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Motivation

É Security of the public-key schemes relies on just a small
number of problems (factorization, discrete logarithm).

É Research on new cryptography schemes based on other classes
of problems is important.

É Danilo Gligoroski et al. - presented schema which is using
a special kind of quasigroups, the so-called quadratic

quasigroups. This scheme is a specialization of general
MQ-scheme (Matsumoto, Imai 1985), which relies on the
problem of �nding a solution of a system of multivariate
quadratic equations.

É In this talk I will show how this scheme works, then I will
describe the quadratic quasigroups and loops.
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General MQ-scheme

É private key: (L1,L2,P ).
É L1,L2 are automorphisms of the vector space Fn

2
(regular

matrices)
É P is an invertible map Fn

2
→ Fn

2
represented by quadratic

Boolean polynomials.

É public key: P ′ =L2 ◦P ◦L1.
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Quadratic quasigroup

Let (Fm2 ,∗) be a quasigroup upon the vector space Fm2 .

∗ : F2m2 → Fm2 , neco

∗ : (x1, . . . ,xm,y1, . . . ,ym) 7→ (z1, . . . ,zm),

where (x1, . . . ,xm) ∗ (y1, . . . ,ym) = (z1, . . . ,zm).

∗i : F2m2 → F2
∗i : (x1, . . . ,xm,y1, . . . ,ym) 7→ zi .

∗i is a boolean map. There exists corresponding boolean
polynomial fi such that

x ∗ y =
�
f1(x,y), f2(x,y), . . . , fm(x,y)

�
,

for all x,y ∈ Fm2 .
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Quadratic quasigroup

De�niton

A quasigroup with an operation �∗� on the set Fm2 is called
quadratic if there exists quadratic polynomials
fi ∈ F2[x1, . . . ,xm,y1, . . . ,ym], i = 1, . . . ,m of the order at most 2
such that

x ∗ y =
�
f1(x,y), f2(x,y), . . . , fm(x,y)

�
,

for all x,y ∈ Fm2 .

The map P : Fn2 → Fn2 is constructed from quadratic quasigroups of
order 25 in the following way:
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Properties of Gligoroski MQ-scheme

É Size of the keys (in KBytes):

n Public key Private key

140 168.7 9.8

160 251.6 11.3

200 490.8 14.8

É Speed comparison (in 1000 cycles):

Algorithm Sign Verify

DSA 1024-bit 1041 1246

ECC 1024-bit 2147 4220

RSA 1024-bit 2939 99

MQQ 160-bit 10 140



Properties of Gligoroski MQ-scheme

É Size of the keys (in KBytes):

n Public key Private key

140 168.7 9.8

160 251.6 11.3

200 490.8 14.8

É Speed comparison (in 1000 cycles):

Algorithm Sign Verify

DSA 1024-bit 1041 1246

ECC 1024-bit 2147 4220

RSA 1024-bit 2939 99

MQQ 160-bit 10 140



Cryptanalysis of MQQ

É M.S.E. Mohamed et al.: Algebraic Cryptanalysis of MQQ
Public Key Cryptosystem by MutantXL

É Possible improvement/modi�cations:

É Generate more complex quadratic quasigroups.
É Use just left quadratic quasigroups.
É Exclude some polynomials to make MQQ non-injective. Can
be still used for signing.
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Decomposition of quadratic quasigroup

Let (Fn2,∗) be a quadratic quasigroup and (f1, . . . , fn) its
representation.

Put x= (x1, . . . ,xn) a y = (y1, . . . ,yn).
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Decomposition of quadratic quasigroup

É γ is a bilinear map Fn2×Fn2 → Fn2 represented by bilinear forms.

É Denote o= (0,0, . . . ,0). Then

R
o
(x) = x ∗ o= α(x) + c, a L

o
(x) = o ∗ y = β(y) + c.

É α and β are bijective maps - quadratic permutations.
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Decomposition of quadratic quasigroup

Theorem

For every quadratic quasigroup (Fn2,∗) there exist uniquely
determined quadratic permutations α,β , a bilinear map γ and a
vector c, such that

x ∗ y = α(x) + γ(x,y) + β(y) + c,

for every x,y ∈ Fn2.
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É Then for every x,y ∈ Fn2
x ∗ y = x+ γ(x,y) + y.
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Quadratic loops of order 8

É I generated all quadratic loops of order 8.

É The number of these loops is 4384.

É 13 main classes.

É Contains all groups except the cyclic one.
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