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Multiple regression model
multivariate predictor variable

NMFM 334 | Lecture 4 1 / 14



Overview: Simple (ordinary) linear regression
❏ Theoretical (population model) for Y , X ∈ R

Y = a + bX + ε

❏ Population model for a random sample S = {(Yi , Xi ); i = 1, . . . , n}

Yi = a + bXi + εi

❏ Alternatively (under the assumption of Eε = 0) we can write

E [Y |X ] = a + bX or E [Y |X = x ] = a + bx

Principal goals:
❏ Estimation of the unknown parameters a, b ∈ R
❏ Estimation of distributional characteristics of Y |X – e.g., E [Y |X = x ]
❏ Prediction of a future outcome of Y0, for an observed X0 = x0 (known)
❏ Forecasting outcomes of Y0 given X0 = x0 (uncertainty statement)
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Generalization: Multiple regression model

❏ Theoretical (population model) for Y ∈ R and X ∈ Rp and β ∈ Rp

Y = a + X⊤β + ε

which can be also expressed as Y = (1, X⊤)β⋆ + ε, for β⋆ ∈ Rp+1

(thus, the first element in the covariate vector X is (be default) equal to one – meaning that
there is always an intercept parameter a ∈ R included in the regression model)

❏ Thus, for a random sample S = {(Yi , X⊤
i )⊤; i = 1, . . . , n} from F(Y ,X),

the corresponding empirical/sample model can be expressed as

Yi = X⊤
i β + εi

with the intercept parameter a ∈ R being implicitly included in the model
(and for some more straightforward notation we will use the notation that β ∈ Rp and, also,
Xi ∈ Rp for all i = 1, . . . , n) – thus Xi1 = 1 with probability 1)
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Matrix formulation of the sample model

❏ For more compact notation the empirical/data model can be expressed as

Y = Xβ + ε

where the response vector Y = (Y1, . . . , Yn)⊤ ∈ Rn, the model/design
matrix X ∈ Rn×p, and the error vector ε = (ε1, . . . , εn)⊤

(note, that X = (X1, . . . , Xn)⊤ or, respectively, the model/design/regression matrix can be
also expressed in a form X = (Xij )n,p

i,j=1 )

❏ Similarly as before, (under the assumption Eε = 0) the population models

E [Y |X] = X⊤β or E [Y |X = x] = x⊤β

provide expressions for the theoretical (population) mean within some
specific subpopulation (defined by values in X or x – the conditional mean
of Y when conditioning (restricting) on the the subpopulation given by X)
(note the difference between the first (random) and the second (deterministic) equation –
the conditional expectation E [Y |X] is random variable while E [Y |X = x] is not)
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A little bit of confusion from the notation...
There is always a need to carefully distinguish between the theoretical and the
empirical/data model – compare the following model formulations:

❏ Population model Y = X⊤β + ε
(a generic random vector (Y , X⊤)⊤ ∈ Rp+1 with the (joint) distribution function F(Y ,Y ))

❏ Empirical/data model Yi = X⊤
i β + εi

(for the random sample {(Yi , X⊤
i )⊤}n

i=1 drawn from the same distribution F(Y ,X))

Sometimes, there a lack of distinction between the generic random vector
(Y , X⊤)⊤ ∼ F(Y ,X) and its independent realizations – the sample {(Yi , X⊤

i )⊤}n
i=1

❏ Population (conditional expectation) random model E [Y |X] = X⊤β

❏ Population (conditional exp.) non-random model E [Y |X = x] = x⊤β

❏ Conditional expectation random (data point) model E [Yi |Xi ] = X⊤
i β

❏ Conditional expectation random (all data) model E [Y |X] = Xβ
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Multiple regression example

X1

X2

Y
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Principal goals of the multiple regression

Basically, all the same as in case of the ordinary regression...
❏ Estimation of the unknown (vector) parameter β ∈ Rp

❏ Estimation of the (population) conditional mean E [Y |X = x]
❏ Prediction of a future outcome of Y0, for some given X0 = x0 ∈ Rp

❏ Forecasting outcomes of Y0 given X0 = x0 (uncertainty / inference)

In addition, for β ∈ Rp it makes sense to ask for more...
❏ Estimation and inference about some linear combinations c⊤β, c ∈ Rp

❏ Multiple comparisons in terms of more linear combinations Cβ, C ∈ Rq×p
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Least-squares vs. maximum likelihood
❏ Least-squares estimation (LS) (generally no distributional assumptions)

❏ Assumptions: ε ∼ (0, σ2), respectively Y |X ∼ (X⊤β, σ2)
❏ Convex minimization problem

β̂ = Argmin
β ∈ Rp

n∑
i=1

(
Yi − X⊤

i β
)2

❏ Estimate for β: β̂ = (X⊤X)−1X⊤Y

❏ Maximum likelihood estimation (ML) (typically under the normal model)

❏ Assumptions: ε ∼ N(0, σ2), respectively Y |X ∼ N(X⊤β, σ2)
❏ Convex maximization problem

β̂ = Argmax
β ∈ Rp , σ2 > 0

[
−

n
2

log(2πσ2) −
1
2

n∑
i=1

(Yi − X⊤
i β)2

σ2

]
❏ Estimate for β: β̂ = (X⊤X)−1X⊤Y
❏ Estimate for σ2: σ̂2 = 1

n
∑n

i=1(Yi − X⊤
i β̂)2
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Statistical properties of the estimate β̂

❏ The LS/ML estimate for β ∈ Rp is unbiased

E β̂ = E
[
(X⊤X)−1X⊤Y

]
=

[
(X⊤X)−1X⊤]

EY = β, ∀β ∈ Rp

❏ The variance of the LS/ML estimate β̂ is

Var β̂ = Var
[
(X⊤X)−1X⊤Y

]
= (X⊤X)−1X⊤[

VarY
]
X(X⊤X)−1 = σ2(X⊤X)−1

❏ The LS/ML estimate β̂ is BLUE
(BLUE ≡ Best Linear Unbiased Estimate – The Gauss-Markov Theorem)

❏ The distribution of the LS/ML estimate β̂ is
– asymptotically normal for LSE (under some additional moment conditions)
– exactly normal for MLE (under the normal model assumption ε ∼ N(0, σ2))
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Statistical properties of the estimate σ̂2

Unlike the LS estimation (where no parameter σ2 > 0 is present in the
minimization problem) the maximum likelihood estimation simultaneously
provides also the estimate for σ2 > 0

❏ The ML estimate for σ2 is biased

E σ̂2 = E
[ 1

n

n∑
i=1

(Yi − Ŷi )2
]

= · · · = n − p
n σ2

❏ The unbiased estimate (so called REML) for σ2 is

s2 = n
n − p σ̂2 = 1

n − p

n∑
i=1

(Yi − Ŷi )2 = 1
n − p RSS

❏ The distribution of the estimate s2 (properly scaled) is

s2(n − p)
σ2 = RSS

σ2 ∼ χ2
n−p

❏ Moreover, the ML estimates β̂ and s2are independent
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Jargon (overview for multiple regression)
❏ Fitted values (“estimates” for Yi ’s): Ŷi = X⊤

i β̂

(Ŷ = (Ŷ1, . . . , Ŷn)⊤ is a projection of Y into a p-dimensional subspace of Rn)

❏ Residuals: ui = Yi − Ŷi
(ui are “estimates” for εi , projections of Yi into orthogonal complement)

❏ Residual sum of squares (RSS):
∑n

i=1(Yi − Ŷi )2

(the sum of squared residuals – minimization criterion – least squares)

❏ Residual variance: 1
n−2

∑n
i=1(Yi − Ŷi )2 (RSS divided by degrees of freedom)

(the empirical estimate of the unknown variance of the error term σ2 > 0)

❏ Residual standard error (RSE):
√

1
n−2

∑n
i=1(Yi − Ŷi )2

(estimate for the standard error – resp. square root of residual variance )
❏ Total sum of squares (SST):

∑n
i=1(Yi − Y n)2

(the overall data variability with respect to Y when “scaled” by n − p)
❏ Multiple R2 value: R2 = 1 − RSE/SST = (SST − RSE)/SST

(relative proportion of the variability explained by the model – the value
(SST − RSE) represents the overall variability explained by the model and it is
given relatively wrt the total variability in the denomitator – SST )
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Multiple regression as orthogonal projections

Recall, that a squared matrix P ∈ Rn×n is called a projection matrix if it holds that P2 = P and
the real matrix P is an orthogonal projection matrix if, moreover, P = P⊤ (i.e., P is symmetric)

❏ For a projection of any x ∈ Rn into a p-dimensional subspace spanned by the
columns of X (typical notation M(X) ⊆ Rn), we can use the projection matrix
(among other choices) H = X(X⊤X)−1X⊤ (also called a hat matrix)

❏ For a projection of any x ∈ Rn into an (n − p)-dimensional orthogonal
complement of M(X) (typical notation M(X)⊥), we can use the projection
matrix (again, among other choices) P = (I − H) = (I − X(X⊤X)−1X⊤)
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Gauss-Markov Theorem – formally
❏ the vector of fitted values (projection of Y ∈ Rn into M(X)) can be

obtained, using the projection matrix H as Ŷ = (Ŷ1, . . . , Ŷn)⊤ = HY
❏ the vector of residuals u = (u1, . . . , nn)⊤ (projection of Y ∈ Rn into

M(X)⊥) can be obtained by the projection matrix P as u = PY

Gauss-Markov Theorem
For a multiple regression model Y |X ∼ (Xβ, σ2I), where β ∈ Rp and the model matrix
X ∈ Rn×p is of a full rank and β̂ is the LS estimate of β ∈ Rp , it holds that θ̂ = Cβ̂ is
the best linear unbiased estimate (BLUE) for the parameter θ = Cβ ∈ Rq , for any
matrix C ∈ Rq×p .

Recall, that a parameter estimate θ̂ (of some unknown parameter θ ∈ Rk) based on
a data vector Y ∈ R is BLUE if and only if the following holds:

❏ the estimate θ̂ is linear in Y , meaning that θ̂ = AY
❏ the estimate θ̂ is unbiased for every θ ∈ Rk , meaning that E θ̂ = θ

❏ for any matrix B of the same dimensions as A it holds that VarBY − Var θ̂ ≥ 0, meaning
that the matrix VarBY − Var θ̂ is positive-semi-definite
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Summary
❏ Multiple linear regression model for Y ∈ R and X = (X1, . . . , Xp)⊤ ∈ Rp

(Y is the dependent variable, the variable of interest; X are explanatory/independent variables)

❏ Linear regression provides a linear functional relationship between Y and X
(it can be denoted as Y ≈ f (X), where f is linear in some parameters (not the regressors in X))

❏ Expression Y ≈ f (X) is approximate, Y is (given X) measured with errors
(using an explicit error term, the population model is expressed as Y = f (X) + ε)

❏ The expression is exact when using some population characteristic of Y ∈ R
(the simplest population characteristic is the mean (given X), thus E [Y |X] = f (X))

❏ Linear regression means that f (·) is linear in some set of parameters β ∈ Rq

(the set of parameters β ∈ Rq is typically unknown and not necessarily it holds that p = q)

❏ Example
❏ continuous dependent (random) variable Y ∈ R
❏ p ∈ N independent covariates X ∈ Rp (random variables as well)

❏ Linear regression model (with unknown parameters β ∈ Rq)
Y = β1t1(X) + β2t2(X) + · · · + βqtq(X) + ε

for the set of unknown parameters β = (β1, . . . , βq)⊤ ∈ Rq and some
known transformation functions tj : Rp → R, for j = 1, . . . , q, such that
the transformations t1, . . . , tq do not depend on the unknown parameters
(thus, the regression model is, indeed, linear in β1, . . . , βq no matter what is the
underlying functional form of the known transformation functions t1, . . . , tq) and it is
also clear that it is not needed that p = q (but it is typically assumed so for simplicity)
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