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Definitions

Definition 1

For each integer n ≥ 0, we define an equivalence relation ∼n

on A∗ by u ∼n v if and only if u and v have the same set of
subwords of length less than or equal to n.

For example abbac ∼1 abc or ababab ∼3 bababa

∼n is a congruence.

Definition 2

A language is called piecewise testable if it is the union of
classes modulo ∼n for a certain integer n.
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Proposition 3

A language L of A∗ is piecewise testable if and only if it is in
the boolean algebra generated by the languages of the form
A∗a1A

∗a2 . . .A
∗amA

∗ where 0 ≤ m and the ai are letters.

Piecewise testable languages are regular.

Adéla Hańıková
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Proof.

”⇒”: {v ∈ A∗|v ∼n u} =
(∩A∗a1A

∗a2 . . . amA
∗) \ (∪A∗a1A

∗a2 . . . amA
∗)

intersection over the set of m-tuples (a1, . . . , am) such
that 0 ≤ m ≤ n and a1, . . . , am is a subword of u

union over the set of m-tuples (a1, . . . , am) such that
0 ≤ m ≤ n and a1, . . . , am is not a subword of u

”⇐ ” let L = A∗a1A
∗a2 . . . anA

∗ and u ∈ L

if u ∼n v , a1, . . . , an is a subword of v and v ∈ L

so L is a finite union of classes modulo ∼n
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Adéla Hańıková
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Proposition 4

Let u, v ∈ A∗ and a ∈ A. Then uav ∼2n−1 uv implies ua ∼n u
or av ∼n v .

Proof.

By contradiction

suppose ua �n u and av �n v .

x = x ′a subword of ua and y = ay ′ subword of av , length
≤ n

x ′ay ′ has length ≤ 2n − 1 and is a subword of uav and
not uv
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Definition 5

If u is a word, we denote by alph(u) the alphabet of u, i.e. the
set of letters a such that |u|a > 0.

Proposition 6

Let u, v ∈ A∗ and n > 0. Then u ∼n vu if and only if there
there exist u1, . . . , un ∈ A∗ such that u = u1 . . . un and
alph(v) ⊆ alph(u1) ⊆ · · · ⊆ alph(un).

Proof

the result is trivial, if u = λ ⇒ suppose u ∈ A+

necessarility (⇒) and sufficiency(⇐), both by induction
on n
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Automata, languages and monoids II.



Proposition 3 Proposition 4 Proposition 6 Proposition 7 Example

Definition 5

If u is a word, we denote by alph(u) the alphabet of u, i.e. the
set of letters a such that |u|a > 0.

Proposition 6

Let u, v ∈ A∗ and n > 0. Then u ∼n vu if and only if there
there exist u1, . . . , un ∈ A∗ such that u = u1 . . . un and
alph(v) ⊆ alph(u1) ⊆ · · · ⊆ alph(un).

Proof

the result is trivial, if u = λ ⇒ suppose u ∈ A+

necessarility (⇒) and sufficiency(⇐), both by induction
on n
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Proof: Necessarility (⇒)

n = 1, then
u ∼1 vu ⇒ alph(u) = alph(vu)⇒ alph(v) ⊆ alph(u)

suppose u ∼n+1 vu and let un+1 be shortest suffix such
that alph(un+1) = alph(u)

un+1 = au′, a ∈ A so a /∈ alph(u′) and u = wau′

we want to show w ∼n vw

then from the inductive hypothesis ∃u1, . . . , un ∈ A∗ such
that u1 . . . un = w and
alph(v) ⊆ alph(u1) ⊆ · · · ⊆ alph(un)

u = wun+1 and alph(un) ⊆ alph(u) = alph(un+1)
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Automata, languages and monoids II.



Proposition 3 Proposition 4 Proposition 6 Proposition 7 Example

Proof: Necessarility (⇒)

n = 1, then
u ∼1 vu ⇒ alph(u) = alph(vu)⇒ alph(v) ⊆ alph(u)

suppose u ∼n+1 vu and let un+1 be shortest suffix such
that alph(un+1) = alph(u)

un+1 = au′, a ∈ A so a /∈ alph(u′) and u = wau′

we want to show w ∼n vw

then from the inductive hypothesis ∃u1, . . . , un ∈ A∗ such
that u1 . . . un = w and
alph(v) ⊆ alph(u1) ⊆ · · · ⊆ alph(un)

u = wun+1 and alph(un) ⊆ alph(u) = alph(un+1)
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Proof: Necessarility (⇒)

u ∼n+1 vu, u = wau′ ⇒ w ∼n vw

trivially every subword of w is subword of vw

set x a subword of vw , length of x ≤ n

xa subword of vu and therefore u and therefore wa
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Proof: Sufficiency (⇐)

if n = 1 then u1 = u and
alph(v) ⊆ alph(u)⇒ alph(u) = alph(vu) i.e. u ∼1 vu

suppose u = u1 . . . un+1 and
alph(v) ⊆ alph(u1) ⊆ · · · ⊆ alph(un+1)

then alph(vu) = alph(u) = alph(un+1) and
u1 . . . un ∼n vu1 . . . un from the inductive hypothesis

let x be a non-empty subword of vu of length ≤ n + 1

set x ′ the longest suffix of x such that x ′ is a subword of
un+1 and put x = x ′′x ′

x ′ is nonempty and consequently x ′′ is a subword of
length ≤ n of vu1 . . . un
so x ′′ is a subword of u

therefore u ∼n+1 vu
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Adéla Hańıková
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therefore u ∼n+1 vu
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Corollary

Corollary

For every u, v ∈ A∗, we have (uv)nu ∼n (uv)n ∼n v(uv)n.
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Proposition 7

If f ∼n g , there exists a word h such that f is a subword of h,
g is a subword of h and f ∼n h ∼n g .

Proof

The proof is achieved by induction on k = |f |+ |g | − 2|f ∧ g |
where f ∧ g is the largest prefix common to f and g .

if k = 0, then f = g and so f = h = g

if g is a subword of f or vice versa then the result is also
obvious
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Automata, languages and monoids II.



Proposition 3 Proposition 4 Proposition 6 Proposition 7 Example

Proposition 7

If f ∼n g , there exists a word h such that f is a subword of h,
g is a subword of h and f ∼n h ∼n g .

Proof

The proof is achieved by induction on k = |f |+ |g | − 2|f ∧ g |
where f ∧ g is the largest prefix common to f and g .

if k = 0, then f = g and so f = h = g

if g is a subword of f or vice versa then the result is also
obvious
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f = uav , g = ubw , a, b ∈ A, a 6= b

we shall show that ubw ∼n ubav or uav ∼n uabw

suppose that f = uav ∼n uabw then

|uav |+ |uabw | − 2|uav ∧ uabw | ≤ |f |+ |g |+ 1− 2|ua| ≤
|f |+ |g |+ 1− (2|f ∧ g |+ 2) < k

from inductive hypothesis ∃h such that f ∼n h ∼n uabw

the proposition follows from this, since g is a subword of
uabw
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prove that ubw ∼n ubav or uav ∼n uabw

by contradiction: suppose none of these assertions is true

then there exist a word r of length ≤ n which is a
subword of ubav but not ubw

and a word s of length ≤ n which is a subword of uabw
but not uav

r = r1br2 where r1 is a subword of u and r2 of av

s = s1as2 where s1 is a subword of u and s2 of bw
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r1b is not a subword of u and s1a is not a subword of u

r2 subword of av ⇒ r2 = r ′′2 r
′
2 where r ′′2 = λ or a and r ′2

subword of v

likewise s2 = s ′′2 s
′
2, s ′′2 = λ or b, s ′2 subword of u

|r1bs ′2|+ |s1ar
′
2| ≤ |r1as2|+ |s1br2| ≤ |r |+ |s| ≤ 2n

so one of the words has length ≤ n

let it be r1bs
′
2, it is a subword of ubw = g and f = uav

but r1b is not a subword of u ⇒ bs ′2 subword of v

thus s = s1as2 subword of uav = f — a contradiction
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Adéla Hańıková
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Adéla Hańıková
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let f = a3b3a3b3 and g = a2b4a4b2, f ∼4 g

we will find h applying the algorithm from the proof

f =

u︷︸︸︷
(aa) a

v︷ ︸︸ ︷
(b3a3b3) ∼4 (aa)b

w︷ ︸︸ ︷
(b3a4b2) = g so

(aa)a(b3a3b3) ∼4 (aa)ab(b3a4b2) or (aa)b(b3a4b2) ∼4 (aa)ba(b3a3b3)

f ′ =

u′︷ ︸︸ ︷
(a3b3) a

v′︷ ︸︸ ︷
(a2b3) ∼4 (a3b3)b

w′︷ ︸︸ ︷
(a4b2) = g ′

(a3b3)a(a2b3) ∼4 (a3b3)ab(a4b2) or (a3b3)b(a4b2) ∼4 (a3b3)ba(a2b3)

then f ′′ =

u′′︷ ︸︸ ︷
(a3b4a3) a

v′′︷︸︸︷
(b2) ∼4 (a3b4a3)b

w′′︷︸︸︷
(b2) = g ′′

(a3b4a3)a(b2) ∼4 (a3b4a3)ab(b2) or (a3b4a3)b(b2) ∼4 (a3b4a3)ba(b2)

a3b4a4b2 ∼4 a3b4a4b3 = h
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Adéla Hańıková
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Thank you for your attention!

Adéla Hańıková

Automata, languages and monoids II.


