
Lecture 6 | 24.03.2025

Linear regression model
with (linear) interactions
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Motivation

Overview: Multiple regression model
❏ Mathematical relationship between a continuous dependent variable Y

and a set of explanatory (independent) variables X = (X1, . . . , Xp)⊤

(may be continuous, binary, or categorical – or any combination)
❏ Typically expressed for some general function f : Rp −→ R but for the

linear regression model we use a more specific notation of the form

Y = β0 + β1X1 + βp−1Xp−1 + ε = X⊤β + ε

E [Y |X] = β0 + β1X1 + βp−1Xp−1 = X⊤β

❏ The corresponding model for a random sample {(Yi , Xi ); i = 1, . . . , n}
drawn from some joint distribution function F(Y ,X) takes the form

Yi = X⊤
i β + εi

for i = 1, . . . , n where we assume (by default) the presence of the
intercept parameter β0 ∈ R in the model (i.e.„ Xi0 = 1 almost surely)
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On the roles of the regression

Quantifying the effect of X on Y

❏ One of the main goals of the regression model (regression analysis in
general) is to quantify the effect of some given explanatory variable on Y

❏ Formally, the explanatory variable may have an effect on the whole
(conditional) distribution of Y ... however, for simplicity, we only focus on
some distributional characteristics instead

❏ Typical characteristic related to the linear regression model is the
conditional mean of Y given X . Therefore, the effect of X on Y is also
explained/interpreted in terms of the corresponding change of the
conditional expected value when the value of X changes

❏ The evaluation of the effect may be quantitative (in terms of the
estimation of an unknown parameter) or it can be qualitative (in terms of
a statement whether the effect is statistically important or not)
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On the roles of the regression

Interpretation: Association vs. causality

↪→ the regression model is typically a model that explains only an association
(relationship) between two (or more) subpopulations that differ with respect to the
value of the explanatory covariate(s)

❏ Associative interpretation
❏ Comparing two sub-populations that differ wrt to different values of X
❏ Interpreting the effect of X in terms of the comparison of two subjects

❏ Causal interpretation
❏ Comparing the same sub-population before and after the change in X
❏ Interpreting the effect of X in terms of a change within the subject

↪→ it is a very common mistake that the associative regression model is
(unintentionally) interpreted as a causal model... however, for a causal interpretation
we usually need much stricter assumptions (a randomized trial)
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On the roles of the regression

Example: Simple regression model variants
❏ Consumption of 15 US cars (given the number of cylinders and the car’s weight)

(5 cars with 4 cylinders, 5 cars with 6 cylinders and 5 cars with 8 cylinders)
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lm(formula = mpg ~ cyl + wt)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.843 2.677 13.014 5.03e-08 ***
cyl6 -3.324 1.806 -1.841 0.0927 .
cyl8 -4.532 2.781 -1.630 0.1314
wt -3.889 1.109 -3.508 0.0049 **

lm(formula = mpg ~ cyl + I(wt - 3), data = mtcars2)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 23.177 1.412 16.419 4.39e-09 ***
cyl6 -3.324 1.806 -1.841 0.0927 .
cyl8 -4.532 2.781 -1.630 0.1314
I(wt - 3) -3.889 1.109 -3.508 0.0049 **

lm(formula = mpg ~ cyl + wt, contrasts = list(cyl = contr.sum))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 32.2238 3.5719 9.021 2.05e-06 ***
cyl1 2.6189 1.4001 1.870 0.0882 .
cyl2 -0.7053 0.9119 -0.773 0.4556
wt -3.8886 1.1085 -3.508 0.0049 **

lm(formula = mpg ~ cyl + I(wt-3), contrasts = list(cyl = contr.sum))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.5580 0.6628 31.018 4.64e-12 ***
cyl1 2.6189 1.4001 1.870 0.0882 .
cyl2 -0.7053 0.9119 -0.773 0.4556
I(wt - 3) -3.8886 1.1085 -3.508 0.0049 **
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Problems that may occur

Correlation among explanatory variables

❏ Ideal scenario
❏ balanced data
❏ uncorrelated predictors
❏ each coeffcient βj can be estimated separately
❏ interpretation of the estimated coefficients is relatively fixed

❏ Typical real situations
❏ unbalanced data
❏ correlated predictor variables (multicolinearity)
❏ variance of the estimated parameters typically increases
❏ the interpretation of the estimated coefficients become vague

↪→ briefly saying, the estimated parameter βj stands for a change in the expected
(conditional) value of Y which comes with a unit change of Xj covariate, however,
with all other predictors being fixed. In practice, the predictor variables typically
change simultaneously. variables
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Examples

Example: Body fat vs. weight and height

❏ Body fat vs. person’s height

lm(formula = fat ~ height, data = Policie)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -47.6791 23.9707 -1.989 0.0524 .
height 0.3405 0.1343 2.535 0.0146 *

❏ Body fat vs. person’s weight

lm(formula = fat ~ weight, data = Policie)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -20.75217 3.42327 -6.062 2.02e-07 ***
weight 0.42674 0.04266 10.003 2.51e-13 ***
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Examples

What about a multiple model?

❏ Body fat vs. person’s height and weight

lm(formula = fat ~ height + weight, data = Policie)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.55309 15.24621 1.086 0.2831
height -0.24362 0.09728 -2.504 0.0158 *
weight 0.50418 0.05095 9.896 4.49e-13 ***

❏ What is the estimated effect of the height on the overall body fat?
❏ What is the estimated effect of the weight on the overall body fat?
❏ How well the conclusions correspond among different models?
❏ The estimated correlation between the weight and height is 0.6068
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Examples

How to overcome the problems? Interactions!

❏ Body fat vs. person’s height and weight with the interaction

lm(formula = fat ~ height + weight + height:weight)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -48.604790 87.698149 -0.554 0.582
height 0.123659 0.496447 0.249 0.804
weight 1.324727 1.088637 1.217 0.230
height:weight -0.004608 0.006106 -0.755 0.454

❏ What is the interaction term? How to explain it?
❏ Is the model good one?
❏ What are the main advantages and disadvantages of the model with

interactions?
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Examples

Illustration of the models
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Examples

Regression model with interactions: Formally
❏ Implementation in the R software

❏ using the expression height:weight
❏ using the expression height * weight
❏ defining new covariate as a product of height and weight

❏ Formulation within a linear regression model
❏ using a regression model expression: Y ≈ β0 + β1Xh + β2Xw + β3XhXw
❏ using a new covariate Y ≈ β0 + β1Xh + β2Xw + β3Z where Z = Xh × Xw

❏ More general formulations and models
❏ effect of height: Y ≈ β0 + (β1 + β3Xw )Xh + β2Xw
❏ effect of weight: Y ≈ β0 + (β2 + β3Xh)Xw + β3Xh

❏ parameter β3 can be seen as a linear function of Xw (or Xh respectively)
❏ more generaly, β3 is a function of Xw (or Xh respectively)
❏ thus, we can write β3(Xw ) (or β3(Xh) respectively), where β3x = cx
❏ so, is it necessary to stay with the linearity restrictions? What if

β(x) = g(x) for some general function g?

↪→ Thus, when being interested in the effect of height on the overall amount of fat,
the other covariate (weight) acts as a effect modifier in the model (and vise versa)
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Interactions

When to use a model with interactions?

❏ Effect modifier
When there is an expectation that the effect of one specific covariate Xj
will be different in different sub-populations that we want/need to control
for in the model by using the remaining covariates

❏ Colinearity issues If the model design is not optimal and there is a belief
that some covariates may be substantially correlated (linearly dependent –
multicolinearity) then the interaction(s) may help to improve the model

❏ Model interpretability Interactions can be also used just for the purpose
of some better model interpretability (despite the fact that mostly
interactions make the model interpretability more complex/challenging)

Interactions are not necessarily just between to explanatory covariates (so-called
double interactions, or first-order interactions). In practice, we can technically use
even higher-order interactions between three and more covariates – but they
exponentially complicates the final model interpretability
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Interactions

Simple interpretation of the interaction term

❏ Consider a simple regression model with one interaction

Y = β0 + β1X1 + β2X2 + β3(X1 × X2) + ε

❏ We are primariliy interested in the effect of X1 on E [Y |X1, X2] thus, we
can rewrite the model in the equivalent form

Y = β0 + (β1 + β3X2)X1 + β2X2 + ε

❏ To describe the effect of X1 on E [Y |X1, X2] we need to quantify/estimate
(β1 + β3X2) which, however, depends on the value of X2 – taking
(hypotetically) infinitelly many values Which ones to use?

❏ For X2 = 2 the effect of X1 on E [Y |X1, X2] only reduces to the
quantification/estimation of β1 Can we somehow achieve this?
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Transformations of the covariates

Transformations of the covariates

❏ Nonlinear transformations
many different transformation functions t ∈ G can be considered within
the regression model

Y = β0 + β1t1(X1) + β2t2(X2) + ε

but different transformations (different choice of t1, t2 ∈ G) change the
overall model (its properties, interpretation, etc.) and the models are not
directly comparable among each other

❏ Linear transformations
a very specific class of transformations that preserve most of the model
qualitites are of the form t(x) = a + bx , i.e.,

Y = β0 + β1(a1 + b1X1) + β2(a2 + b2X2) + ε

for a1, a2, b1, b2 ∈ R – models under such transformations are equivalent
(if b1 ̸= 0 ̸= b2) and can be directly compared among each other...
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Transformations of the covariates

Linear transformations of the covariates

Typically they are used to
❏ to improve the stability of the estimated parameters

(e.g., measuring the distance between Prague and Brno in millimeters/kilometers)

❏ for better representation of the model outputs
(mostly using different units, scales, proportions for better visualization)

❏ to improve the interpretation of the final model
(typically, we want to have a reasonable interpretation of the intercept and interactions)

However, it only works with a hierarchically well structured model.

❏ What is a hierarchically well structured model?
❏ What are the consequences of a non-hierarchical model?
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Transformations of the covariates

Model hierarchy

❏ Advantages
❏ linear transformations of the covariates does not effect the model
❏ different models are better comparable within their hierarchical structure
❏ systematic model building procedures are well defined and work well

❏ Disadvantages
❏ some models can not be fitted under the restriction of hierarchy
❏ models with various irregularities (discontinuous, non-smooth
❏ sometimes it is necessary to use a model without the intercept

↪→ when fitting a linear regression model, we always need to be aware of its structure
– whether we are building a model that is hierarchically well formulated or not... and
depending on the model we have different tools available for the fitting process and
the consecutive inference as well
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To conclude

Summary

❏ Models with interactions
❏ the yhelp to overcome some issues with the covariates
❏ the improve the overall flexibility of the model
❏ interpretation of the model becomes more challenging

❏ Linear transformations of the covariates
❏ they help with the model stability
❏ when used wisely, they improve the interpretability of the model
❏ they require a hierarchically well formulated model to work properly

❏ Hierarchically well formulated model
❏ it has its specific advantages and disadvantages
❏ inference in a hierarchical model is more straightfoward
❏ some practical applications require a non-hierarchical model
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