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Minimal Polynomial

Every LFSR sequence has characteristic polynomial but it is not
unique, e.g. (L2 + L + 1)a and also (L3 − 1)a.

So we define, for a given sequence a,

A(a) = {f ∈ F[x ] | f (L)a = 0}.

A(a) consits of all characteristic polynomials of a.
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Minimal Polynomial

Proposition 1

The set A(a) has following properties:

1 Zero polynomial belongs to A(a).

2 If f , g ∈ A(a), then f ± g ∈ A(a).

3 If f ∈ A(a) and h ∈ F[x ], then hf ∈ A(a).

Proof.

1 0a = 0 =⇒ 0 ∈ A(a).

2 If f , g ∈ A(a) then f (L)a = g(L)a = 0, therefore
(f (L)± g(L))a = f (L)a± g(L)a. So eventually f ± g ∈ A(a).

3 f (L)a = 0 =⇒ (h(L)f (L))a = h(L)(f (L)a) = h(L)0 = 0.
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Minimal Polynomial

A(a) is an ideal of the ring F[x ], which is PID. Let A(a) = mF[x ],
where lc(m) = 1. Then m is called the minimal polynomial of a.

Properties of the minimal polynomial:

Minimal polynomial for zero sequence 00 . . . is 1.

Minimal polynomial for non-zero constant sequence is x − 1.

f (L)a = 0⇔ m|f

Minimal polynomial need not to be irreducible.
If a ∈ G (f ), f need not to be minimal polynomial of a. But m|f .
If f is irreducible, then every 0 6= a ∈ G (f ) has f as its minimal
polynomial.
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Minimal Polynomial

Example 1

Let F = F2 and f (x) = x3 + 1. Then |G (f )| = 23 = 8 and
f (x) = (x2 + x + 1)(x + 1).

Minimal polynomial of the sequence 001001001 . . . is indeed f .

Minimal polynomial of the sequence 011011011 . . . is
x2 + x + 1.

The degree of the minimal polynomial of a sequence a is called
linear span (or linear complexity) of a. According to the definition,
linear span of a sequence is equal to the shortest LFSR generating
it. It is an important security parameter measuring
pseudo-randomness of a given sequence.
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Periodicity

Theorem 2

For every periodic sequence a there exists LFSR generating it.

Proof.

Let r be the period of a. So

ai+r = ai , i = 0, 1, 2, . . . .

If f (x) = x r − 1, then f (L)a = 0, i.e. f is a characteristic
polynomial of LFSR generating a.
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Periodicity

Let 0 6= f ∈ F[x ] and f (0) 6= 0. Order (or period) of f is the
smallest d ≥ 1 such that f |xd − 1. We write per(f ) = d .
We denote by per(a) the period of a.

Theorem 3

Let m be the minimal polynomial of LFSR sequence a. If m(0) 6= 0
than a is periodic and

per(a) = per(m).
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Periodicity

Lemma 4

Let F = Fq. Assume that m ∈ Fq[x ] of degree n is irreducible
(over Fq). Let α be a root of m in Fqn . Than

per(m) = ord(α).

If a is LFSR sequence generated by irreducible polynomial m we
have

per(a) = per(m) = ord(α).
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Structure of G (f )

Let a,b ∈ V (F). a,b are said to be (cyclically) shift-equivalent if
there exists an integer k such that

ai = bi+k , i = 0, 1, 2, . . . ,

and it this case we write a ∼ b. Otherwise they are called
(cyclically) shift-distinct.

Relation ∼ is equivalence on V (F).
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Structure of G (f )

Theorem 5

Let f ∈ F[x ] be irreducible polynomial of degree n. Then the
number of shift-equivalent classes in G (f )\{0} is

qn − 1

per(f )
.

Proof.

Let 0 6= a ∈ G (f ). Then f is minimal polynomial of a and
per(a) = per(f ) = r .
Periodicity means that Lra = La and sequences a, La, . . . , Lr−1a
are pairwise distinct.
Therefore each equivalence class has precisely r = per(f ) elements
and

|(G (f )\{0})/ ∼| =
qn − 1

per(f )
.
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Structure of G (f )

Previous theorem says that the state diagram of LFSR generated
by irreducible polynomial will consist of (qn − 1)/per(f ) cycles of
length per(f ) and one cycle of length one (zero sequence).

Example 2

Polynomial f (x) = x4 + x3 + x2 + x + 1 is irreducible over F = F2.
It has period 5 and the corresponding state diagram will consist of
(24 − 1)/5 = 3 cycles of length 5.
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Structure of G (f )

Let F = Fq, f ∈ F[x ] be irreducible of degree n and α ∈ Fqn be a
root of f . If α is a primitive root of F∗qn we say that f is primitive
polynomial.

Corollary

If f is primitive of degree n than every sequence in G (f ) has period
qn − 1 and

G (f ) = {Lia | i = 0, 1, . . . , qn − 2} ∪ {0}.

A q-ary sequence generated by n-stage LFSR with period qn − 1 is
called m-sequence or maximal length sequence or pseudo-noise
sequence. It is known that m-sequences have particularly good
statistical properties concerning pseudo-randomness.
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Structure of G (f )

Let F = Fq, f ∈ F[x ] be irreducible of degree n and α ∈ Fqn be a
root of f . If α is a primitive root of F∗qn we say that f is primitive
polynomial.

Corollary

If f is primitive of degree n than every sequence in G (f ) has period
qn − 1 and

G (f ) = {Lia | i = 0, 1, . . . , qn − 2} ∪ {0}.

A q-ary sequence generated by n-stage LFSR with period qn − 1 is
called m-sequence or maximal length sequence or pseudo-noise
sequence. It is known that m-sequences have particularly good
statistical properties concerning pseudo-randomness.

David Kubečka LFSR



Structure of G (f )

If we want to get m-sequence with period qn − 1 we only need to
pick some primitive polynomial of degree n. In the case q = 2
there would be particularly suitable form for hardware
implementation, namely

f (x) = xn + xk + 1, k = 1, 2, . . . , n − 1

This form is called trinomial.

It is not known whether there exists infinitely many primitive
trinomials, but we have one nice criterion for deciding primitivness:

Theorem 6

Let 2r − 1 be prime. Then the trinomial of degree r is primitive if
and only if it is irreducible.
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Decomposition of G (f )

Assume that f is a product of distinct irreducible polynomials.
What can be said about the structure of G (f )?

Lemma 7

For every monic polynomial f there exists a ∈ G (f ) such that f is
the minimal polynomial for a.

Proof.

Let deg(f ) = n. Suppose first that f (0) 6= 0 and consider sequence
a generated by f from initial state 00 . . . 001. Then first n states
will be linearly independent. Let g be some other polynomial of
degree m < n. According to the definition of feedback function in
LFSR, every state generated by g is linear combination of first m
states. Therefore g cannot generate a.
Secondly, let f (x) = xkg(x), where g(0) 6= 0. It suffices to
prepend k ’anything’ to a.
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Decomposition of G (f )

Lemma 8

For every non-zero monic polynomials f , g ∈ F[x ],

1 G (f ) ⊆ G (g)⇔ f |g,

2 G (f ) ∩ G (g) = G (d) where d = GCD(f , g),

3 G (f ) ∨ G (g) = G (h) where h = lcm(f , g).

Theorem 9

Let f = f1f2 · · · fs where fi are pairwise distinct irreducible
polynomials. Than

G (f ) = G (f1)⊕ G (f2)⊕ · · · ⊕ G (fs)

.

Proof.

Induction on s.
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Trace Representation

Let U = Fq,V = Fqn and γ ∈ V . Then

TrV /U(γ) = γ + γq + γq2
+ · · ·+ γqn−1

.

Theorem 10

Let f ∈ Fq[x ] be primitive polynomial of degree n and α ∈ Fqn .
Then a ∈ G (f )⇔ there exists β ∈ Fqn such that

ai = Tr(βαi ), i = 0, 1, 2, . . . .
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