
Mordell-Weil Theorem
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The Group of Rational Points

• The set of all rational points on a non-singular elliptic curve
forms a group.

• The group is Abelian.
• We will show that the group of rational points on a non-singular

elliptic curve is finitely generated:

Γ ∼= Z⊕ . . .⊕ Z⊕ Zpe1
1
⊕ . . .⊕ Zp

ek
k

• Singular case?
• For a singular curve C we define a set Cns = {P ∈ C : P is not

a singular point }. Cns forms a group and the set of rational
points Csn(Q) is also a group.

• It is not difficult to show that the group Csn(Q) is not finitely
generated.
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Height

We begin by defining the height of a rational number.

Definition
Let x = m

n be a rational number written in lowest terms. Then we
define the height

H(x) = H
(m

n

)
= max{|m|, |n|}.

Definition
Let P = (x , y) be a rational point on a elliptic curve C. Then we
define the height of P

H(P) = H(x).
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Basic facts about Height

• The set of all rational numbers whose height is less than some
fixed number is finite.

• The Height has some multiplicative behaviour.
• We have rather something that behaves additively so we define

h(P) = log H(P).

• Let O be a point at infinity. We define H(O) = 1, h(O) = 0.

5 of 18



Basic facts about Height

• The set of all rational numbers whose height is less than some
fixed number is finite.

• The Height has some multiplicative behaviour.

• We have rather something that behaves additively so we define

h(P) = log H(P).

• Let O be a point at infinity. We define H(O) = 1, h(O) = 0.

5 of 18



Basic facts about Height

• The set of all rational numbers whose height is less than some
fixed number is finite.

• The Height has some multiplicative behaviour.
• We have rather something that behaves additively so we define

h(P) = log H(P).

• Let O be a point at infinity. We define H(O) = 1, h(O) = 0.

5 of 18



Basic facts about Height

• The set of all rational numbers whose height is less than some
fixed number is finite.

• The Height has some multiplicative behaviour.
• We have rather something that behaves additively so we define

h(P) = log H(P).

• Let O be a point at infinity. We define H(O) = 1, h(O) = 0.

5 of 18



Supporting Lemmas

Let y2 = x3 + ax2 + bx + c be a non-singular curve C with
a,b, c ∈ Z.

Lemma (1)
For every real number M, the set

{P ∈ C(Q) : h(P) ≤ M}

is finite.

Lemma (2)
Let P0 be a fixed rational point on C. There is a constant κ0,
depending on P0 and on a,b, c, so that

h(P + P0) ≤ 2h(P) + κ0 for all P ∈ C(Q).
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Supporting Lemmas

Lemma (3)
There is a constant κ, depending on a,b, c, so that

h(2P) ≥ 4h(P)− κ for all P ∈ C(Q).

Lemma (4)
The index (C(Q) : 2C(Q)) is finite.
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Mordell-Weil Theorem

Theorem (Mordell-Weil Theorem)
Let C be a non-singular cubic curve given by an equation

C : y2 = x3 + ax2 + bx ,

where a,b ∈ Z. Then the group of rational points Γ = C(Q) is a
finitely generated abelian group.
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Idea of Proof

• Lemma 4 gives us something finite.

• So we start with this lemma.
• If we will be able to express every point from Γ as a sum of the

representatives for the cosets of 2Γ and some others points
about which we know that they have some limited height.

• Then according to Lemma 1 we are finished.
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Proof of Mordell-Weil Theorem

• From Lemma 4 we know that there are only finitely many
cosets of 2Γ in Γ.

• Let Q1, . . . ,Qn be representatives for the cosets, where n ∈ N.
• So take P ∈ Γ. Then there is an index i1 such that

P −Qi1 ∈ 2Γ.

• In other words there exists P1 ∈ Γ such that

P −Qi1 = 2P1.

• We can do the same thing with P1, P2, etc...
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Proof of Mordell-Weil Theorem

• We get:

P −Qi1 = 2P1

P1 −Qi2 = 2P2

...
Pm−1 −Qim = 2Pm

• So we can express P as

P = Qi1 + 2Qi2 + 4Qi3 + . . .+ 2m−1Qim−1 + 2mPm.

• Now we want to show that for m large enough, the height of Pm
is less than a certain fixed bound.
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Proof of Mordell-Weil Theorem

• If we fix Qi , we get a constant κi from Lemma 2 such that

h(P −Qi) ≤ 2h(P) + κi for all P ∈ Γ.

• So let κ′ be the largest of {κi ; 1 ≤ i ≤ n}.
• If we use Lemma 3, we get

4h(Pj) ≤ h(2Pj) + κ = h(Pj−1 −Qij ) + κ ≤ 2h(Pj−1) + κ+ κ′.

• We rewrite this as

h(Pj) ≤
1
2

h(Pj−1) +
κ+ κ′

4
=

=
3
4

h(Pj−1)− 1
4

(h(Pj−1)− (κ+ κ′)).
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Proof of Mordell-Weil Theorem

• We have a sequence of points P,P1,P2, . . .

• If h(Pj−1) ≥ κ+ κ′, then

h(Pj) ≤
3
4

h(Pj−1).

• Because
(3

4

)k ↘ 0 for k →∞, there is an index m such that
h(Pm) ≤ κ+ κ′.

• We have shown that every point P ∈ Γ can be written in the
form

P = a1Q1 + a2Q2 + a3Q3 + . . .+ anQn + 2mR,

where ai ∈ Z and h(R) ≤ κ+ κ′.
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Proof of Mordell-Weil Theorem

So the set

{Q1,Q2,Q3, . . . ,Qn} ∪ {R ∈ Γ : h(R) ≤ κ+ κ′}

generates Γ. From Lemma 1 and Lemma 4, this set is finite.
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Rank

Definition
Let

Γ ∼= Z⊕ . . .⊕ Z︸ ︷︷ ︸
r×

⊕Zpe1
1
⊕ . . .⊕ Zp

ek
k

be the group of rational points on the elliptic curve, then integer r
is called the rank of Γ.
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Torsion subgroup

The group Γ is finite if and only if r = 0.

Theorem (Mazur)
The torsion subgroup of Γ is isomorphic to exactly one of the
following groups:

Zn 1 ≤ n ≤ 10 or n = 12,

Z2 ⊕ Z2n 1 ≤ n ≤ 4.

So we know exactly how the torsion subgroup looks like.
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Possible values of Rank

• There isn’t any algorithm that could compute a rank of arbitrary
curve.

• We suppose that there do not exist any limit for a rank.
• Elkies (2009) found a curve with the rank 19 (exactly).
• Elkies (2006) found a curve with the rank at least 28.
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Q&A

Thank you for your attention.
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