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Introduction to Differential Cryptanalysis

Differential cryptanalysis is the method that analyses the
effect of particular differences in plaintext pairs on
differences of the resultant ciphertext pairs

It exploits the non-uniformity in the distribution of
differences in the ouput pairs.

chosen plaintext attack (known plaintext attack)

applicable to block ciphers and hash functions
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History

CRYPTO’90 - formally introduced by Eli Birham and Adi
Shamir
1991 - ”Differential cryptanalysis of DES-like
cryptosystems” - succesfull attack to weaken versions of
DES (up to 15 rounds)
other block ciphers - FEAL(up to 31 rounds), LOKI, IDEA
full 16-round DES is surprisingly resistant to differential
attacks
1994 - IBM - admitted that differential cryptanalysis was
known to IBM since 1974, after discussion with the NSA
they decided to keep it secret
Modern ciphers are designed to resist to differential
cryptanalysis with using appropriate non-linear operations.
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Differential Cryptanalysis of Block Ciphers

The goal is to assign probabilities to the possible keys and
to locate the most probable one.

The method uses many pairs of plaintexts with the same
particular difference.

For DES-like cryptosystems the differences is chosen as a
fixed XORed value of two plaintexts.
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Differential Cryptanalysis of Single Round of DES

the XOR of input pair is invariant in
the XOR of round key and is linear
in the expansion E , the permutation
P and the XOR operation that
connects the different rounds
S boxes are non linear - knowledge
of the XOR of the input pair cannot
guarantee knowledge of the XOR of
output pair.
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Differential Cryptanalysis of Single Round of DES

Observation.
For any particular input XOR not all the ouput XORs are
possible. The possible output XORs do not appear uniformly,
some XORed values appear much more frequently.

How can we get subkey bits from the S-box?
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Differential Cryptanalysis of Single Round of DES

IDEA:

S-box: input and output XORs
⇓

find the possible values of input and output pair
⇓

find the subkey bits

The method can be extended to find the whole subkey
entering F function.
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Jana Barboriková Differential Cryptanalysis and Boolean Functions



Differential Cryptanalysis of Block Ciphers

Definition (informal).
Associated with any pair of encryptions are

the difference of its two plaintexts
the difference of its two ciphertexts
the differences of the input of each round in the two
executions
the differences of the output of each round in the two
executions

These values form an n-round characteristic.

A characteristic has a probability, which is the probability that a
random pair (with the chosen plaintext difference) has the
round and ciphertext differences specified in the characteristic.
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Resistance to Differential Cryptanalysis

Well-designed S-boxes can increase resistance of the
cryptosystem to differencial attacks.

The desirable properties of S-boxes are
nonlinearity
randomness of the differences of output pairs to differences
of input pairs

We will study following criteria:
nonlinear order
balancedness
propagation criterion
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Revision

Let f and g be binary Boolean functions f , g : Zn
2 → Z2

Real-valued function f̂ : Zn
2 → R, f̂ (x) = (−1)f (x)

Inner product:

< f̂ (x), ĝ(x) >=
∑
x∈Zn

2

f̂ (x)ĝ(x)

Correlation between f and g:

C(f , g) = 2Prx∈Zn
2
[f (x) = g(x)]− 1

Walsh-Hadamard transform:

F (w) =
1
2n

∑
x∈Zn

2

f̂ (x)(−1)w t x

Walsh-Hadamard transform of f̂ can be also denoted by
W(f̂ ).
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Crosscorrelation Function

Definition

Let f̂ and ĝ be real-valued functions with domain Zn
2. The

crosscorrelation function of f̂ and ĝ is the real-valued function
over Zn

2 defined as

cf̂ ,ĝ(s) =
1
2n

∑
x∈Zn

2

f̂ (x).ĝ(x ⊕ s)

.

cf̂ ,ĝ = cĝ ,̂f

cf̂ ,ĝ(s) is proportional to C(f , g):

cf̂ ,ĝ(s) = C(f (x), g(x ⊕ s))
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Autocorrelation Function

Definition

Let f̂ be real-valued functions with domain Zn
2. The

autocorrelation function of f̂ is the real-valued function over Zn
2

defined as
rf̂ (s) =

1
2n

∑
x∈Zn

2

f̂ (x).̂f (x ⊕ s)

.

rf̂ = cf̂ ,̂f
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Example 1.

f : Z2
2 → Z2, f ((x1, x2)) = x1 ∨ x2

x1 x2 x1 f(x) f̂(x) rf̂(x)

0 1 1 1 −1 0
0 0 1 1 −1 1
1 1 0 1 −1 0
1 0 0 0 1 0

rf̂ ((0, 1)) = 1
22

∑
a∈Z2

2
f̂ (a)f̂ (a⊕(0, 1)) = 1

4 [f̂ ((0, 1))f̂ ((0, 0))+

f̂ ((0, 0))f̂ ((0, 1)) + f̂ ((1, 1))f̂ ((1, 0)) + f̂ ((1, 0))f̂ ((1, 1))] = 0

rf̂ ((x1, x2)) = x1x2
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Example 2.

g : Z3
2 → Z2, g((x1, x2, x3)) = x1 x2 x3 ∨ x1 x2 x3

x1 x2 x3 x1x2x3 x1x2x3 g(x) ĝ(x) rĝ(x)

1 0 1 0 0 0 1 0
1 1 0 0 1 1 -1 0
0 0 1 1 0 1 -1 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 1 0
0 1 1 0 0 0 1 0
1 1 1 0 0 0 1 1
0 0 0 0 0 0 1 1
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Convolution Theorem

Theorem 1.(Convolution)

Let f̂ and ĝ be real-valued functions. Then

W(cf̂ ,ĝ) =W(f̂ )×W(ĝ)

, where × is pointwise product.

Proof.

Let F =W(f̂ ), G =W(ĝ), H =W(cf̂ ,ĝ), then

F (w)G(w) = (
1
2n

∑
a∈Zn

2

f̂ (a)(−1)wT a)(
1
2n

∑
b∈Zn

2

ĝ(b)(−1)wT b)
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Convolution Theorem

Proof.

=
∑

a∈Zn
2

∑
b∈Zn

2

1
22n f̂ (a)ĝ(b)(−1)wT (a⊕b)

Set c := a⊕ b, thus b = a⊕ c. Then

F (w)G(w) =
∑

a∈Zn
2

∑
c∈Zn

2

1
22n f̂ (a)ĝ(a⊕ c)(−1)wT c

=
1
2n

∑
c∈Zn

2

(
1
2n

∑
a∈Zn

2

f̂ (a)ĝ(a⊕ c))(−1)wT c

=
1
2n

∑
c∈Zn

2

cf̂ ,ĝ(c)(−1)wT c = H(w)

�
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Wiener-Khintchine Theorem

Theorem 2.(Wiener-Khintchine)

Let f̂ be real-valued functions. Then

W(rf̂ ) =W(f̂ )2

Proof.
It follows directly from the Convolution theorem:

W(rf̂ ) =W(cf̂ ,̂f ) =W(f̂ )×W(f̂ ) =W(f̂ )2

�
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Propagation Criterion

Definition
Let f be a Boolean function on n variables. Then f satisfies the
propagation criterion of degree k PC(k), 1 ≤ k ≤ n, if f̂ (x)
changes with a probability of 1

2 whenever i bits of x are
complemented, 1 ≤ i ≤ k .

PC(k) study what happens if the input of the function is
modified
satisfying PC(k) implies that expected number of output
changes with a probability of 1

2 will not be small when k or
less input bits are changed
PC(k) generalizes the Strict avalanche criterion and the
perfect nonlinearity - SAC is equals to PC(1), perfect
nonlinearity is equals to PC(n)
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Propagation Criterion and Autocorrelation Function

There is a relation between PC(k) and autocorrelation
functions:

Proposition 1.
Let f be a Boolean function on n variables. Then

Prx∈Zn
2
[f̂ (x) 6= f̂ (x ⊕ s)] =

1
2
−

rf̂ (s)

2

Proof.

rf̂ (s) = C(f (x), f (x ⊕ s)) = 2Prx∈Zn
2
[f (x) = f (x⊕)]− 1

= 2(1− Prx∈Zn
2
[f (x) 6= f (x ⊕ s)])− 1

= 1− 2Prx∈Zn
2
[f (x) 6= f (x ⊕ s)]

= 1− 2Prx∈Zn
2
[f̂ (x) 6= f̂ (x ⊕ s)]

�
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Propagation Criterion and Autocorrelation Function

Now it is easy to restate PC(k) in terms of the autocorrelation
function:

Proposition 2.
Let f be a Boolean function on n variables. Then f satisfied
PC(k) iff

rf̂ (s) = 0 for 1 ≤ hwt(s) ≤ k

Proof
It follows directly from Proposition 1. and definition of PC(k).

�
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Example 3.

1 All Boolean functions f , f : Z2
2 → Z2, that satisfy PC(2):

x1 x2 x1 ∨ x2
x1 x2 x1 ∨ x2
x1 x2 x1 ∨ x2
x1 x2 x1 ∨ x2

2 Some Boolean functions f , f : Z3
2 → Z2, that satisfy PC(2):

x1 x2 ∨ x2 x3 ∨ x1 x3 x1 x2 x3 ∨ x1 x2 x3
x1 x2 ∨ x2 x3 ∨ x1 x3 x1 x2 x3 ∨ x1 x2 x3
x1 x2 ∨ x2 x3 ∨ x1 x3 x1 x2 ∨ x2 x3 ∨ x1 x3
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Example 4.

We use Proposition 2. to check that the function f from
Example 1. and the function g from Example 2. satisfy PC(2):

f : Z2
2 → Z2, f ((x1, x2)) = x1 ∨ x2

f satisfies PC(2) iff
rf̂ (s) = 0 for ∀s ∈ Z2

2 : 1 ≤ hwt(s) ≤ 2

hwt(s) s
0 (0,0)
1 (0,1), (1,0)
2 (1,1)

We know from Example 1.
rf̂ ((0, 0)) = 1
rf̂ (s) = 0 ∀s ∈ Z2

2 r {(0, 0)}
It implies that f satisfies PC(2).
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Example 5.

g : Z3
2 → Z2, g((x1, x2, x3)) = x1 x2 x3 ∨ x1 x2 x3

g satisfies PC(2) iff
rĝ(s) = 0 for ∀s ∈ Z3

2 : 1 ≤ hwt(s) ≤ 2

hwt(s) s
0 (0,0,0)
1 (0,0,1), (0,1,0), (1,0,0)
2 (1,1,0), (1,0,1), (0,1,1)
3 (1,1,1)

We know from Example 2.
rĝ(s) = 1 ∀s ∈ {(0, 0, 0), (1, 1, 1)}
rĝ(s) = 0 ∀s ∈ Z3

2 r {(0, 0, 0), (1, 1, 1)}
It implies that g satisfies PC(2).
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The End

Thank you for your attention:)
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