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Latin square

A Latin square of order n is an n × n table filled with n copies
of each of n different symbols in which no symbol is repeated
in any row or column.

1 2 3 4 5
2 3 5 1 4
3 5 4 2 1
4 1 2 5 3
5 4 1 3 2

3 1 2
2 3 1
1 2 3
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Quasigroup

A quasigroup of order n is a set of n symbols with a binary
operation such that its Cayley table corresponds to a Latin
square of order n.

1 0 3 2
0 3 2 1
2 1 0 3
3 2 1 0

· 0 1 2 3
0 1 0 3 2
1 0 3 2 1
2 2 1 0 3
3 3 2 1 0

The number of Latin square of order n = The number of
quasigroups of order n.
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Formal definition of a quasigroup

A quasigroup is a set Q with a binary operation
∗ : Q × Q → Q such that for each u, v ∈ Q there exist unique
x , y ∈ Q which satisfy u ∗ x = v and y ∗ u = v .

Equivalently:

A quasigroup is a set Q with binary operations ∗, \, / such
that for all u, v ∈ Q the following conditions are satisfied:

u\(u · v) = v u · (u\v) = v

(v · u)/u = v (v/u) · u = v
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The number of Latin squares/quasigroups of order

n

There is no known easily-computable formula for the number
of quasigroups of order n.

There exist some lower and upper bounds for the number of
the Latin squares/quasigroups, L(n), where n is large. For
example

n∏
k=1

(k!)n/k ≥ L(n) ≥ (n!)2n

nn2

(given by van Lint and Wilson).
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Andrea Frisová Quasigroups and their use in cryptography



The number of Latin squares of order n

n Number of Latin squares of order n Reference

1 1

2 2

3 12

4 576

5 161280
Euler (1782), Cayley (1890),

MacMahon (1915; incorrect value)

6 812851200 Frolov (1890) and Tarry (1900)

7 61479419904000

Frolov (1890, incorrect),

Norton (1939, incomplete),

Sade (1948), Saxena (1951)

8 108776032459082956800 Wells (1967)

9 5524751496156892842531225600 Bammel and Rothstein (1975)

10 9982437658213039871725064756920320000 McKay and Rogoyski (1995)

11 776966836171770144107444346734230682311065600000 McKay and Wanless (2005)

12 12! · 11! · 1.62 · 1044 McKay and Rogoyski (1995)

13 13! · 12! · 2.51 · 1056 McKay and Rogoyski (1995)

14 14! · 13! · 2.33 · 1070 McKay and Rogoyski (1995)

15 15! · 14! · 1.5 · 1086 McKay and Rogoyski (1995)
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Isotopy

An isotopy between quasigroups (Q, ∗) and (P , ·) is a triple
(α, β, γ) of bijections from Q onto P such that

α(x) · β(y) = γ(x ∗ y) for all x , y in Q.

We then say that quasigroups (Q, ∗) and (P , ·) are isotopic.

In terms of Latin squares, the map α corresponds to a
permutation of rows, β to a permutation of columns, and γ to
permutation of the set of symbols.

1 0 3 2
0 3 2 1
2 1 0 3
3 2 1 0

3 0 1 2
2 3 0 1
0 1 2 3
1 2 3 0

0 1 2 3
2 3 0 1
3 0 1 2
1 2 3 0

1 0 2 3
2 3 1 0
3 1 0 2
0 2 3 1
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Loop

A loop is a quasigroup with a unit.

Proposition 1

Each quasigroup is isotopic to a loop.

Proposition 2

Each loop isotopic to a group is a group.
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Andrea Frisová Quasigroups and their use in cryptography



Loop

A loop is a quasigroup with a unit.

Proposition 1

Each quasigroup is isotopic to a loop.

Proposition 2

Each loop isotopic to a group is a group.
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Proposition 3

Isotopic groups are isomorphic.
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Central and medial quasigroups

A central quasigroup is a quasigroup (Q, ∗) such that there
exists an Abelian group (Q,+), α, β ∈ Aut((Q,+)), and
c ∈ Q such that

x ∗ y = α(x) + β(y) + c for all x , y ∈ Q.

A medial quasigroup is a central quasigroup such that the
automorphisms α and β commute.

Proposition 4

Each central quasigroup is isotopic to an Abelian group.
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Quasigroups in cryptography

Quasigroups can be used in

symmetric-key cryptography – stream cipher Edon-80

public-key cryptography – MQQ (next talk by Adam
Christov)

hash functions – Edon-R.

All designed by D. Gligoroski and collaborators.
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Andrea Frisová Quasigroups and their use in cryptography



Quasigroups in cryptography

Quasigroups can be used in

symmetric-key cryptography – stream cipher Edon-80

public-key cryptography – MQQ (next talk by Adam
Christov)

hash functions – Edon-R.

All designed by D. Gligoroski and collaborators.
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Edon-R

Quasigroups which are used in the hash function Edon-R have
large order.
They are isotopic to the Abelian group (Zn

2,+) for n = 256 or
n = 512.
Bijections α and β are generated by using certain matrices.
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Edon-80 – quasigroups

Stream cipher Edon-80 uses four quasigroups of order 4. They
are:

isotopic to an Abelian group (Z4,+)

non-medial

non-central
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Edon-80 – Description

Edon-80 is a binary additive stream cipher:

Edon-80
KEYSTREAM
GENERATOR

IV

k

ki

Input stream
mi or ci

Output stream
ci or mi

k = K0 . . .K39 is a key
IV = v0 . . . v39 is an initialisation value
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Edon-80 – Description

A keystream is generated using the following map:

τ(∗, y) : (ai)→ (bi).

a0 a1 a2 a3 . . .

∗ y

y ∗ a0 (y ∗ a0) ∗ a1 ((y ∗ a0) ∗ a1) ∗ a2 . . .

b0 = y ∗ a0,
bi = bi−1 ∗ ai for i > 0.
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Andrea Frisová Quasigroups and their use in cryptography



Edon-80 – Description

A keystream is generated using the following map:

τ(∗, y) : (ai)→ (bi).

a0 a1 a2 a3 . . .

∗ y y ∗ a0 (y ∗ a0) ∗ a1 ((y ∗ a0) ∗ a1) ∗ a2

. . .

b0 = y ∗ a0,
bi = bi−1 ∗ ai for i > 0.
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Edon-80 – Keystream generator

Keystream generator of Edon-80 has 3 phases:

KeySetup – the output is 80 quasigroups (Q, ∗i)
i = 0, 1, . . . , 79

IVSetup – values y0, . . . , y79, yi ∈ {0, 1, 2, 3} are
generated from IV and the key

Keystream

∗i 0 1 2 3 0 1 2 · · ·
∗0 y0

t0,0 t0,1 t0,2 t0,3 t0,4 t0,5 t0,6 · · ·

∗1 y1

t1,0 t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 · · ·

...
...

...
...

...
...

...
...

...

∗79 y79

t79,0 t79,1 t79,2 t79,3 t79,4 t79,5 t79,6 · · ·
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IVSetup – values y0, . . . , y79, yi ∈ {0, 1, 2, 3} are
generated from IV and the key

Keystream

∗i 0 1 2 3 0 1 2 · · ·
∗0 y0 t0,0 t0,1 t0,2 t0,3 t0,4 t0,5 t0,6 · · ·
∗1 y1 t1,0 t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 · · ·
...

...

...
...

...
...

...
...

...

∗79 y79

t79,0 t79,1 t79,2 t79,3 t79,4 t79,5 t79,6 · · ·
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Our modification

We suppose that

∗ = ∗i for all i = 1, 2, . . . , 79 (we use only one
quasigroup),

X = (xi) a periodic sequence with a period PX instead of
sequence 012301230123 . . . , and

Y = (yi) a sequence with no special property (we have
arbitrary number of rows).

∗ x0 x1 x2 x3 x4 x5 x6 · · ·
y0
y1
y2
y3
...
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Periods

We want to know something about the periods of the rows.
Why?

There are some indications that Edon-80 may generate a
keystream with short periods (for some input values).
This is a main reason for its failure in eSTREAM,
ECRYPT stream cipher project.

Which quasigroups are the most suitable for Edon-80?
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Periods for central quasigroups

For central quasigroups, this problem leads to the problem in
the group ring ZeG [Aut(G )].

We already have ’good’ upper bound of the periods for medial
quasigroups and for central quasigroups of order 4.

Quasigroup Underlying
Pi eG lcm(PX , Pi )

type group

Medial Z2 × Z2 2dlog2 ie 2 lcm(PX , 2dlog2 ie)

Central, non-medial Z2 × Z2
3
2
·2dlog2 ie 2 lcm(PX , 3

2
· 2dlog2 ie)

Central, non-medial Z2 × Z2 2·2dlog2 ie 2 lcm(PX , 2 · 2dlog2 ie)

Medial Z4 2·2dlog2 ie 4 lcm(PX , 2 · 2dlog2 ie)

Medial Z2 × Z2 3·2dlog2 ie 2 lcm(PX , 3 · 2dlog2 ie)
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Thank you for your attention!
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