in addition, distributional assumption Y |X ∼ Nn(Xβ, σ2I)
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Model residuals
❏ Analytically

Y =
[
H + (I − H)

]
Y =

[
H + M

]
Y = HY + MY = Ŷ + U

❏ Geometrically
Projections into two disjoint (but orthogonal) parts of the data space Rn

(the regression part M(X) and the residual part M(X)⊥)

❏ Formally
The variable of interest is decomposed into two parts—the model and the
resiadual—the systematic part and the unsystematic part
(the projection into M(X) and the projection into M(X)⊥

❏ Statistically
Decomposition of the distribution of Y into the mean specification (that
is of the main interest) and the variability part
(that is crucial for the following statistical inference)
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Residuals & standardized residuals

↪→ there are actually two quantitative characteristics that can be used to judge the
quality of the regression model... the estimated conditional mean µ̂x = ̂E [Y |X = x]
and the model residuals, u1 = Y1 − Ŷ1, . . . , un = Yn − Ŷn

❏ The overall quality of the model is typically judged with respect its
estimated mean structure and the corresponding model residuals

❏ In general, we distinguish the raw residuals and the standardized
residuals... both have some advantages and disadvantages...

❏ Typical tools used for the model quality assessment are based
on graphical visualization and statistical inspection...
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Standardized (studentized) residuals

For a linear model Y |X ∼ (Xβ, σ2I) with the vector of residuals
U = (u1, . . . , un)⊤, where ui = Yi − Ŷi , for i = 1, . . . , n we define the
vector of standardized residuals (in some literature also the vector of
studentized residuals) V = (v1, . . . , vn)⊤ as

vi = ui√
MSe · mii

, if mii > 0

and
vi is undefined for mii = 0

The Mean Squared Error (MSe) quantity is the consistent estimate of
the unknown variance parameter σ2 > 0 and mii is the diagonal element
of the projection matrix M = (I − H) = (mij)n,n

i,j=1
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Properties of the residuals

❏ Raw model residuals
❏ E [ui |X] = 0, for i = 1, . . . , n
❏ Var(ui |X) = σ2mii , where M = (mij )n

i,j=1
❏ Moreover, in a normal linear model, also U ∼ Nn(0, σ2M)

❏ Standardized (studentized) residuals
❏ E [vi |X] = 0, for i = 1, . . . , n
❏ Var(vi |X) = 1, for i = 1, . . . , n
❏ However, v1, . . . , vn does not follow the normal distribution

(not even under the assumption of the normal linear model)

❏ Example (raw vs. studentized residuals)
R> lm(mpg ~ wt + as.factor(cyl), data = mtcars)$resid

Min. 1st Qu. Median Mean 3rd Qu. Max. Var
## raw -4.5890 -1.2357 -0.5159 0.0000 1.3845 5.7915 2.4300
## std -1.8851 -0.5194 -0.2162 0.0031 0.5633 2.3989 1.0088
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Graphical diagnostic tools
plot(lm(mpg ~ wt + as.factor(cyl), data = mtcars))
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Graphical diagnostic tools
plot(lm(mpg ~ wt + as.factor(cyl), data = mtcars))
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Graphical diagnostic tools
plot(lm(mpg ~ wt + as.factor(cyl), data = mtcars))
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Different sum of squares
❏ Total Sum of Squares SST

(the overall variability within the data—dependent variable Y )

SST =
n∑

i=1

(Yi − Y n)2

❏ Regression Sum of Squares RSS
(the variability explained by the model compared to the simple mean)

RSS =
n∑

i=1

(Ŷi − Y n)2

❏ Residual Sum of Squares SSe
(the variability that is still left unexplained by the model—residuals)

SSe =
n∑

i=1

(Yi − Ŷi )2
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Some properties for the sum of squares

In a linear regression model Y |X ∼ (Xβ, σ2In) with the intercept
parameter (i.e., 1n ∈ M(X)) and the vector of unknown parameters
β ∈ Rp, the following decomposition for the sum of squares holds:

n∑
i=1

(Yi − Y n)2 =
n∑

i=1
(Yi − Ŷi)2 +

n∑
i=1

(Ŷi − Y n)2

Note, that the following holds:

❏
∑n

i=1 Yi =
∑n

i=1 Ŷi

❏
∑n

i=1 Yi Ŷi = Y ⊤HY

❏
∑n

i=1 Ŷ 2
i = Y ⊤HY
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Coefficient of determination

❏ For a linear regression model Y ∼ (Xβ, σ2In) with rank(X) = p ∈ N and
1n ∈ M(X) (i.e., the intercept parameter in the model) the quantity

R2 = 1 − SSe
SST

is called the coefficient of determination in the model;

❏ In the same linear regression model, the quantity

R2
adj = 1 − n − 1

n − p
SSe
SST

is called the adjusted coefficient of determination in the model;

↪→ both quantities can be also defined for a more general model with the model
matrix X ∈ Rn×p such that rank(X) = r < p
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Important properties of R2 and R2
adj

❏ For both, R2 and R2
adj it holds that

0 ≤ R2 ≤ 1 0 ≤ R2
adj ≤ 1

❏ Both quantities are typically reported as ×100 % of the response
variability explained by the considered regression model

❏ Both quantities quantify a relative improvement of the quality of the
prediction if the regression model and the conditional distribution of the
response given the covariates is used compared to the prediction based
solely on the marginal distribution of the response

❏ Both coefficients of determination only quantifies the predictive ability of
the model—they do not say much about the quality of the model with
respect to its ability to correctly capture the conditional mean E [Y |X]

❏ Even a model with a low value of R2 (or R2
adj respectively) might be useful

for modeling the conditional mean of Y and explaining the effects of X
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Model based predictions

❏ In practice, the regression model is utilized for
❏ characterization of the conditional distribution of Y given X = (X1, . . . , Xp)⊤

❏ explaining the effect of some covariate Xj on the target variable Y
❏ prediction of Ynew when knowing the observed value of xnew

❏ Straightforward prediction in terms of the estimated conditional
expectation µ̂new = x⊤

new β̂

❏ But can we do better (e.g., accounting for the variability in Ynew )?

❏ Distributional assumption

Ynew |xnew ∼ N(x⊤
new β, σ2)

where (Ynew , X⊤
new )⊤ is independent of {(Yi , X⊤

i )⊤; i = 1, . . . , n}
which is a random sample from the same joint distribution F(Y ,X)
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Theoretical background of the prediction
❏ Formally for the model (distributional properties of β̂)

β̂ ∼ Np(β, σ2(X⊤X)−1)

❏ Formally for the prediction of Ynew (distributional properties of x⊤β̂)

Ŷnew = x⊤β̂ ∼ N(x⊤
new β, σ2x⊤

new (X⊤X)−1xnew )

❏ Formally for Ynew ∈ R (distributional properties of Ynew )

Ynew = x⊤
new β + εnew , for εnew ∼ N(0, σ2)

❏ Theoretical property for Ynew

P[Ynew ∈ (x⊤
new β ± u1−α/2σ)] = 1 − α

❏ Prediction interval for Ynew

P
[
Ynew ∈

(
x⊤

new β̂±t1−α/2(n−p)
√

MSe(1 + x⊤
new (X⊤X)−1xnew )

)]
= 1−α
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