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Motivation

Why? What is (linear) regression?

“When a numerical criterion variable is to be predicted from other
numerical predictor variables, proper (linear/regression) models
outperform (human) intuition.”

Paul Meehl (1954)
Clinical versus statistical prediction: A theoretical analysis and a Review of the Evidence

dynamic, global, sensible, advanced, delicate, holistic, nice,
rich, pure, configural, organized, sophiticated, natural, realis-
tic, understandable, exemplary, vital;

mechanical, local, dashed, too simple, unreal, artificial, ran-
dom, incomplete, trivial, pedant, trivial, static, forced, shal-
low, academic, scientific, blind;
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Motivation

Regression (models) applied all around us ...
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Motivation

Regression models applied in practice
❏ Black boxes: lm(), PROC REG, XLSTAT, LinearModel.fit();

https://en.wikipedia.org/wiki/List_of_statistical_packages

❏ Inside of the black box there is a complex and quite sophisticated
mathematical and statistical theory which makes the output reliable and
useful if and only if the input data suits the theory in the box.
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Motivation

Outline

1 Motivation & some historical background
Somehow, it was all a little bit different at the beginning...
A brief look into the historical backgrounds of the regression.

2 Basic principles of the theoretical background
All we need in regression is conveniently concentrated in three main
pivots: cognition, calibration, and prediction.

3 Common problems when fitting a regression model
What can actually go wrong at the end? A few examples of incorrect
applications of the linear regression framework.
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Motivation

Regression: At the very beginning ...
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Motivation

Regression: Pioneer Francis Galton
❏ The British Association for the Advancement of Science

Presidential address (1885): ”Regression toward mediocrity in hereditary stature”
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Motivation

Regression: Regressing towards mediocrity
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Motivation

Regression: Dependent vs. independent
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Motivation

Regression: General concept

❏ An accidental word invented by Francis Galton (1822 – 1911) because the
heights of sons, while following the tendency of their parents (tall parents
have tall sons, small parents small sons), tend to return – “regress” –
towards the mediocrity/median/average (population stability).

❏ Nowadays, ”regression” is understood as a technique for fitting functional
relationships (not necessarily linear) to data (regardless of whether the
slope is less or greater than 1).

❏ Some sources understand regression as a study of the mean (expectation)
conditionally on predictors. Our understanding is broader – beyond
conditional expectations, and beyond least squares.

❏ The primary goal of regression is to understand, as far as possible
with the available data, how the conditional distribution of the
response varies across subpopulations determined by possible values
of the predictor(s) (repeating observations under different conditions).

(R. D. Cook and S. Weisberg, Applied Regression Including Computing and Graphics, p. 27)
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Linear regression models in real data applications

Regression: Three main tasks of regression

❏ Cognition – understanding the given data
❏ What data actually is? What is the nature of data?
❏ How data is collected and represented?
❏ How data is connected/shared/stored/integrated?

❏ Calibration – quantification of the relationship
❏ What is our believe about the underlying data structure?
❏ What methodology should be applied to access the information in data?
❏ Which (regression) model is suitable for the data generation?

❏ Prediction/forecasting future observations
❏ Can the model be utilized for prediction/forecast?
❏ What is the model potential in prediction/forecast?
❏ What is the reliability of the prediction/forecast?
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Linear regression models in real data applications

1. Cognition: Understanding the data

Canada : USA (3:2) ot | Rogers Arena, Vancouver, BC
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Linear regression models in real data applications

Understanding the data: Anscombe’s quartet
Francis John Anscombe (1918 – 2001)

English statistician interested in statistical computing (“a computer should make
both calculations and graphs”) who illustrated the importance of plotting the data
with four datasets now known as Anscombe’s quartet.
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Linear regression models in real data applications

Anscombe’s quartet: Sample characteristics
dataset mean X |Y median X |Y sd X |Y cor(X , Y )
I 9.00 | 7.50 9.00 | 7.58 3.31 | 2.03 0.81
II 9.00 | 7.50 9.00 | 8.14 3.31 | 2.03 0.81
III 9.00 | 7.50 9.00 | 7.11 3.31 | 2.03 0.81
IV 9.00 | 7.50 8.00 | 7.04 3.31 | 2.03 0.81

regression E [Y |X ] = 3.00 + 0.49X
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Linear regression models in real data applications

2. Calibration: Model specification (linearity)
❏ Linear regression model: Where the linearity comes from?

❏ Regression is about fitting functional relationships within the data, not
geometric objects (not ”fitting a line” through data).

❏ There is a lot of geometry in regression, but of a high-dimensional nature.
(projections within Rn dimensional linear space into a finite dimensional subspace)

15 / 41
NMFM 334 | Lecture 1

▲



Linear regression models in real data applications

2. Calibration: Model specification (linearity)
❏ Linear regression model: Where the linearity comes from?

❏ Regression is about fitting functional relationships within the data, not
geometric objects (not ”fitting a line” through data).

❏ There is a lot of geometry in regression, but of a high-dimensional nature.
(projections within Rn dimensional linear space into a finite dimensional subspace)

15 / 41
NMFM 334 | Lecture 1

▲



Linear regression models in real data applications

2. Calibration: Model specification (parametric structure)
Y = β0 + β1X + ε

E [Y |x ] = β0 + β1x
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❏ Infinitely many options how to define the underlying (parametric) structure
of the linear regression model using the given data points only;
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Linear regression models in real data applications

2. Calibration: Pioneers before least squares

o Roger Cotes (1682 – 1716) o Tobias Mayer (1723 – 1762) o Roger Joseph Boscovich (1711 – 1787) o Pierre-Simon Laplace (1749–1827)

❏ 1722 – combination of different observations taken under the same conditions instead of
trying one’s best to observe a single observation accurately (method of averages);

❏ 1750 – studying the librations of the moon in 1750 by Tobias Mayer and exploring the
motion of Jupiter and Saturn by Laplace;

❏ 1757 – combination of different observations taken under different conditions to study the
shape of the earth by Boscovich (least absolute deviations);

❏ 1799 – combination of the method with a symmetric two-sided exponential distribution by
Laplace for studying the same problem as Boscovich (discovering median instead of average);
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Linear regression models in real data applications

2. Calibration: Model estimation approaches

❏ Method of averages – multiple observations of the same event observed
with random error rather than just one precise measurement;

❏ Least absolute deviation – ancient method developed by Roger Joseph
Boscovich in 1757 (about 50 years before the least squares);

❏ Least squares – developed in 19th century (Legendre in 1805 and Gauss
in 1809) for describing the behavior of celestial bodies used for astronomy,
ships’ navigation, and geodesy – connection with the normal distribution;

❏ Maximum likelihood – first ideas by Bernoulli in 1713 for analyzing
Bernoulli trials, however, its widespread use arose between 1912 and 1922
due to Ronald Fisher;

❏ Robust estimation – estimation approach less sensitive to outlying
observations, developed by Huber in 1964;

❏ Other methods – for instance, based on different risk assessment, atomic
pursuit estimation and sparsity, non-convex problems;
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Linear regression models in real data applications

Calibration by the method of least squares

Adrien-Marie Legendre (1752 – 1833) Johann Carl Friedrich Gauss (1777 – 1855)

❏ Legendre used the technique for fitting linear equations to data while
demonstrating the new method by analyzing the same data as Laplace for
the shape of the earth. The method is described as an algebraic procedure.

❏ Gauss claimed to know the method since 1795. He connected the method
of least squares with the principles of the theory of probability and defined
the estimation method that minimizes the error – normal distribution.
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Linear regression models in real data applications

Proving the least squares: Ceres rediscovery
❏ Italian astronomer Giuseppe Piazzi discovered Ceres on 1st January 1801 and

followed it for 40 days before it was lost in the glare of the sun – until the last
observation (out of 24) taken on 11 February 1801.

❏ Given the data, astronomers desired to determine the location of Ceres after it
emerged from behind the sun without solving Kepler’s complicated nonlinear
equations of planetary motion.

❏ Using the information published in Monatliche Correspondenz in September
1801, J.C.F.Gauss (24 years old at that time) was the only one to successfully
predicted the Ceres position.

❏ Hungarian astronomer Heinrich W. M. Olbers found Ceres at the predicted
location on 31st December 1801.
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Linear regression models in real data applications

Calibration by the method of least squares
Y = β0 + β1X + ε

E [Y |x ] = β0 + β1x
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Linear regression models in real data applications

Calibration by the method of least squares
Yi = β0 + β1Xi + εi
↪→ for all i = 1, . . . , n
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Linear regression models in real data applications

Calibration by the method of least squares Y1
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Linear regression models in real data applications

Calibration by the method of least squares
Y = Xβ + ε
Y ∈ Rn, β ∈ R2
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Linear regression models in real data applications

Calibration by the method of least squares

Y = model + ε
Y ∈ Rn, β ∈ R2
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Linear regression models in real data applications

Calibration by the method of least squares

Y = model + error
Y ∈ Rn, β ∈ R2
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Linear regression models in real data applications

Calibration by the method of least squares
Y = PY + (I − P)Y

Y ∈ Rn, β ∈ R2
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Calibration by the method of least squares
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Calibration by the method of least squares
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Linear regression models in real data applications

Calibration by the method of least squares
❏ The model parameters β = (β0, . . . , βp)⊤ ∈ Rp+1 are obtained/estimated

by solving the minimization problem

β̂n = Argmin
β ∈ Rp+1

∥Y − Xβ∥2
2

❏ It is easy to verify that this is a convex minimization problem – the
effective solution exists and it can be obtained in an explicit form;

❏ Taking partial derivatives with respect to β0, . . . , βp and setting the
derivatives to be equal to zero, the system of linear equations is obtains:

X⊤Xβ = X⊤Y

❏ If the matrix X⊤X is invertible, then the solution is explicitly expressed as

β̂n =
(
X⊤X

)−1X⊤Y

❏ The estimated model Xβ̂n is actually a projection into a linear subspace
generated by the columns of the matrix X (i.e. P = X(X⊤X)−1X⊤).
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Linear regression models in real data applications

Some alternative calibration techniques
❏ However, we can still do better... (SVD, EIV);
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Linear regression models in real data applications

Probabilistic model and the role of statistics

For practical utilization of the model (linear regression) we need much
more than just some algebraic calculations, partial derivatives, and
numerical algorithms to find the solution... The goal is to do inference!

❏ Probabilistic model (usually imposed on the error terms)

❏ this allows to derive some useful properties for β̂n (the model);
❏ the most common probabilistic model: the normal regression model;
❏ BLUE, consistency, normality or asymptotic normality, etc.;

❏ Statistical data which corresponds with the underlying theory
❏ not the data should be enhanced but the model must suit the data;
❏ various statistical tools to verify underlying theoretical assumptions;
❏ this is, however, not performed by the black-box software automatically!
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Linear regression models in real data applications

3. Prediction/Forecasting: Model utilization

”The regression model describes the relationship between one or more ’input’ variables
and an ’output’ variable. It gives us an equation to predict values for the ’output’
variable, by plugging in the corresponding values for the ’input’ variables.”

❏ Prediction
Formal statement which can be validated or falsified with just one single
observation (the prediction was true or false);

❏ A calibrated regression model is needed to make a prediction;
❏ Algebraic procedures and numerical algorithms needed to calibrate model;

❏ Forecasting
Multiple observations are needed to determine confidence level – it is
characterized by calculating probabilities;

❏ The regression model and the nature of the data is needed for forecasting;
❏ Probability theory and statistical inference tools!
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Linear regression models in real data applications

Regression: Some useful jargon
❏ If we believe to know the underlying model – we believe in some specific

form of an analytic functional relationship which we know up to some few
values of parameters – then the regression is called parametric;

❏ Otherwise, the regression is called nonparametric;

❏ If the unknown parameters enter the model in a linear way, we speak
about linear regression.

❏ Otherwise, we speak about nonlinear regression;

❏ A linear regression is called simple if we fit a linear dependence of a
response on just one single predictor;

❏ Otherwise, the linear regression is called multiple;

❏ If we believe that the nature of the data follows the normal distribution,
we speak about normal linear regression;

❏ Otherwise, the regression is general;
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Common problems
when fitting regression models
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Hidden catches in regression models

What can go wrong in regression?

❏ Model specification
(incorrect specification of the unknown underlying structure)

❏ Inconsistent calibration
(wrong method used for the model estimation)

❏ False prediction/forecasting
(violated assumptions needed for the proper inference)

❏ Model selection
(incorrect covariates used for explaining the dependent variable)

❏ Multicolinearity
(the estimated parameters, the calibrated model respectively, is not stable)

❏ Dependence
(analyzing dependent data instead of independent)

❏ ... ... ...
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Hidden catches in regression models

Model selection: Variable screening

”The administrative database was evaluated by means of univariate and multivariate
regression. First, we identified variables that were associated with the dependent
variable with p-value < 0.20. These potential confounders were then entered in
multivariate regression in a stepwise backward fitting approach.”

(JAMA Surgery, 2016)

❏ Sifnificant covariate in a univariate regression may turn
non-significant in a multivariate regression;

❏ Non-significant covariate in a univariate regression may turn
significant in a multivariate regression;
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Hidden catches in regression models

Missing important covariate
”The administrative database was evaluated by means of univariate and multivariate
regression. First, we identified variables that were associated with the dependent
variable with p-value < 0.20. These potential confounders were then entered in
multivariate regression in a stepwise backward fitting approach.”

(JAMA Surgery, 2016)

❏ Three independent (standard normal) covariates: X1, X2, X3;
❏ Standard normal error terms (indelendent of X covariates) ε ∼ N(0, σ2);
❏ Additional covariate X4 defined as: X4 = β1X1 + β2X2 = 2X1 + X2;
❏ True underlying model of the form: Y = α1 + α2X2 + α3X3 + α4X4 + ε;
❏ Univariate regression slope for Y ∼ X4: Cov(Y ,X4)

VarX4
= α4 + α2β2

β2
1 +β2

2

Underlying model:

Y = 1 + 3X2 + 4X3 − 0.6X4 + ε
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Hidden catches in regression models

Missing important covariate

❏ Simulation results based on 10.000 Monte Carlo repetitions;

n Univariate Regression X4 Multiple Regression X4 Regression on X2 and X3
Estimate (Std.Err.) Estimate (Std.Error) Estimates (Std. Errs)

30 -0.0005 (0.4225) -0.6010 (0.0988) 2.4074 (0.3030) | 4.0028 (0.3047)

50 -0.0016 (0.3194) -0.6003 (0.0748) 2.3990 (0.2281) | 4.0014 (0.2302)

100 -0.0009 (0.2226) -0.6003 (0.0513) 2.4020 (0.1611) | 3.9992 (0.1581)

200 0.0002 (0.1485) -0.6002 (0.0357) 2.3999 (0.1111) | 4.0019 (0.1126)

500 0.0005 (0.0965) -0.6005 (0.0226) 2.4002 (0.0703) | 4.0005 (0.0705)

1000 -0.0002 (0.0691) -0.6000 (0.0160) 2.4002 (0.0498) | 3.9993 (0.0492)

−→P 0 −→P −3/5 ↛P 3 | −→P 4

❏ Underlying model:

Y = 1 + 3X2 + 4X3 − 0.6X4 + ε
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Hidden catches in regression models

Irrelevant covariate passing the screening
”The administrative database was evaluated by means of univariate and multivariate
regression. First, we identified variables that were associated with the dependent
variable with p-value < 0.20. These potential confounders were then entered in
multivariate regression in a stepwise backward fitting approach.”

(JAMA Surgery, 2016)

❏ Three independent (standard normal) covariates: X1, X2, X3;
❏ Standard normal error terms (indelendent of X covariates) ε ∼ N(0, σ2);
❏ Additional covariate X4 defined as: X4 = β1X1 + β2X3 = X1 + X3;
❏ Consider the true model of the form: Y = α0 + α1X1 + α2X2 + ε;
❏ Extended model of the form: Y = α0 + α1X1 + α2X2 + α3X4 + ε

❏ Alternatively: Y = α0 + (α1 + α3β1)X1 + α2X2 + α3β2X3 + ε

Underlying model:

Y = X1 + 2X2 + ε
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Hidden catches in regression models

Irrelevant covariate passing the screening

❏ Simulation results based on 10.000 Monte Carlo repetitions;

n Univariate Regression X4 Multiple Regression X4
Estimate (Std.Err.) Estimate (Std.Error)

30 1.0024 (0.4723) 0.0038 (0.2014)

50 0.9975 (0.3564) -0.0008 (0.1496)

100 0.9995 (0.2469) -0.0015 (0.1032)

200 0.9982 (0.1733) 0.0005 (0.0723)

500 0.9999 (0.1101) 0.0005 (0.0452)

1000 0.9995 (0.0776) 0.0004 (0.0318)

❏ Underlying model:

Y = X1 + 2X2 + ε
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Hidden catches in regression models

Correlation transitivity
”Since factor A is highly correlated with outcome Y, and factor A and factor B are
highly correlated, then B should be also correlated with Y.”

(JAMA Surgery, 2016)

❏ Random variables X and Z are independent standard normal;
❏ Let the variable Y be defined as Y = X + Z ;
❏ The correlation between Y and X is: 0.707;
❏ The correlation between Y and Z is again 0.707;
❏ However, the correlation between X and Z is zero;

❏ Example before: the correlation between X4 and X1 is 0.707;
❏ Example before: the correlation between X1 and Y is 0.408;
❏ However, X4 has no role in the multiple regression model;
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Hidden catches in regression models

Stability of the estimates and p-values

❏ Available covariates: height, weight, age, gender, bmi, wh-ratio;
❏ body fat vs. subject’s height:

lm(formula = fat ~ height, data = Policie)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -47.6791 23.9707 -1.989 0.0524 .
height 0.3405 0.1343 2.535 0.0146 *

❏ body fat vs. subject’s height and weight:

lm(formula = fat ~ height + weight, data = Policie)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.55309 15.24621 1.086 0.2831
height -0.24362 0.09728 -2.504 0.0158 *
weight 0.50418 0.05095 9.896 4.49e-13 ***

36 / 41
NMFM 334 | Lecture 1

▲



Hidden catches in regression models

Stability of the estimates and p-values

❏ Available covariates: height, weight, age, gender, bmi, wh-ratio;
❏ body fat vs. subject’s height:

lm(formula = fat ~ height, data = Policie)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -47.6791 23.9707 -1.989 0.0524 .
height 0.3405 0.1343 2.535 0.0146 *

❏ body fat vs. subject’s height and weight:

lm(formula = fat ~ height + weight, data = Policie)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.55309 15.24621 1.086 0.2831
height -0.24362 0.09728 -2.504 0.0158 *
weight 0.50418 0.05095 9.896 4.49e-13 ***

36 / 41
NMFM 334 | Lecture 1

▲



Hidden catches in regression models

Paradox: Ecological fallacy
❏ Stat235 classes at University of Alberta in Fall 2012/2013;
❏ Students’ performance for midterm exams and final exams;
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Hidden catches in regression models

Paradox: Ecological fallacy
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Hidden catches in regression models
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Hidden catches in regression models

Dependent and independent observations
❏ Random sample:

Independent and identically distributed random observations/variables1;
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Hidden catches in regression models

Linear regression: Formally and correctly

❏ Linear regression – a probabilistic model which requires a specific set of
assumptions to be satisfied to obtain reliable results at the end;

❏ Available data form a random sample;
(independent and identically distributed random observations)

❏ Correct model specification;
(the parametric form of the estimated structure must be correctly defined)

❏ Normally distributed error terms;
(especially if there is some interest in a consequent statistical inference)

❏ Equal variance ≡ homoscedasticity;
(all error terms should have same variance)

❏ Well defined set of explanatory variables;
for instance, no linear dependence among covariates or multicolinearity

❏ Straightforward extensions of the linear model (easy ones or quite
complex) for handling violated assumptions;

❏ However, applying a standard linear regression model in such cases causes
incorrect results and false conclusions;
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