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Definitions

Definition 1
For each integer n > 0, we define an equivalence relation ~,
on A* by u ~, v if and only if u and v have the same set of

subwords of length less than or equal to n.

Adéla Hanikova
Automata, languages and monoids II.



Definitions

Definition 1

For each integer n > 0, we define an equivalence relation ~,
on A* by u ~, v if and only if u and v have the same set of
subwords of length less than or equal to n.

m For example abbac ~1 abc or ababab ~3 bababa

Adéla Hanikova
Automata, languages and monoids II.



Definitions

Definition 1

For each integer n > 0, we define an equivalence relation ~,
on A* by u ~, v if and only if u and v have the same set of
subwords of length less than or equal to n.

m For example abbac ~1 abc or ababab ~3 bababa

m ~, IS a congruence.

Adéla Hanikova
Automata, languages and monoids II.



Definitions

Definition 1

For each integer n > 0, we define an equivalence relation ~,
on A* by u ~, v if and only if u and v have the same set of
subwords of length less than or equal to n.

m For example abbac ~1 abc or ababab ~3 bababa

m ~, IS a congruence.

A language is called piecewise testable if it is the union of
classes modulo ~, for a certain integer n.
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Proposition 3

A language L of A* is piecewise testable if and only if it is in
the boolean algebra generated by the languages of the form
A*a1A*ay ... A*a,,A* where 0 < m and the a; are letters.
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Proposition 3

A language L of A* is piecewise testable if and only if it is in
the boolean algebra generated by the languages of the form
A*a1A*ay ... A*a,,A* where 0 < m and the a; are letters.

Piecewise testable languages are regular.
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Proposition 3 roposition 4 sition 6 oposition 7 Example

=" {veA |v ~p U} =
(ﬂA*alA*ag capA*) \ (UA* a1 A% ey . . apAY)

O
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m'=" {veA|vr~,ul =
(NA*a1A*a, ... apA*) \ (UA*a1A%a, . .. apA*)

m intersection over the set of m-tuples (a1, ..., an) such
that 0 < m<nand ay,...,a, is a subword of u
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Proposition 3 roposition 4 2 S Proposition 7 Example

m'=" {veA|vr~,ul =
(NA*a1A*a, ... apA*) \ (UA*a1A%a, . .. apA*)

m intersection over the set of m-tuples (a1, ..., an) such
that 0 < m<nand ay,...,a, is a subword of u

m union over the set of m-tuples (ay, ..., an) such that
0<m<nanday,...,an,is not a subword of u

m'<"letl =AaA%a...a,A andu e L
mifu~,v, a,...,a,isasubword of vand v € L

m so L is a finite union of classes modulo ~,

O
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Proposition 4

Let u,v € A* and a € A. Then wav ~5,_1 uv implies ua ~, u
or av ~, V.
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Proposition 3 Proposition 4 2 sition 6 >roposition 7 Example

Proposition 4

Let u,v € A* and a € A. Then wav ~5,_1 uv implies ua ~, u
or av ~, V.

By contradiction

B suppose ua », u and av <, v.

O
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Proposition 4 6 oposition 7 Example

Proposition 4

Let u,v € A* and a € A. Then wav ~5,_1 uv implies ua ~, u
or av ~, V.

By contradiction
B suppose ua =, u and av ~, v.

m x = x’a subword of ua and y = ay’ subword of av, length
<n

O
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Proposition 4 6 oposition 7 Example

Proposition 4

Let u,v € A* and a € A. Then wav ~5,_1 uv implies ua ~, u
or av ~, V.

By contradiction
B suppose ua =, u and av ~, v.

m x = x’a subword of ua and y = ay’ subword of av, length
<n

m x'ay’ has length < 2n —1 and is a subword of uav and
not uv

O
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Proposition 6

If uis a word, we denote by alph(u) the alphabet of u, i.e. the
set of letters a such that |u|, > 0.
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Definition 5

6
If uis a word, we denote by alph(u) the alphabet of u, i.e. the
set of letters a such that |u|, > 0.

Let u,v € A* and n > 0. Then u ~, vu if and only if there
there exist uq,...,u, € A* such that u = vy ... u, and
alph(v) C alph(uy) C - -+ C alph(u,).
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Proposition 6

If uis a word, we denote by alph(u) the alphabet of u, i.e. the
set of letters a such that |u|, > 0.

Let u,v € A* and n > 0. Then u ~, vu if and only if there
there exist uq,...,u, € A* such that u = vy ... u, and
alph(v) C alph(uy) C - -+ C alph(u,).

m the result is trivial, if u = \ = suppose u € A"
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Proposition 6

If uis a word, we denote by alph(u) the alphabet of u, i.e. the
set of letters a such that |u|, > 0.

Let u,v € A* and n > 0. Then u ~, vu if and only if there
there exist uq,...,u, € A* such that u = vy ... u, and
alph(v) C alph(uy) C - -+ C alph(u,).

m the result is trivial, if u = \ = suppose u € A"

m necessarility (=) and sufficiency(<=), both by induction
on n
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Proposition 6
[ le]

Proof: Necessarility (=)

m n=1, then
u ~q vu = alph(u) = alph(vu) = alph(v) C alph(u)
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Proposition 6
[ le]

Proof: Necessarility (=)

m n=1, then
u ~q vu = alph(u) = alph(vu) = alph(v) C alph(u)
m suppose u ~,.1 vu and let u, 1 be shortest suffix such
that alph(u,.1) = alph(u)
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Proposition 6
[ le]

Proof: Necessarility (=)

m n=1, then
u ~q vu = alph(u) = alph(vu) = alph(v) C alph(u)
m suppose u ~,.1 vu and let u, 1 be shortest suffix such
that alph(u,.1) = alph(u)
m U, =au,a€ Asoa¢ alph(d') and u = wav/
m we want to show w ~, vw

m then from the inductive hypothesis Juy, ..., u, € A* such

that vy ... u, = w and
alph(v) C alph(uy) C - -+ C alph(u,)
® U= wu,1 and alph(u,) C alph(u) = alph(u,11)
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Proposition 6
oe

Proof: Necessarility (=)

U~ v, U= wad = w o, vw

Adéla Hanikova

tomata, languages a



Proposition 6
oe

Proof: Necessarility (=)

U~ v, U= wad = w o, vw

m trivially every subword of w is subword of vw
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Proposition 6
oe

Proof: Necessarility (=)

U~ v, U= wad = w o, vw
m trivially every subword of w is subword of vw

m set x a subword of vw, length of x < n
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Proposition 6
oe

Proof: Necessarility (=)

U~ v, U= wad = w o, vw
m trivially every subword of w is subword of vw
m set x a subword of vw, length of x < n

m xa subword of vu and therefore u and therefore wa
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Proposition 6

Proof: Sufficiency (<)

mif n=1then vy = v and
alph(v) C alph(u) = alph(u) = alph(vu) i.e. u~; vu
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Proposition 6

Proof: Sufficiency (<)

mif n=1then vy = v and

alph(v) C alph(u) = alph(u) = alph(vu) i.e. u~; vu
B suppose U = Uy ... Upy1 and

alph(v) C alph(uy) C - -~ C alph(up41)
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Proof: Sufficiency (<)

mif n=1then vy = v and
alph(v) C alph(u) = alph(u) = alph(vu) i.e. u~; vu
B suppose U = Uy ... Upy1 and
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Uy ...U, ~p VU . ..U, from the inductive hypothesis
m let x be a non-empty subword of vu of length < n—+1

m set x’ the longest suffix of x such that x’ is a subword of
Uny1 and put x = x"x’
m x' is nonempty and consequently x” is a subword of

length < n of vu; ... u,
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Proposition 6

Proof: Sufficiency (<)

mif n=1then vy = v and
alph(v) C alph(u) = alph(u) = alph(vu) i.e. u~; vu
B suppose U = Uy ... Upy1 and
alph(v) C alph(uy) C - -~ C alph(up41)
m then alph(vu) = alph(u) = alph(u,41) and
Uy ...U, ~p VU . ..U, from the inductive hypothesis
m let x be a non-empty subword of vu of length < n—+1

m set x’ the longest suffix of x such that x’ is a subword of

Uny1 and put x = x"x’

m x' is nonempty and consequently x” is a subword of
length < n of vu; ... u,

m so x” is a subword of u
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Proposition 6

Proof: Sufficiency (<)

mif n=1then vy = v and
alph(v) C alph(u) = alph(u) = alph(vu) i.e. u~; vu
B suppose U = Uy ... Upy1 and
alph(v) C alph(uy) C - -~ C alph(up41)
m then alph(vu) = alph(u) = alph(u,41) and
Uy ...U, ~p VU . ..U, from the inductive hypothesis
m let x be a non-empty subword of vu of length < n—+1

m set x’ the longest suffix of x such that x’ is a subword of

Uny1 and put x = x"x’

m x' is nonempty and consequently x” is a subword of
length < n of vu; ... u,
m so x” is a subword of u

m therefore u ~,, 1 vu

Adéla Hanikova
Automata, languages and monoids II.



Proposition 6

Corollary

Corollary

For every u, v € A*, we have (uv)"u ~, (uv)" ~, v(uv)".
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Proposition 7

If f ~, g, there exists a word h such that f is a subword of h,
g is a subword of hand f ~, h~, g.

Adéla Hanikova
Automata, languages and monoids II.



Proposition 3 roposition 4 ion 6 Proposition 7

Proposition 7

If f ~, g, there exists a word h such that f is a subword of h,
g is a subword of hand f ~, h~, g.

Proof

The proof is achieved by induction on k = |f| + |g| — 2|f A g|
where f A g is the largest prefix common to f and g.

mifk=0thenf =gandsof=h=g
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Proposition 7

Proposition 7

If f ~, g, there exists a word h such that f is a subword of h,
g is a subword of hand f ~, h~, g.

Proof

The proof is achieved by induction on k = |f| + |g| — 2|f A g|
where f A g is the largest prefix common to f and g.

mifk=0,thenf=gandsof=h=g
m if g is a subword of f or vice versa then the result is also
obvious
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Proposition 7

mf=uvav,g=ubw,a,be Aa#b

m we shall show that ubw ~, ubav or uav ~, uabw
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Proposition 7

mf=uvav,g=ubw,a,be Aa#b
m we shall show that ubw ~, ubav or uav ~, uabw

m suppose that f = vav ~,, uabw then
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mf=uvav,g=ubw,a,be Aa#b

m we shall show that ubw ~, ubav or uav ~, uabw

m suppose that f = vav ~,, uabw then

m |uvav|+ |uabw| — 2Juav A uabw| < |f| + |g| + 1 — 2Jua| <
Ifl+1gl+1—2f Agl+2) <k
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f=uvav,g =ubw,a,bec Aja#£b

we shall show that ubw ~,, ubav or uav ~, uabw
suppose that f = vav ~, uabw then

|uav| + |uabw| — 2|uav A uabw| < |f| + |g| + 1 —2|ua| <
Ifl+ gl +1—(2f Ang|+2) <k

from inductive hypothesis 3h such that f ~, h ~, uabw
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f=uvav,g =ubw,a,bec Aja#£b

we shall show that ubw ~,, ubav or uav ~, uabw
suppose that f = vav ~, uabw then

|uav| + |uabw| — 2|uav A uabw| < |f| + |g| + 1 —2|ua| <
Ifl+ gl +1—(2f Ang|+2) <k

from inductive hypothesis 3h such that f ~, h ~, uabw

the proposition follows from this, since g is a subword of
uabw
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Proposition 7

m prove that ubw ~, ubav or uav ~, uabw
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Proposition 7

m prove that ubw ~, ubav or uav ~, uabw

m by contradiction: suppose none of these assertions is true
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Proposition 7

m prove that ubw ~, ubav or uav ~, uabw
m by contradiction: suppose none of these assertions is true

m then there exist a word r of length < n which is a
subword of ubav but not ubw
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m prove that ubw ~, ubav or uav ~, uabw
m by contradiction: suppose none of these assertions is true

m then there exist a word r of length < n which is a
subword of ubav but not ubw

m and a word s of length < n which is a subword of uabw
but not vav
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Proposition 7

prove that ubw ~, ubav or uav ~, uabw

by contradiction: suppose none of these assertions is true

m then there exist a word r of length < n which is a
subword of ubav but not ubw

m and a word s of length < n which is a subword of uabw
but not vav

m r = nrbr, where r; is a subword of u and r, of av
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Proposition 7

prove that ubw ~, ubav or uav ~, uabw

by contradiction: suppose none of these assertions is true

m then there exist a word r of length < n which is a
subword of ubav but not ubw

m and a word s of length < n which is a subword of uabw
but not vav

m r = nrbr, where r; is a subword of u and r, of av

m s = s;as, where s; is a subword of v and s, of bw
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Proposition 7

m b is not a subword of u and s;a is not a subword of u
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Proposition 7

m b is not a subword of u and s;a is not a subword of u

m r, subword of av = r, = rjrj where r) = X or a and r;

subword of v
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Proposition 7

m b is not a subword of u and s;a is not a subword of u

m r, subword of av = r, = rjrj where r) = X or a and r;

subword of v

m likewise s, = si's}, s = A or b, s} subword of u
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Proposition 7

m b is not a subword of u and s;a is not a subword of u

m r, subword of av = r, = rjrj where r) = X or a and r;

subword of v
m likewise s, = si's}, s = A or b, s} subword of u

B |rbsy| + |siars| < |nasy| + |sibra| < |r| +|s| < 2n
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Proposition 7

m b is not a subword of u and s;a is not a subword of u

m 1y subword of av = r, = ry'ry where ry = XA or a and r}
subword of v

m likewise s, = si's}, s = A or b, s} subword of u

B |rbsy| + |siars| < |nasy| + |sibra| < |r| +|s| < 2n

m so one of the words has length < n
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Proposition 7

r b is not a subword of u and s;a is not a subword of u

r, subword of av = r, = r'r) where rj) = X or a and r}

subword of v

likewise s, = s5s}, s = X\ or b, s, subword of u

| bsh| + |s1ary| < |nasy| + |sibr| < |r|+ |s| < 2n
so one of the words has length < n
let it be r1bs), it is a subword of ubw = g and f = vav
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Proposition 7

m b is not a subword of u and s;a is not a subword of u

r, subword of av = r, = r'r) where rj) = X or a and r}

subword of v

likewise s, = s)sy, sy = A or b, s, subword of u

| bsh| + |s1ary| < |nasy| + |sibr| < |r|+ |s| < 2n
so one of the words has length < n
let it be r1bs), it is a subword of ubw = g and f = vav

but r1b is not a subword of u = bs) subword of v
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Proposition 7

m b is not a subword of u and s;a is not a subword of u

r, subword of av = r, = r'r) where rj) = X or a and r}

subword of v

likewise s, = s)sy, sy = A or b, s, subword of u

| bsh| + |s1ary| < |nasy| + |sibr| < |r|+ |s| < 2n
so one of the words has length < n
let it be r1bs), it is a subword of ubw = g and f = vav

but r1b is not a subword of u = bs) subword of v

thus s = s;as, subword of uav = f — a contradiction
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Example

m let f =a°h%a%h% and g = °b*a*b?, f~u g
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Example

m let f =a°h%a%h% and g = °b*a*b?, f~u g

m we will find h applying the algorithm from the proof
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Example

m let f =a°h%a%h% and g = °b*a*b?, f~u g

m we will find h applying the algorithm from the proof

u v w

A — ——
m f = (aa)a(b’a’h’) ~4 (aa)b(b*a"b’) = g so
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Example

m let f =a°h%a%h% and g = °b*a*b?, f~u g

m we will find h applying the algorithm from the proof

u v w

A — ——
f = (aa)a(b’a’b®) ~4 (aa)b(b’a*b’) = g so

m (aa)a(b*a’b’) ~4 (aa)ab(b*a*b?) or (aa)b(b*a*b?) ~4 (aa)ba(b*a*b?)
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Example

m let f =a°h%a%h% and g = °b*a*b?, f~u g

m we will find h applying the algorithm from the proof

u v w

A — ——
f = (aa)a(b’a’b®) ~4 (aa)b(b’a*b’) = g so
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