Lecture 4 | 10.03.2025

Multiple regression model multivariate predictor variable

Overview: Simple (ordinary) linear regression

□ Theoretical (population model) for $Y, X \in \mathbb{R}$

 $Y = a + bX + \varepsilon$

D Population model for a random sample $S = \{(Y_i, X_i); i = 1, ..., n\}$

 $Y_i = a + bX_i + \varepsilon_i$

D Alternatively (under the assumption of $E\varepsilon = 0$) we can write

$$E[Y|X] = a + bX$$
 or $E[Y|X = x] = a + bx$

Principal goals:

- **Estimation** of the unknown parameters $a, b \in \mathbb{R}$
- **Estimation** of distributional characteristics of Y|X e.g., E[Y|X = x]
- **Prediction** of a future outcome of Y_0 , for an observed $X_0 = x_0$ (known)
- **□** Forecasting outcomes of Y_0 given $X_0 = x_0$ (uncertainty statement)

Generalization: Multiple regression model

D Theoretical (population model) for $Y \in \mathbb{R}$ and $X \in \mathbb{R}^p$ and $\beta \in \mathbb{R}^p$

$$Y = \mathbf{a} + \mathbf{X}^\top \boldsymbol{\beta} + \varepsilon$$

which can be also expressed as $Y = (1, \mathbf{X}^{\top})\beta^* + \varepsilon$, for $\beta^* \in \mathbb{R}^{p+1}$ (thus, the first element in the covariate vector \mathbf{X} is (be default) equal to one – meaning that there is always an intercept parameter $a \in \mathbb{R}$ included in the regression model)

□ Thus, for a random sample $S = \{(Y_i, X_i^{\top})^{\top}; i = 1, ..., n\}$ from $F_{(Y,X)}$, the corresponding empirical/sample model can be expressed as

$$Y_i = \boldsymbol{X}_i^\top \boldsymbol{\beta} + \varepsilon_i$$

with the intercept parameter $a \in \mathbb{R}$ being implicitly included in the model (and for some more straightforward notation we will use the notation that $\beta \in \mathbb{R}^p$ and, also, $X_i \in \mathbb{R}^p$ for all i = 1, ..., n) – thus $X_{i1} = 1$ with probability 1)

Matrix formulation of the sample model

□ For more compact notation the empirical/data model can be expressed as

$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$

where the response vector $\mathbf{Y} = (Y_1, \ldots, Y_n)^\top \in \mathbb{R}^n$, the model/design matrix $\mathbb{X} \in \mathbb{R}^{n \times p}$, and the error vector $\boldsymbol{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_n)^\top$ (note, that $\mathbb{X} = (\mathbf{X}_1, \ldots, \mathbf{X}_n)^\top$ or, respectively, the model/design/regression matrix can be also expressed in a form $\mathbb{X} = (X_{ij})_{i=1}^{n,p}$)

\Box Similarly as before, (under the assumption $E\varepsilon = 0$) the population models

$$E[Y|X] = X^{\top}\beta$$
 or $E[Y|X = x] = x^{\top}\beta$

provide expressions for the theoretical (population) mean within some specific subpopulation (defined by values in X or x – the conditional mean of Y when conditioning (restricting) on the the subpopulation given by X) (note the difference between the first (random) and the second (deterministic) equation – the conditional expectation E[Y|X] is random variable while E[Y|X = x] is not)

A little bit of confusion from the notation...

There is always a need to carefully distinguish between the theoretical and the empirical/data model – compare the following model formulations:

D Population model $Y = \mathbf{X}^{\top} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$

(a generic random vector $(Y, \boldsymbol{X}^{\top})^{\top} \in \mathbb{R}^{p+1}$ with the (joint) distribution function $F_{(Y, \boldsymbol{Y})}$)

D Empirical/data model $Y_i = \mathbf{X}_i^{\top} \boldsymbol{\beta} + \varepsilon_i$

(for the random sample $\{(Y_i, \mathbf{X}_i^{\top})^{\top}\}_{i=1}^n$ drawn from the same distribution $F_{(Y,\mathbf{X})}$)

Sometimes, there a lack of distinction between the generic random vector $(Y, \mathbf{X}^{\top})^{\top} \sim F_{(Y, \mathbf{X})}$ and its independent realizations – the sample $\{(Y_i, \mathbf{X}_i^{\top})^{\top}\}_{i=1}^n$

- □ Population (conditional expectation) random model $E[Y|X] = X^{\top}\beta$
- **D** Population (conditional exp.) non-random model $E[Y|X = x] = x^{\top}\beta$

□ Conditional expectation random (data point) model E[Y_i|X_i] = X_i^Tβ
 □ Conditional expectation random (all data) model E[Y|X] = Xβ

Multiple regression example

Principal goals of the multiple regression

Basically, all the same as in case of the ordinary regression...

- **\Box** Estimation of the unknown (vector) parameter $eta \in \mathbb{R}^{p}$
- **Estimation** of the (population) conditional mean E[Y|X = x]
- **Prediction** of a future outcome of Y_0 , for some given $X_0 = x_0 \in \mathbb{R}^p$
- **\Box** Forecasting outcomes of Y_0 given $X_0 = x_0$ (uncertainty / inference)

In addition, for $\beta \in \mathbb{R}^p$ it makes sense to ask for more...

- **D** Estimation and inference about some linear combinations $c^{\top}\beta$, $c \in \mathbb{R}^{p}$
- □ Multiple comparisons in terms of more linear combinations $\mathbb{C}\beta$, $\mathbb{C} \in \mathbb{R}^{q \times p}$

Least-squares vs. maximum likelihood

Least-squares estimation (LS) (generally no distributional assumptions)

- **Assumptions:** $\varepsilon \sim (0, \sigma^2)$, respectively $Y | \boldsymbol{X} \sim (\boldsymbol{X}^\top \beta, \sigma^2)$
- Convex minimization problem

$$\widehat{\beta} = \operatorname{Argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} \left(Y_{i} - \boldsymbol{X}_{i}^{\top} \beta \right)^{2}$$

Estimate for β : $\widehat{\beta} = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbf{Y}$

Maximum likelihood estimation (ML) (typically under the normal model)

- **Assumptions:** $\varepsilon \sim N(0, \sigma^2)$, respectively $Y | \mathbf{X} \sim N(\mathbf{X}^\top \beta, \sigma^2)$
- Convex maximization problem

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^{p}, \sigma^{2} > 0}{\operatorname{Argmax}} \left[-\frac{n}{2} \log(2\pi\sigma^{2}) - \frac{1}{2} \sum_{i=1}^{n} \frac{(\mathbf{Y}_{i} - \mathbf{X}_{i}^{\top}\beta)^{2}}{\sigma^{2}} \right]$$

Solution Estimate for β : $\widehat{\beta} = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbf{Y}$ **Let** Estimate for σ^2 : $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - X_i^\top \widehat{\beta})^2$

Statistical properties of the estimate \hat{eta}

■ The LS/ML estimate for
$$\beta \in \mathbb{R}^{p}$$
 is unbiased
 $E\widehat{\beta} = E[(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbf{Y}] = [(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}]E\mathbf{Y} = \beta, \quad \forall \beta \in \mathbb{R}^{p}$

The variance of the LS/ML estimate $\hat{\beta}$ is

$$\begin{aligned} & \operatorname{Var}\widehat{\boldsymbol{\beta}} = \operatorname{Var}\left[(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top} \boldsymbol{Y} \right] \\ &= (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top} \left[\operatorname{Var} \boldsymbol{Y} \right] \mathbb{X} (\mathbb{X}^{\top}\mathbb{X})^{-1} = \sigma^{2} (\mathbb{X}^{\top}\mathbb{X})^{-1} \end{aligned}$$

□ The LS/ML estimate $\hat{\beta}$ is BLUE (BLUE = Best Linear Unbiased Estimate – The Gauss-Markov Theorem)

D The distribution of the LS/ML estimate $\hat{\beta}$ is

- asymptotically normal for LSE (under some additional moment conditions)
- exactly normal for MLE (under the normal model assumption $\varepsilon \sim N(0, \sigma^2)$)

Statistical properties of the estimate $\widehat{\sigma^2}$

Unlike the LS estimation (where no parameter $\sigma^2 > 0$ is present in the minimization problem) the maximum likelihood estimation simultaneously provides also the estimate for $\sigma^2 > 0$

D The ML estimate for σ^2 is biased

$$E\widehat{\sigma^2} = E\left[\frac{1}{n}\sum_{i=1}^n (Y_i - \widehat{Y}_i)^2\right] = \cdots = \frac{n-p}{n}\sigma^2$$

D The unbiased estimate (so called REML) for σ^2 is

$$s^{2} = \frac{n}{n-p}\widehat{\sigma^{2}} = \frac{1}{n-p}\sum_{i=1}^{n}(Y_{i}-\widehat{Y}_{i})^{2} = \frac{1}{n-p}RSS$$

D The distribution of the estimate s^2 (properly scaled) is

$$\frac{s^2(n-p)}{\sigma^2} = \frac{RSS}{\sigma^2} \sim \chi^2_{n-p}$$

D Moreover, the ML estimates $\hat{\beta}$ and s^2 are independent

Jargon (overview for multiple regression)

- Fitted values ("estimates" for Y_i's): Ŷ_i = X_i[⊤]β̂
 (Ŷ = (Ŷ₁,...,Ŷ_n)[⊤] is a projection of Y into a *p*-dimensional subspace of ℝⁿ)
 Residuals: u_i = Y_i Ŷ_i
 (u_i are "estimates" for ε_i, projections of Y_i into orthogonal complement)
- □ Residual sum of squares (RSS): $\sum_{i=1}^{n} (Y_i \widehat{Y}_i)^2$ (the sum of squared residuals minimization criterion least squares)
- □ Residual variance: $\frac{1}{n-2} \sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$ (RSS divided by degrees of freedom) (the empirical estimate of the unknown variance of the error term $\sigma^2 > 0$)
- **Residual standard error (RSE)**: $\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(Y_i \widehat{Y}_i)^2}$ (estimate for the standard error resp. square root of residual variance)
- □ Total sum of squares (SST): $\sum_{i=1}^{n} (Y_i \overline{Y}_n)^2$ (the overall data variability with respect to Y when "scaled" by n p)
- □ Multiple R^2 value: $R^2 = 1 RSE/SST = (SST RSE)/SST$ (relative proportion of the variability explained by the model – the value (SST - RSE) represents the overall variability explained by the model and it is given relatively wrt the total variability in the denomitator – SST)

Multiple regression as orthogonal projections

Recall, that a squared matrix $\mathbb{P} \in \mathbb{R}^{n \times n}$ is called a projection matrix if it holds that $\mathbb{P}^2 = \mathbb{P}$ and the real matrix \mathbb{P} is an orthogonal projection matrix if, moreover, $\mathbb{P} = \mathbb{P}^{\top}$ (i.e., \mathbb{P} is symmetric)

- □ For a projection of any $x \in \mathbb{R}^n$ into a *p*-dimensional subspace spanned by the columns of X (typical notation $\mathcal{M}(X) \subseteq \mathbb{R}^n$), we can use the projection matrix (among other choices) $\mathbb{H} = \mathbb{X}(X^\top X)^{-1} X^\top$ (also called a hat matrix)
- □ For a projection of any $x \in \mathbb{R}^n$ into an (n p)-dimensional orthogonal complement of $\mathcal{M}(\mathbb{X})$ (typical notation $\mathcal{M}(\mathbb{X})^{\perp}$), we can use the projection matrix (again, among other choices) $\mathbb{P} = (\mathbb{I} \mathbb{H}) = (\mathbb{I} \mathbb{X}(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top})$

Gauss-Markov Theorem – formally

□ the vector of fitted values (projection of $\mathbf{Y} \in \mathbb{R}^n$ into $\mathcal{M}(\mathbb{X})$) can be obtained, using the projection matrix \mathbb{H} as $\widehat{\mathbf{Y}} = (\widehat{Y}_1, \dots, \widehat{Y}_n)^\top = \mathbb{H}\mathbf{Y}$

□ the vector of residuals $\boldsymbol{u} = (u_1, ..., n_n)^{\top}$ (projection of $\boldsymbol{Y} \in \mathbb{R}^n$ into $\mathcal{M}(\mathbb{X})^{\perp}$) can be obtained by the projection matrix \mathbb{P} as $\boldsymbol{u} = \mathbb{P}\boldsymbol{Y}$

Gauss-Markov Theorem

For a multiple regression model $\mathbf{Y} | \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbb{I})$, where $\beta \in \mathbb{R}^p$ and the model matrix $\mathbb{X} \in \mathbb{R}^{n \times p}$ is of a full rank and $\widehat{\beta}$ is the LS estimate of $\beta \in \mathbb{R}^p$, it holds that $\widehat{\theta} = \mathbb{C}\widehat{\beta}$ is the **best linear unbiased estimate** (BLUE) for the parameter $\theta = \mathbb{C}\beta \in \mathbb{R}^q$, for any matrix $\mathbb{C} \in \mathbb{R}^{q \times p}$.

Recall, that a parameter estimate $\hat{\theta}$ (of some unknown parameter $\theta \in \mathbb{R}^k$) based on a data vector $\mathbf{Y} \in \mathbb{R}$ is **BLUE** if and only if the following holds:

- lacksquare the estimate $\widehat{\pmb{ heta}}$ is linear in $\pmb{Y},$ meaning that $\widehat{\pmb{ heta}}=\mathbb{A}\pmb{Y}$
- I the estimate $\widehat{\theta}$ is unbiased for every $\theta \in \mathbb{R}^k$, meaning that $E\widehat{\theta} = \theta$
- □ for any matrix \mathbb{B} of the same dimensions as \mathbb{A} it holds that $Var\mathbb{B}Y Var\widehat{\theta} \ge 0$, meaning that the matrix $Var\mathbb{B}Y Var\widehat{\theta}$ is positive-semi-definite

Summary

- □ Multiple linear regression model for $Y \in \mathbb{R}$ and $X = (X_1, ..., X_p)^\top \in \mathbb{R}^p$ (Y is the dependent variable, the variable of interest; X are explanatory/independent variables)
- □ Linear regression provides a linear functional relationship between Y and X (it can be denoted as $Y \approx f(X)$, where f is linear in some parameters (not the regressors in X))
- **Expression** $Y \approx f(\mathbf{X})$ is approximate, Y is (given \mathbf{X}) measured with errors (using an explicit error term, the population model is expressed as $Y = f(\mathbf{X}) + \varepsilon$)
- □ The expression is exact when using some population characteristic of $Y \in \mathbb{R}$ (the simplest population characteristic is the mean (given X), thus E[Y|X] = f(X))
- □ Linear regression means that $f(\cdot)$ is linear in some set of parameters $\beta \in \mathbb{R}^q$ (the set of parameters $\beta \in \mathbb{R}^q$ is typically unknown and not necessarily it holds that p = q)

Example

- lacksquare continuous dependent (random) variable $Y\in\mathbb{R}$
- \square $p \in \mathbb{N}$ independent covariates $\pmb{X} \in \mathbb{R}^p$ (random variables as well)

Linear regression model (with unknown parameters $\beta \in \mathbb{R}^q$)

 $Y = \beta_1 t_1(\boldsymbol{X}) + \beta_2 t_2(\boldsymbol{X}) + \dots + \beta_q t_q(\boldsymbol{X}) + \varepsilon$

for the set of unknown parameters $\beta = (\beta_1, \ldots, \beta_q)^\top \in \mathbb{R}^q$ and some known transformation functions $t_j : \mathbb{R}^p \to \mathbb{R}$, for $j = 1, \ldots, q$, such that the transformations t_1, \ldots, t_q do not depend on the unknown parameters

(thus, the regression model is, indeed, linear in β_1, \ldots, β_q no matter what is the underlying functional form of the known transformation functions t_1, \ldots, t_q) and it is also clear that it is not needed that p = q (but it is typically assumed so for simplicity)