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Linear regression model
with one predictor/explanatory variable
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Simple supervised learning

❏ Linear regression is a simple version of supervised learning...
(fitting algorithms are trained on labeled data – the label is the information in Y )

❏ The simplest regression model fits a straight line through the data...
(linear regression, classification, logistic regression, decision trees, SVM, NN, ... )

❏ Although, the true underlying model is hardly a linear line...
(the model fitted is only a (simple) approximation of the unknown (more complex) truth)

Ordinary (simple) linear regression
❏ The dependent(random) variable – label Y – is assumed to be continuous
❏ The explanatory variable X ∈ R can be either continuous or discrete

❏ The main goal is to learn what is the underlying relationship Y ≈ f (X)
where, in addition, we assume that f ∈ C = {f (x) = a + bx ; a, b ∈ R}
(meaning that the unknown true function f belongs to a specific class of functions)
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Simple (ordinary) linear regression model
❏ Theoretical (population model)

Y = a + bX + ε

❏ Random sample from the population (i.e., a joint distribution F(Y ,X)):

S = {(Yi , Xi ); i = 1, . . . , n}

❏ Empirical (data) model counterpart

Yi = a + bXi + εi i = 1, . . . , n ∈ N

Principal goals:
❏ Estimation of the unknown parameters a, b ∈ R
❏ Estimation of distributional characteristics of Y |X – e.g., E [Y |X = x ]
❏ Prediction of a future outcome of Y0, for an observed X0 = x0 (known)
❏ Forecasting outcomes of Y0 given X0 = x0 (uncertainty statement)

↪→ both, the estimation and the prediction can be given in terms of some specific point (e.g., point estimate, point prediction) but the
forecasting is typically given in terms of some region (interval estimate, interval prediction respectively) with a given credibility guarantees
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Linear regressing line

❏ Quality of the fit – the “goodness-of-fit” criterion:
❏ Mean Squared Error: f = Arg ming∈C E [Y − g(X)]2 (theoretical functional)

❏ Least Squares: f̂n = Arg ming∈C
1
n

∑n
i=1[Yi − g(Xi )]2 (empirical functional)

❏ Specific class of functions C = {f (x); f (x) = a + bx ; a, b ∈ R}
❏ linear line with the intercept parameter a and the slope parameter b
❏ for b = 0 everything reduces to a simple mean (sample average)

❏ How to find f̂n ∈ C if we only have the data {(Yi , Xi ); i = 1, . . . , n}?

❏ restricting on C we are looking for â, b̂ ∈ R, such that f̂n(x) = â + b̂x
❏ solving a convex minimization problem

min
a,b∈R

1
n

n∑
i=1

[Yi − (a + bXi )]2 ≡ min
a,b∈R

L(a, b, S)

↪→ the notation L(a, b, S) is used to denote a general (arbitrary) loss function L(·), the set of unknown parameters a, b ∈ R
and, also, the available dataset S = {(Yi , Xi ); i = 1, . . . , n}. The loss function L(·) can be, however, defined differently.
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Least squares solution
❏ Convex minimization problem

❏ minimization of a convex function
❏ minimization with respect to a convex set

❏ Normal equations (score equations)
❏ partial derivative of L(a, b, S) with respect to the argument a ∈ R
❏ partial derivative of L(a, b, S) with respect to the argument b ∈ R
❏ both partial derivatives are set to be equal to zero and solved for a, b ∈ R

❏ Solutions of the normal equations
❏ Intercept parameter estimate:

â = Y n − b̂Xn

❏ Slope parameter estimate:

b̂ =

∑n
i=1(Yi − Y n)(Xi − Xn)∑n

i=1(Xi − Xn)2
=

Ĉov(Y , X)
V̂arX

❏ the convexity of the optimization problem guarantees a unique solution
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Least squares solution – visualization
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❏ random sample from F(Y ,X) — the observed data {(Yi , Xi ); i = 1, . . . , n}
❏ estimated regression model f̂ (x) = â + b̂x (y = 5.0 + 2.0x)

❏ estimated intercept parameter â ∈ R (â = 5.048)

❏ estimated slope parameter b̂ ∈ R (b̂ = 2.012)

❏ the “unknown” true regression model is f (x) = 5 + 2x
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Some useful jargon
❏ Fitted values: Ŷi = â + b̂Xi

(Ŷi are “estimates” for Yi values, projected Yi values onto a line â + b̂x)

❏ Residuals: ui = Yi − Ŷi
(ui are “estimates” for εi , projections of Yi into orthogonal complement)

❏ Residual sum of squares (RSS):
∑n

i=1(Yi − Ŷi )2

(the sum of squared residuals – minimization criterion – least squares)

❏ Residual variance: 1
n−2

∑n
i=1(Yi − Ŷi )2 (RSS divided by degrees of freedom)

(the empirical estimate of the unknown variance of the error term)

❏ Residual standard error (RSE):
√

1
n−2

∑n
i=1(Yi − Ŷi )2

(estimate for the standard error – resp. square root of residual variance )
❏ Total sum of squares (SST):

∑n
i=1(Yi − Y n)2

(the overall data variability with respect to Y when “scaled” by n − 1)
❏ Multiple R2 value: R2 = 1 − RSE/SST = (SST − RSE)/SST

(relative proportion of the variability explained by the model – the value
(SST − RSE) represents the overall variability explained by the model and it is
given relatively wrt the total variability in the denomitator – SST )

NMFM 334 | Lecture 3 7 / 16



Regression example
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Projection from 3D onto 2D – illustration

❏ For three data points only, (Y1, X1), (Y2, X2) and (Y3, X3), the whole
dataset can be represented in terms of two points in the three dimensional
(3D) real space, y = (Y1, Y2, Y3)⊤ ∈ R3 and x = (X1, X2, X3)⊤ ∈ R3

❏ the underlying model is (still) the simple regression line f (x) = a + bx
❏ a geometric interpretation of the regression is a projection from R3 into R2
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Statistical properties of the estimates â and b̂

❏ The underlying model: Y = a + bX + ε (i.e., straight line)

❏ Assumptions: Eε = 0 and Varε = σ2 < ∞ (random error properties)
Obtaining now the random sample (Yi , Xi ) with at least two unique values of Xi for
i = 1, . . . , n (because the straight line is determined by two unique points) it holds,
under the assumptions above, that

1 Unbiased estimates: Eâ = a and Eb̂ = b for all a, b ∈ R
2 Linear estimates: â and b̂ can be expressed as linear functions of Yi

3 Best estimates: â and b̂ are the best linear estimates in terms of the
mean squared error criterion

❏ The result is also known as the Gauss–Markov Theorem – the estimates are so
called BLUE – Best Linear Unbiased Estimates (a complete formal proof will be
given for a multiple linear regression model with multiple predictor variables)
(BLUE – nejlepší nestranný lineárný odhad)
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Maximum likelihood estimation
❏ The underlying model: Y = a + bX + ε (i.e., straight line)
❏ Assumption: ε ∼ N(0, σ2) (distributional properties of ε)

Obtaining again the random sample (Yi , Xi ) with at least two unique values of Xi for
i = 1, . . . , n it holds, under the assumptions above, that

❏ Intercept and slope parameter estimates are equal to

â = Y n − b̂X n and b̂ =
∑n

i=1(Yi − Y n)(Xi − X n)∑n
i=1(Xi − X n)2

❏ Variance parameter estimate:

σ̂2 = 1
n

n∑
i=1

(Yi − (â + b̂Xi )2)

❏ Moreover

â ∼ N
(

a, σ2
[

1
n + Xn∑

i
(Xi −Xn)2

])
and b̂ ∼ N

(
b, σ2∑

i
(Xi −Xn)2

)
Note that the estimates â and b̂ are linear functions of Y1, . . . , Yn and the distribution statements above
are considered conditionally on X1, . . . , Xn
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Likelihood and log-likelihood

❏ density of a normal N(µ, σ2) distribution

f (x , µ, σ2) = 1√
2πσ2

· exp
{

− (x − µ)2

2σ2

}

❏ likelihood L(µ, σ2, S) for the data S = {(Yi , Xi ); i = 1, . . . , n}

L(µ, σ2, S) =
n∏

i=1

[
1√

2πσ2
· exp

{
− (Yi − (a + bXi ))2

2σ2

}]

❏ the corresponding log-likelihood function ℓ(µ, σ2, S)

ℓ(µ, σ2, S) = (−n/2) log(2πσ2) −
n∑

i=1

(Yi − (a + bXi ))2

2σ2

↪→ note the notation difference between the likelihood L(·), log-likelihood ℓ(·), and a general loss function L(·)
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Statistical inference in a simple model

❏ Confidence intervals
(random interval which covers unknown but non-random quantity with a pre-defined probability)

❏ typically for the unknown parameters a, b ∈ R
❏ also for the conditional mean parameter µx = E [Y |X = x ]
❏ or some reasonable linear combination, e.g. c1a + c2bx , for c1, c2 ∈ R

❏ Hypothesis tests
(null vs. alternative hypothesis about the unknown but non-random parameters)

❏ typically in the form H0 : c1a + c2bx = d against a general (both-sided)
alternative HA : c1a + c2bx ̸= d

❏ performed in terms of a test statistic which is sensitive (large) under the
violation of the null hypothesis H0
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Model utilization for prediction

❏ Point prediction
(one realization of the random variable to somehow characterize another random quantity)

❏ what can be the expected outcome/realization of Y if we restrict to
a sub-population given by X = x0

❏ typically, Y0 (an outcome of Y when X = x0) is predicted as the estimated
conditional mean of Y given X = x0 (i.e., Ŷ0 = â + b̂x0)

❏ other characteristics can be used of course

❏ Interval prediction
(random interval which covers unknown but random quantity with a pre-defined probability)
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Binary explanatory variable
❏ Until now, the explanatory variable X ∈ R was assumed to be

a continuous one (taking infinitely/uncountable many values). The
regression model f (x) = a + bx can be, however, also considered for
a binary variable X (taking only two different values)

❏ Let X takes only values one (e.g., TRUE) and zero (e.g., FALSE)
❏ For X = 0, the model reduces to E [Y |X = 0] = f (0) = a

(i.e., a ∈ R stands for the mean of the sub-population for which we have FALSE)

❏ For X = 1, the model reduces to E [Y |X = 1] = f (1) = a + b
(i.e., a + b ∈ R stands for the the mean of the sub-population for which we have TRUE)

❏ There are infinitely many different parametrizations that can be used to
encode the binary variable X — for instance, it can take two values ±1
(thus, a − b stands for the mean of the first and a + b for the second sub-population)

❏ In other words, the binary explanatory variable X reduces the ordinary
linear regression model into a standard two sample problem of the form

Y = a + bI{TRUE} + ε = a + bI{Xi =1} + ε = . . .
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Summary

❏ the dependent variable Y and the explanatory variable X are assumed to
follow (jointly) some (known/unknown) distribution F(Y ,X)(y , x)

❏ simple linear regression model Y = a + bX + ε (population version)
(for a continuous response Y ∈ R and continuous or binary X ∈ R)

❏ random sample (Yi , Xi ), i = 1, . . . , n =⇒ Yi = a + bXi + εi (data model)
(realizations Yi ∈ R and Xi ∈ R drawn from a joint distribution of (Y , X))

❏ estimates for the unknown parameters a, b ∈ R via convex minimization
(minimization based on the mean squared error/least squares respectively)

❏ under the normal model the estimation based on the maximum likelihood
(distribution properties of the estimates â and b̂ given straightforwardly)

❏ typical inference regarding the parameters a, b ∈ R or E [Y |X = x ]
(performed in terms of confidence intervals or statistical tests respectively)

❏ utilization of the regression model for estimation/prediction/forecasting
(the application is relatively straightforward due to intuitive parameters)
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