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Abstract In mathematical modeling, the description of reality via some system of

differential or integral equations can be considered a kind of model reduction. This

omits, for sake of clarity and solvability of the mathematical model, the less sub-

stantial relationships. Discretization of the model means further reduction from an

infinite-dimensional to a finite-dimensional function space. This can lead to additional

nontrivial issues which are not present in the original mathematical model and which

have to be addressed in the solution process. In this paper we address one of these

issues that arises in the context of the finite element method (FEM).

The FEM generates an approximate solution of the model in form of a linear com-

bination of functions with strictly local supports. The global approximation property of

the FEM approximate solution is restored by solving a linear algebraic system for the

coefficients of this linear combination. The fact that in practice we do not solve this

system exactly can then have fundamental consequences.

The total approximation error must be evaluated in an appropriate function space.

Using a simple model problem we illustrate numerically that in the function space the

algebraic error can create significant local components and can dominate locally the

total error, even when the globally measured algebraic error (in the energy norm or

as the algebraic backward error) is significantly smaller than the globally measured

discretization error. Incorporation of the algebraic error into the total error with con-

sidering the locality and the interplay between the discretization and the algebraic

computation represents a fundamental challenge. This challenge must be addressed in

order to put adaptive PDE solvers on a rigorous mathematical ground.
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1 Introduction and problem setting

To introduce the setting and notation of this paper we very briefly describe the solution

process of a partial differential equation (PDE) boundary value problem, arising from

mathematical modeling, by the finite element method (FEM). Further details can be

found in any book on the numerical solution of PDEs; see, e.g., [8,14,15,19].

In the first step of the solution process the given PDE or system of PDEs Lu = f

(plus appropriate boundary conditions) is transformed into its variational formulation:

Find u ∈ V such that a(u, v) = g(v) for all v ∈ V . (1)

Here V is an inifinite-dimensional function space (typically a Sobolev space1), a is a

bilinear form and g is a linear functional. The Galerkin FEM discretization consists of

finding a finite-dimensional subspace Vh ⊂ V and solving the discretized problem:

Find uh ∈ Vh such that a(uh, vh) = g(vh) for all vh ∈ Vh. (2)

If φ1, . . . , φN is a basis of Vh, the discretized variational problem (2) is equivalent to

the linear algebraic system

Ax = b, A = [aij ] = [a(φj , φi)] ∈ R
N×N , b = [g(φ1), . . . , g(φN )]T ∈ R

N , (3)

in the sense that the solution vector x = [ζ1, . . . , ζN ]T of (3) contains the coefficients

of the solution uh of (2) with respect to the basis φ1, . . . , φN , i.e.,

uh =

N
∑

j=1

ζjφj . (4)

In summary, we have to consider:

– the original mathematical model or its variational formulation (1), which typically

also requires to understand its origin;

– the discretized problem (2), where the approximate solution is restricted to some

finite-dimensional function subspace;

– the algebraic problem (3) that determines the coefficients for the approximate so-

lution with respect to the given basis of the finite-dimensional function subspace.

1 Here we do not give any specifics of the choice of the appropriate function space and of the
concept of solution related to the choice of this space. While in the model problem presented
below the situation is simple and the energy norm is appropriate, in many practical cases
the choice of an appropriate function space represents a substantial difficulty. As an example,
the state-of-the-art theory of nonlinear partial differential equations focuses on solutions that
are local in time and exist under the assumptions of sufficient smoothness, this does not
give a strong guidance for the (physically) meaningful evaluation of error. In order to obtain
such guidance, one must take into account the underlying (physical) principles. Models in
continuum thermodynamics as well as thermodynamics of multi-component materials may
serve as examples. Here the natural function spaces are determined in relation to the properties
of the entropy and the rate of the entropy production; see [16,17,24].
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If we leave aside, for simplicity, the errors due to modeling and possible uncertainty in

the data, we are confronted in this solution process with three different type of errors:

– the discretization error u− uh, where u solves (1) and uh solves (2) (for simplicity

we assume that these solutions exist);

– the algebraic error x−xn, where x solves (3) and xn is a computed approximation

to x;

– the total error u − u
(n)
h

, where u solves (1) and u
(n)
h

=
∑N

j=1 ζ
(n)
j φj is determined

by the coefficient vector xn = [ζ
(n)
1 , . . . , ζ

(n)
N ]T .

These errors are related by the simple, yet fundamental equation

u − u
(n)
h

= (u − uh) + (uh − u
(n)
h

),

which means that the total error is the sum of the discretization error and the algebraic

error (after being transferred from the coordinate space R
N to the function space Vh).

A main point of the FEM is that in order to simplify the mathematical issues re-

lated to estimation of the discretization error and in order to obtain a sparse matrix

A, each basis function φj is nonzero only on a small subset of the domain Ω. This

fact is computationally crucial, because in mathematical modeling of real world phe-

nomena typically the matrices are very large. Thus, the FEM in general gives up the

global approximation property of individual basis functions; each FEM basis function

approximates the solution only locally. The global approximation is restored by solving

the linear algebraic system (3) and by forming the linear combination (4). (One can

also point out the requirement for investigating the approximation error in the regions

of interest, with convincing arguments presented, e.g., by Babuška and Stroboulis in

[8, p. 417 and Chapter 6] and by Bangerth and Rannacher in [9, Chapter 1].)

If one assumes that the linear algebraic system (3) is solved exactly, then the total

error reduces to the discretization error. In numerous publications on the numerical

analysis of partial differential equations, the exact solution x is indeed assumed to

be available. Our major point is that this assumption does not reflect the reality of

numerical computations. Moreover, aiming at the smallest possible algebraic error is

in conflict with the requirement of computational efficiency of numerical PDE solvers.

In practice only an approximation xn to the exact algebraic solution x is available.

The local character of the FEM basis functions on the one hand, and the global

character of the linear algebraic problem resulting from the discretization on the other

have the following fundamental consequence: The algebraic error x − xn can have

strongly varying individual entries, which potentially lead to a large variation in the

sizes of the local components of the total error u − u
(n)
h

on the individual elements,

irrespectively of the local value of the solution u or the local value of the discretization

error u−uh. These facts will be illustrated numerically in Section 3 below. In practice

they always should be taken into consideration when evaluating the total error, unless

they can be (rigorously) shown to be insignificant for the given problem.

The goal of the whole computation is to obtain an acceptable approximation to

the solution of the original problem. Here the acceptability refers to the mathematical

modeling level, which uses the given PDE (or system of PDEs) as a tool, and the error

is measured in the proper function space. For an instructive account of the related

issues (without considering the algebraic error) we refer to [7,28]. Here we argue that

the algebraic part of the error must also be taken into account, which, in general,

brings into the numerical PDE error analysis a fundamental challenge that is very
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rarely considered in state-of-the-art investigations. The importance of investigating

the algebraic error and its distribution is stated, e.g., in [15, Sections 6.4–6.5 and

Chapter 12]. However, the issue is in [15] not pursued or further analyzed. Examples

of publications where the algebraic error is included in the analysis will be presented

below.

We emphasize that our point goes much beyond the need for investigating numerical

stability and conditioning issues sometimes declared in the PDE literature; see, e.g.,

[36]. Numerical stability and conditioning forms only a small part of it.

2 Standard algebraic tools for error analysis

Clearly, when solving challenging mathematical modelling problems, the question of

an acceptable computational error of matrix computations can not be resolved by

algebraic methods alone. It rather must take into account that the approximation

error is measured within the given function space. We now examine whether standard

algebraic approaches can be easily incorporated into the framework described above.

An epochal progress in understanding results of practical algebraic computations

is related to the concept of the (algebraic) backward error. To briefly describe the

principle in the context of iterative methods for linear algebraic systems, let xn be the

approximation to the solution of Ax = b computed at step n of an iterative method.

The backward error analysis considers the perturbed linear algebraic system

(A + ∆A)xn = b + ∆b (5)

and answers the question how close the perturbed problem (5), which is solved exactly

by xn, is to the original problem Ax = b, which is solved approximately by xn. As

shown by Rigal and Gaches [32] (also see [22, Theorem 7.1]) the normwise (relative)

backward error of xn, defined by

β(xn) ≡ min {β : (A + ∆A)xn = b + ∆b , ‖∆A‖ ≤ β‖A‖ , ‖∆b‖ ≤ β‖b‖ } , (6)

satisfies

β(xn) =
‖b − Axn‖

‖b‖ + ‖A‖ ‖xn‖
=

‖∆Amin‖

‖A‖
=

‖∆bmin‖

‖b‖
. (7)

In other words, β(xn) is equal to the norm of the smallest relative perturbations in A

and b such that xn exactly solves the perturbed system. Here ‖ · ‖ is any vector and

the corresponding induced matrix norm. The componentwise variant can be found in

[29]; see also [22, Chapter 7].

Although the concept of backward error arose from investigations of numerical

instabilities (see, e.g., [30], [22, Chapter 7] that describe the role of Goldstine, von

Neumann, Turing and the epochal contribution of Wilkinson), it can be used irrespec-

tively of the source of the error (truncation and/or roundoff). The algebraic backward

error ingeniously separates the properties of the method (and even of the particular

individual computation) from the conditioning of the problem. Their combination al-

lows to estimate the size of the algebraic error x − xn measured in an appropriate

norm; see the essays [38,6], [10, Section 3.2] and the monograph [22]. Arioli, Noulard

and Russo [5] used the function backward errors and extended the concept to function

spaces; see also [1,3] and [26, Section 4.3].
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Fig. 1 Left: MATLAB plot of the exact solution u of the Poisson model problem (8)–(9).
Right: MATLAB plot of the discretization error u − uh (the vertical axis is scaled by 10−3).
It should be emphasized that plots show the piecewise linear approximations of the actual
functions, which is, as explained in Remark 1, for the discretization error misleading.

At first sight the incorporation of the algebraic backward error concept into the

estimates of the total error measured in the function space seems to be just a technical

exercise. Due to the error of the model, the discretization error and the uncertainties

in the data, the system Ax = b represents a whole class of admissible systems. Each

system in this class corresponds (possibly in a stochastic sense) to the original real-

world problem. One can therefore argue that as long as the algebraic backward error

β(xn) in (6)–(7) is small enough, the computed algebraic solution xn is with respect

to the subject of the mathematical modeling as good as the solution x of Ax = b.

The meaning of small enough is sometimes intuitively interpreted as, say, an order of

magnitude below the size of the discretization error (all measured in the norms which

physically correspond to each other). It is worth to point out that the balance between

the discretization and the algebraic errors is typically evaluated globally (in norms).

The practical situation is, however, much more subtle. In particular, in order to

perform the computations efficiently, we need tight a posteriori estimates of the local

distribution of the total error which incorporate the algebraic error; a more detailed

argumentation and example can be found in [23]. Whether and to which extent the

algebraic backward error can serve this purpose is yet to be found. The experimental

results presented in the following section indicate the nontrivial problems which need

to be resolved.

3 Experimental results

We consider the following two-dimensional Poisson model problem,

−∆u = f in Ω = (0, 1) × (0, 1), f = 32(η1 − η2
1 + η2 − η2

2), (8)

u = 0 on ∂Ω. (9)

This problem has the nicely smooth exact solution

u(η1, η2) = 16η1η2(1 − η1)(1 − η2). (10)
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The variational formulation of (8)–(9) is given by (2) with

a(u, v) =

∫

Ω

∇u · ∇v dΩ, g(v) =

∫

Ω

fv dΩ.

We discretize the variational problem using the (conforming) Galerkin finite element

method (FEM) with linear basis functions on a regular triangular grid with the mesh

size h = 1/(m + 1), where m is the number of inner nodes in each direction. The

basis function φj , j = 1, 2, . . . , m2, corresponding to the jth inner node has its support

composed of six triangle elements with the node j as the central point.

It is well known that nodes can be ordered to obtain the discrete Laplacian matrix A

of the form

A = [a(φj , φi)] = tridiag(−I, T,−I) ∈ R
m2

×m2

, T = tridiag(−1, 4,−1) ∈ R
m×m;

see, e.g., [15, Section 15.1]. The matrix A is symmetric and positive definite, with its

extreme eigenvalues given by

λmin(A) = 8 sin2
(

hπ

2

)

, λmax(A) = 8 sin2
(

mhπ

2

)

;

see, e.g., [19, Chapter 4]. We assemble the right hand side b using a two-dimensional

Gaussian quadrature formula that is exact for polynomials of degree at most three.

In our numerical experiment we use m = 50, and thus A is of size 2500 × 2500.

Similar numerical results can be obtained for any other choice of m. All computations

have been performed using MATLAB. The extreme eigenvalues of A and the resulting

condition number (with respect to the matrix 2-norm) are

λmin(A) = 7.5867 × 10−3, λmax(A) = 7.9924, κ(A) = 1.0535 × 103.

We have computed the (approximate) solution of Ax = b using the MATLAB backslash

operator. Neglecting the algebraic error in this computation, the (closely approximated)

squared energy norm of the discretization error is

‖∇(u − uh)‖2 = a(u − uh, u − uh)2 = 5.8299 × 10−3. (11)

The shape of the discretization error on the MATLAB plots seems very similar to the

shape of the solution, see Fig. 1. As explained in the following remark, the discretization

error is, however, much less smooth than shown on the right part of Fig. 1.

Remark 1 All figures shown in this paper have been generated by the MATLAB

trisurf command, which generates a triangular surface plot. The inputs of trisurf

are the coordinates of the nodes in the given triangular mesh and the respective values

of the plotted function at these nodes. In the plot the function values in the triangle

interiors are interpolated linearly from the values at the nodes, and hence the figures

do not show the actual function values inside the triangles. For the solution u the dif-

ference is not significant. In case of the discretization error u − uh (see the right part

of Fig. 1), the plot is, however, misleading . The discretization error is not as smooth

as suggested by the plot, but contains “bubbles” inside the triangles, which can be

(depending on the size of the error) significant. The same holds for the total errors

shown in Figs. 2–6.
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Table 1 Errors and CG iterations in our numerical experiment.

Total error Algebraic error Componentwise No. of

γ ‖∇(u − u
(n)
h

)‖2 ‖x − xn‖2
A

backward error CG iterations

50.0 1.0195 × 10−2 4.3656 × 10−3 2.6831 × 10−2 27
1.00 5.8444 × 10−3 1.4503 × 10−5 4.2274 × 10−4 35
0.50 5.8304 × 10−3 5.6043 × 10−7 5.4886 × 10−5 42
0.10 5.8299 × 10−3 1.6639 × 10−8 4.0418 × 10−6 50
0.02 5.8299 × 10−3 5.5286 × 10−10 2.1091 × 10−6 56

Now we apply the conjugate gradient method (CG) of Hestenes and Stiefel [21] to

the linear algebraic system Ax = b. We use x0 = 0 and stop the iteration when the

normwise backward error drops below the level γ hα, i.e., when

‖b − Axn‖

‖b‖ + ‖A‖ ‖xn‖
< γ hα, (12)

where γ > 0, α > 0 are positive parameters and ‖ · ‖ denotes the 2-norm. If the size of

the backward error is small enough, then the algebraic approximate solution xn exactly

solves an algebraic problem that is very close to Ax = b. Then one might expect that

the algebraic error does not have a noticeable impact on the total error (here we use

the normwise backward error; the componentwise variant, which is also reported in the

table below, would not lead to any significant change).

In order to examine this reasoning and, in particular, in order to examine quanti-

tatively an intuitive understanding of the term small enough in relation to the size of

the discretization error, we have used

α = 3

which may seem sufficient, with the choice γ = 1, to keep the algebraic error in-

significant in comparison to the discretization error. The other values of γ used in the

experiment are given in Table 1. With m = 50, the values α = 3 with γ = 50 closely re-

semble the situation α = 2 with γ = 1, which corresponds to the size of the inaccuracies

in determining of A and b being proportional to h2 = (51)−2. With decreasing γ, the

algebraic error measured in the algebraic energy norm quickly drops very significantly

below the discretization error (11).

The componentwise backward error given in Table 1 is computed by the formula

max
i

(|b − Axn|)i
(|A| |xn| + |b|)i

,

where (y)i denotes the ith entry of the vector y and | · | means that we take the corre-

sponding matrix or vector with the absolute values of its entries; see [22, Theorem 7.3].

The discretization error (11) and the values in the second and third column of Ta-

ble 1 satisfy (up to a small inaccuracy proportional to machine precision) the Galerkin

orthogonality relation

‖∇(u − u
(n)
h

)‖2 = ‖∇(u − uh)‖2 + ‖∇(uh − u
(n)
h

)‖2 = ‖∇(u − uh)‖2 + ‖x − xn‖
2
A;
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Fig. 2 γ = 50.0: algebraic error uh − u
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(left) and total error u − u
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(right); the vertical

axes are scaled by 10−3. While the algebraic error is piecewise linear, the total error is not
(the MATLAB plot does not show the small bubbles over individual elements; see Remark 1).
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Fig. 3 γ = 1.0: algebraic error uh − u
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(left) and total error u − u
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(right).The vertical

axis are scaled by 10−4; see also Remark 1.
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Fig. 4 γ = 0.5: algebraic error uh − u
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(right). The vertical

axes are scaled by 10−5 (left) and by 10−4 (right); see also Remark 1.
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Fig. 5 γ = 0.1: algebraic error uh − u
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(left) and total error u − u
(n)
h

(right). The vertical

axes are scaled by 10−5 (left) and by 10−4 (right); see also Remark 1.
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Fig. 6 γ = 0.02: algebraic error uh − u
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(left) and total error u − u
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(right). The vertical

axes are scaled by 10−6 (left) and by 10−4 (right); see also Remark 1.

see [14, Theorem 1.3, p. 38]. Therefore, except for γ = 50, the total error measured in

the energy norm is dominated by the discretization error, with the globally measured

contribution of the algebraic error being orders of magnitude smaller.

When one considers the local distribution of error, the whole picture dramatically

changes. Figs. 2–6 show the algebraic and total errors for our choice of parameters. For

γ = 50 the global discretization and algebraic errors measured in the energy norm are

of the same order. Both uh and u
(n)
h

are piecewise linear and their gradients as well

as the gradient of the algebraic error in the function space ∇(uh − u
(n)
h

) are piecewise

constant. In contrast to that, the gradient of the solution ∇u and therefore also the

gradient of the discretization error ∇(u−uh) are not piecewise constant. Since we use,

for simplicity, zero Dirichlet boundary conditions, we can even write

‖∇(u − uh)‖2 = ‖∇u‖2 − ‖∇uh‖
2 ;

see, e.g., [14, Section 1.5, relation (1.61) and Problem 1.11]. This suggests that the

local distribution of the discretization and the algebraic errors can be very different,

which is indeed demonstrated by our experiment. Despite the comparable size of the
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values

‖∇(u − uh)‖2

and

‖∇(uh − u
(n)
h

)‖2 = ‖x − xh‖
2
A

for α = 3 and γ = 50, the shape of the total error is fully determined by its algebraic

part. With decreasing γ the algebraic error gets smaller and it eventually becomes

insignificant. Still, it seems counterintuitive that this happens only after ‖x − xh‖
2
A

drops seven orders of magnitude below the squared energy norm of the discretization

error ‖∇(u − uh)‖2.

It seems also surprising that the algebraic error exhibits such a strongly oscillating

pattern. This can be explained in the following way. It is well known that the CG

method tends to approximate well the largest and smallest eigenvalues of the system

matrix. Assuming exact arithmetic, a close approximation of an eigenvalue means that

the corresponding spectral component of the error is diminished, and the method con-

tinues in the subsequent iterations as if the given component was not present (leading

to “superlinear convergence” of CG); see, e.g., [35] and [27, Theorem 3.3]. In finite pre-

cision arithmetic this issue is, in general, more complicated, because due to rounding

errors (large) outlying eigenvalues are approximated by computed multiple copies and

the convergence of the CG method is delayed; for a survey see [27, Sections 4 and 5].

For the discretized Laplace operator and the relatively small number of iterations this

finite precision arithmetic phenomenon is, however, not significant, and the largest and

the smallest eigenvalues are approximated at a similar rate.

The approximation of the largest and the smallest eigenvalues means that in the

observed range of iterations in our experiment the smooth and the high frequency parts

of the error are gradually suppressed by the CG method, while the middle frequency

components prevail. Because of the very smooth solution (10), the effect of eliminating

the smooth components is dominating, and the algebraic error exhibits an increasingly

oscillating pattern as the iteration step n grows.

One may suggest to apply a postprocessing smoothing by performing a few ad-

ditional steps of the Jacobi, Gauss-Seidel or SOR iterations. In our experiment, such

postprocessing smoothing is not efficient. While it smooths out some high frequencies

(which are here not significant), it does not change the moderate frequencies which

determine the oscillating pattern of the algebraic error.

4 Conclusions

Let us first stress that we do not advocate to solve the Poisson problem on regular

domains by the CG method; here CG has no chance to compete with some other

specialized fast Poisson solvers. We are also well aware that a proper preconditioner

can suppress the reported oscillations of the algebraic error, and that a multigrid solver

can in our example naturally balance the local error on individual elements. These facts

do not diminish the message which is on purpose kept as simple as possible. Our goal is

to show on a simple model problem some important phenomena which should be taken

into account when solving large scale mathematical modeling problems in general,

where the easy remedies mentioned above might not be applicable. Summarizing, our

main message is twofold:
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1. The problem of verification in scientific and engineering computing is even more

complicated than outlined so nicely in, e.g., [7,18,33]. From the numerical PDE

side, a considerable effort should be devoted to overcoming the unrealistic assump-

tion that the matrix computations can be, or even should be, performed exactly. If

we admit that the linear algebraic systems arising from discretization are not solved

exactly (and apparently we have no other option), then the approaches to estima-

tion of the local total error in any method where the discretization basis functions

are having local supports (such as in FEM) must be carefully reconsidered. There

is a price to pay for using locally supported basis functions. If we do not compute

exactly, and we indeed do not, the price can be high. It seems that this has not

been fully realized before. Using global estimates and arguing that it is sufficient

to make the global algebraic error sufficiently small, may not, in general, deliver.

Whenever possible, one should aim at the local distribution of the total error; an

example is for a simple model problem given in [23]. Adaptivity should be based on

the local distribution of the total error, not on the estimates for the discretization

error with plugging in the computed approximations.

2. From the matrix computation point of view, measuring the error purely on the

algebraic level using the backward error analysis and the perturbation theory seems

not sufficient. The user needs information about the local behavior of the error in

the function space. Application of the state-of-the-art algebraic backward error

analysis and perturbation theory, however, do not make it easy to obtain this

information.

From both the numerical PDE and the numerical linear algebra sides it should be

admitted that matrix computations can not be considered a separate (black box) part

of the numerical PDE solution process. Apart from relatively simple cases, black box

approaches may not work. Even worse, they are philosophically wrong. Even if direct

algebraic solvers are applicable, the resulting algebraic error might not be small and

it should be considered (or the opposite should be rigorously justified). The stopping

criteria in iterative algebraic solvers should be linked, in an optimal case, with fully

computable and locally efficient (on individual elements) a posteriori error bounds

that allow to keep an appropriate balance between the discretization and the algebraic

parts of the error; see, e.g., the discussion in the book by Bangerth and Rannacher [9],

in the recent papers [31,25,4,2,12,13,11,23,34,20], in the habilitation thesis [37], in

the Ph.D. thesis [26], and the references given there. Although this goal seems highly

ambitious and is certainly very difficult to achieve, the near future will certainly bring

new exciting results in that direction.
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18. W. N. Gansterer, Y. Bai, R. M. Day, and R. C. Ward, A framework for approximating

eigenpairs in electronic structure computations, Comp. Sci. Eng., 6 (2004), pp. 50–59.
19. W. Hackbusch, Elliptic Differential Equations – Theory and Numerical Treatment,

Springer-Verlag, Berlin, 1992.
20. H. Harbrecht and R. Schneider, On error estimation in finite element methods without

having Galerkin orthogonality, technical report, Universität Bonn, 2009.
21. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear sys-

tems, J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436.
22. N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadel-

phia, PA, 2002.
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