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History

In the 1650’s French mathematician Pierre de Fermat wanted to
show to the English mathematical community that he is better
than they are. Therefore he declared that he knew the proof of
assertion that the only integer solutions of the equation
y2 + 2 = x3 are (3,±5).

Nobody of Fermat’s contemporaries
solved this problem and a correct proof was given 150 years later.
The program of this lecture will be an elementary proof of this
assertion.
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Attraction

Suppose we are interested in solutions of this equation in rational
numbers. It is interesting that there is so-called duplication
formula (which can be derived from adding point (x , y) with itself
in a group which contains all points of cubic (elliptic) curve
y2 = x3 − 2): if (x , y) ∈ Q2 is a solution of the equation
y2 + 2 = x3, then another solution is also(

x4 + 16x

4y2
,
x6 − 40x3 − 32

8y3

)
.

So we obtain a sequence of solutions:

(3, 5),

(
129

102
,−383

103

)
,

(
2 340 922 881

7 6602
,

113 259 286 337 279

7 6603

)
, . . . .

Using Nagell-Lutz theorem we can prove that in this way we obtain
infinite number of distinct solutions of this equation. But in
integers there are only two solutions, so let’s prove this assertion.
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Our equation is equivalent to(
y +
√
−2

) (
y −
√
−2

)
= x3,

which is an equation in the integral domain
Z[
√
−2] = {a + b

√
−2; a, b ∈ Z}. Main part of the solution is

proving the fact that if (y +
√
−2)(y −

√
−2) = x3 for x , y ∈ Z,

then y +
√
−2 is a cube in Z[

√
−2], i.e. there exist a, b ∈ Z such

that y +
√
−2 = (a + b

√
−2)3. Then

y +
√
−2 = (a3 − 6ab2) + (3a2b − 2b3)

√
−2.

Comparing the real and imaginary parts we obtain

y = a3 − 6ab2 = a · (a2 − 6b2),

1 = 3a2b − 2b2 = b · (3a2 − 2b2).

Hence b | 1 so b = ±1. It follows that a = ±1. Substituting these
values into the first equation, we find that y = ±5. Because
x3 = (±5)2 + 2, then x = 3, hence the only solutions of given
equation are (x , y) = ±5.
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Let’s turn our attention to the equality

k · l = x3.

If it is an equality in the integral domain (Z,+, ·), then, by the
theorem about unique factorization into primes, we may write
x = ±pα1

1 · . . . · pαs
s and

k · l = (±1)3p3α1
1 · . . . · p3αs

s ,

where the set of primes {p1, . . . , ps} and exponents α1, . . . , αs ∈ N
are unique. If also gcd(k , l) = 1 (i.e. k, l are relatively prime),
then by uniqueness of factorization we obtain

k = ±p
3αi1
i1
· . . . · p3αic

ic
, l = ±p

3αj1
j1
· . . . · p3αjd

jd

for suitable mutually distinct i1, . . . , ic , j1, . . . , jd ∈ {1, . . . , s}.
Because 1 and −1 are cubes in Z, there exist k1, l1 ∈ Z such that

k = k3
1 , l = l31 .



Introduction Norm Map and Its Usefulness Uniqueness of the Factorization Finishing the Solution of y2 + 2 = x3

Possible Problems

If Z[
√
−2] is also unique factorization domain (UFD), it is a chance

that we’ll be able to finish the proof that y +
√
−2 is a cube in

Z[
√
−2]. But for integral domains Z[

√
D], where D ∈ Z \ {0, 1} is

square-free, the situation about the equality k · l = x3 is relatively
complicated.

For example in Z[
√
−23] (which isn’t UFD) we have(

2 +
√
−23

) (
2−
√
−23

)
= 33

(which is very similar to the equation (y +
√
−2)(y −

√
−2) = x3),

but 2±
√
−23 and 3 are irreducibles (i.e. they have similar

properties as primes in Z), hence 2 +
√
−23 and 2−

√
−23 are

relatively prime but there are no k1, l1 ∈ Z[
√
−23] such that

2 +
√
−23 = k3

1 and 2−
√
−23 = l31 .
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Some problems may be also caused by units (invertible elements)
in Z[

√
D]. For example in Z[

√
2] (which is by the way UFD) it is

true that all units are ±(1 +
√

2)n for n ∈ Z. Surely
(1 +

√
2)(1 +

√
2)2 = (1 +

√
2)3, but 1 +

√
2 isn’t a cube in

Z[
√

2]: if

1 +
√

2 = (a + b
√

2)3 = a3 + 3a2b
√

2 + 6ab2 + 2b3
√

2,

then
1 = a · (a2 + 6b2), 1 = b · (3a2 + 2b2),

hence a | 1 and b | 1, so a = ±1, b = ±1 and after substituting
into the first equation we obtain 1 = ±7 which is impossible.
Further 1 +

√
2 and (1 +

√
2)2 are relatively prime because both

numbers are invertible in Z[
√

2].

So we see that during analysis of
the equation (y +

√
−2)(y −

√
−2) = x3, we must be careful of

units in Z[
√
−2] and it will be useful to prove that Z[

√
−2] is

UFD. For doing this, we need to define some terms. We have
already used informally some of these terms.
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Necessary Definitions

Definition

Let R be an integral domain. If a, b ∈ R, we’ll say that a divides b
and write a | b if there exists some c ∈ R such that ac = b.
Any divisor of 1 (i.e. invertible element) is called unit.
We’ll say that a and b are associates and write a ∼ b if there
exists a unit u ∈ R such that a = bu.
We’ll say that π ∈ R \ {0} is irreducible if π is not a unit and for
any factorization π = bc, either b or c is a unit.
We’ll say that a, b ∈ R are relatively prime if

∀r ∈ R : r | a and r | b ⇒ r is a unit.
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Norm Map

Definition

Let R be an integral domain. If there is a map N : R \ {0} → N
such that:

(i) ∀a, b ∈ R \ {0} : N(ab) = N(a)N(b),

(ii) N(a) = 1⇔ a is a unit,

this map is called a norm map.

Now using a norm we’ll prove the existence of the factorization
into primes in Z[

√
−2].
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Existence of the Factorization

Proposition

Let R be an integral domain with a norm map N. Then every
nonunit element a ∈ R \ {0} can be written as a product of
irreducible elements.

Proof.

Let S be the set of all nonunit elements of R \ {0} that cannot be
written as a product of irreducibles. If S 6= ∅, take a ∈ S with the
least norm. Since a isn’t irreducible, then there exist nonunits
b, c ∈ R \ {0} such that a = bc. Then N(a) = N(b)N(c) and
N(b) > 1,N(c) > 1, hence N(b) < N(a) and N(c) < N(a). Then
b, c /∈ S and we can write b and c as a product of irreducibles.
Hence we can write also a = b · c as a product of irreducibles,
which is a contradiction because a ∈ S . Then S = ∅ and the
proposition is proved.
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Existence of the Factorization

Corollary

Let D ∈ Z \ {0, 1} be square-free. Then every nonunit and nonzero
element of integral domain Z[

√
D] = {a + b

√
D; a, b ∈ Z} can be

written as a product of irreducible elements.

Proof. . .

Define N : Z[
√

D] \ {0} → N as follows: for any
a + b

√
D ∈ Z[

√
D] \ {0} put

N(a + b
√

D) = |a2 − b2D|.

We must verify that this map satisfies conditions (i) and (ii) for a
norm map.
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Existence of the Factorization

Proof (continuation)

(i) For a + b
√

D, c + d
√

D ∈ Z[
√

D] \ {0}:

N[(a + b
√

D)(c + d
√

D)] = N[(ac + bdD) + (ad + bc)
√

D] =

= |(ac + bdD)2 − (ad + bc)2D| =

= |(a2 − b2D)(c2 − d2D)| =

= N(a + b
√

D)N(c + d
√

D),

so the condition (i) is satisfied.

(ii) a + b
√

D is a unit ⇒
∃c + d

√
D : (a + b

√
D)(c + d

√
D) = 1⇒

∃c + d
√

D : N(a + b
√

D)N(c + d
√

D) = N(1) = 1⇒
∃c + d

√
D : N(a + b

√
D) = 1 and N(c + d

√
D) = 1⇒

N(a + b
√

D) = 1.
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Existence of the Factorization

Proof (completion)

Conversely, if N(a + b
√

D) = 1, then a2 − b2D = ±1, hence

1

a2 − b2D
· (a− b

√
D) ∈ Z[

√
D] \ {0}.

Since[
1

a2 − b2D
· (a− b

√
D)

]
· (a + b

√
D) =

a2 − b2D

a2 − b2D
= 1,

a + b
√

D is a unit.

Since N is a norm map, by previous proposition every nonunit
element a ∈ Z[

√
D] \ {0} can be written as a product of irreducible

elements.
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Existence of the Factorization

Corollary

Every nonunit and nonzero element of Z[
√
−2] can be written as a

product of irreducible elements. The only units in Z[
√
−2] are ±1.

Proof.

We have proved that

N : Z[
√
−2] \ {0} → N, N(a + b

√
−2) = a2 + 2b2

is a norm map. Hence a + b
√
−2 is a unit

⇔ a2 + 2b2 = 1⇔ a2 = 1 and b2 = 0⇔ a = ±1 and b = 0.

The existence of the factorization into primes in Z[
√
−2] is proved,

we want to prove also uniqueness.
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Unique Factorization Domains

Definition

Let R be an integral domain. We’ll say that R is a unique
factorization domain (UFD) if two conditions are fulfilled:

(i) every nonunit a ∈ R \ {0} can be written as a product of
irreducibles,

(ii) this factorization is unique in the sense that if
a = π1 · . . . · πr = τ1 · . . . · τs are two such decompositions,
then r = s and after suitable permutation, πi ∼ τi .

We have proved that condition (i) is fulfilled for all Z[
√

D] where
D ∈ Z \ {0, 1} is square-free. But condition (ii) is fulfilled only
sometimes:
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Unique Factorization Domains

if D < 0 then (ii) holds true only for D ∈ {−1,−2} but if
D ∈ {−3,−7,−11,−19,−43,−67,−163} it can be repaired

if we take Z[1+
√

D
2 ] and these are all negative values when we

obtain UFD in this way (but the proof of this assertion is very
hard);

if D > 0, the situation is different: it is conjectured that we
can obtain UFD for infinitely many values of D but it is still
an open problem.

Because the uniqueness of factorization in Z follows from the
theorem on the division with remainder, we will prove the
uniqueness of factorization in Z[

√
−2] in a similar way. First we

must define a division with remainder generally in integral domains.
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Definition

An integral domain R is a Euclidean domain if there is a map
ϕ : R \ {0} → N such that

∀a ∈ R, b ∈ R \ {0} : ∃q, r ∈ R : a = bq + r

where r = 0 or ϕ(r) < ϕ(b).

Proposition

Z[
√
−2] is a Euclidean domain.

Proof. . .

We take the norm N as a map ϕ. For
a ∈ Z[

√
−2], b ∈ Z[

√
−2] \ {0} we consider a/b = ab̄/bb̄, where b̄

is complex conjugation of b. Notice that ab̄ ∈ Z[
√
−2] and

bb̄ = N(b) ∈ N, so

a

b
=

ab̄

bb̄
= c + d

√
−2 ∈ Q[

√
−2].
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Proof (completion)

We choose m, n ∈ Z as close as possible to c and d so |m− c | ≤ 1
2

and |n − d | ≤ 1
2 . Let q = m + n

√
−2, so we write a = bq + r and

r = a− bq. If r 6= 0, then

N(r) = N(a− bq) =

= N[b(c + d
√
−2)− b(m + n

√
−2)] =

= N[b((c −m) + (d − n)
√
−2)] =

= b[(c −m) + (d − n)
√
−2] · b[(c −m) + (d − n)

√
−2] =

= b[(c −m) + (d − n)
√
−2] · b̄[(c −m)− (d − n)

√
−2] =

= bb̄[(c −m)2 + 2(d − n)2] ≤ N(b)

(
1

4
+

1

2

)
<

< N(b),

hence Z[
√
−2] is a Euclidean domain.
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Bezout Identity

It is well-known fact that every Euclidean domain is UFD but it
wasn’t probably well-known for Fermat and his contemporaries so
we will prove the uniqueness of the factorization in Z[

√
−2] in

another way.

Proposition

Let R be a Euclidean domain and a, b ∈ R are relatively prime.
Then there exist x , y ∈ R such that ax + by = 1.

Proof. . .

If a or b is a unit, we can take x = a−1, y = 0 or x = 0, y = b−1.
Otherwise N(a) > 1,N(b) > 1 and we’ll divide with remainder.
We want to obtain remainder with norm 1.
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Bezout Identity

Proof (completion)

a = bq1 + r1, where N(r1) < N(b) (r1 6= 0 because otherwise b | a,
which is cotradiction with an assumption that a, b are relatively
prime). If N(r1) = 1, we are lucky, otherwise

b = r1q1 + r2, where N(r2) < N(r1) (r2 6= 0 because otherwise
r1 | b, r1 | a and r1 isn’t a unit - cotradiction).

Continuing in this procedure we obtain after finite steps rk ∈ R
with N(rk) = 1, hence rk is a unit. Working backwards we see that
rk = ax1 + by1 for some x1, y1 ∈ R, so

1 = ax1r
−1
k + by1r

−1
k

and the proposition is proved.
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Euclidean Domains

Proposition

Let R be a Euclidean domain, let π ∈ R be irreducible and
a, b ∈ R. If π | ab then π | a or π | b.

Proof.

If π | a we are lucky, so suppose π | ab and π - a. If r | π and r | a
for r ∈ R, then exist c, d ∈ R such that rc = π, rd = a. If c is a
unit, then r = πc−1, so πc−1d = a, then π | a - contradiction.
Because π is irreducible, rc = π and c isn’t a unit, r must be a
unit. We supposed that r | π, r | a and we proved that then r is a
unit. Hence π and a are relatively prime and by previous
proposition there exist x , y ∈ R such that πx + ay = 1. Then

πbx + aby = b.

Since π | ab ⇒ π | (πbx + aby) = b which we wanted to prove.



Introduction Norm Map and Its Usefulness Uniqueness of the Factorization Finishing the Solution of y2 + 2 = x3

Euclidean Domains

Proposition

Let R be a Euclidean domain, let π ∈ R be irreducible and
a, b ∈ R. If π | ab then π | a or π | b.

Proof.

If π | a we are lucky, so suppose π | ab and π - a. If r | π and r | a
for r ∈ R, then exist c, d ∈ R such that rc = π, rd = a. If c is a
unit, then r = πc−1, so πc−1d = a, then π | a - contradiction.
Because π is irreducible, rc = π and c isn’t a unit, r must be a
unit. We supposed that r | π, r | a and we proved that then r is a
unit. Hence π and a are relatively prime and by previous
proposition there exist x , y ∈ R such that πx + ay = 1. Then

πbx + aby = b.

Since π | ab ⇒ π | (πbx + aby) = b which we wanted to prove.



Introduction Norm Map and Its Usefulness Uniqueness of the Factorization Finishing the Solution of y2 + 2 = x3

Euclidean Domains

Theorem

Let R be a Euclidean domain with a norm map. Then R is UFD.

Proof. . .

We have already proved that in every integral domain with a norm
map every nonzero and nonunit element can be written as a
product of irreducible elements. Hence it suffice to prove the
uniqueness. Suppose we have a ∈ R that has two factorizations
into irreducibles:

a = π1 · . . . · πr = τ1 · . . . · τs , where r ≥ s.

Then τ1 | π1 · . . . · πr and by previous proposition, τ1 | πi for some i
and since both are irreducible, they must be associate. Without
loss of generality we can let πi be π1, so there is a unit u1 ∈ R
such that τ1 = π1u1. Then
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Proof (completion)

π1π2 · . . . · πr = π1u1τ2 · . . . · τs ⇒
π1(π2 · . . . · πr − u1τ2 · . . . · τs) = 0⇒

π2 · . . . · πr − u1τ2 · . . . · τs = 0⇒ π2 · . . . · πr = u1τ2 · . . . · τs .

Following the same process we can pair up u1τ2 with its associate
and we can continue to do this until we have paired up each of the
irreducible factors τi with associate πj . If r > s, we obtain
πs+1 · . . . · πr = 1 which is impossible because πj aren’t units. So
r = s and the theorem is proved.

Let us mention that even a stronger theorem is true: every
Euclidean domain is UFD, but proof isn’t so short and needs ideals
which weren’t discovered at the time of Fermat.

Corollary

Z[
√
−2] is UFD.
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We can now continue to solve the equation y2 + 2 = x3 which is
equivalent to (y +

√
−2)(y −

√
−2) = x3. If y is even then x is

also, but then x3 ≡ 0 (mod 4) whereas y2 + 2 ≡ 2 (mod 4). So y
and x are both odd.
If r | y +

√
−2 and r | y −

√
−2 then

r | [(y +
√
−2)− (y −

√
−2)] = 2

√
−2

so N(r) | N(2
√
−2) = 8. But N(r) | N(y +

√
−2) = y2 + 2 which

is odd. It is possible only if N(r) = 1, so r is a unit and then
y +
√
−2 and y −

√
−2 are relatively prime.

Since there is a factorization into irreducibles in Z[
√
−2] and

x /∈ {0,±1}, then x = π1 · . . . · πr (π1, . . . , πr are irreducibles in
Z[
√
−2]) and

x3 = π3
1 · . . . · π3

r = (y +
√
−2)(y −

√
−2).
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Since Z[
√
−2] is UFD, then there exist mutually different

i1, . . . , ic ∈ {1, . . . , s} such that

y +
√
−2 = u · π3

i1 · . . . · π
3
ic ,

where u is a unit of Z[
√
−2], because otherwise y +

√
−2 and

y −
√
−2 couldn’t be relatively prime. As the only units of Z[

√
−2]

are ±1, which are both cubes, then

y +
√
−2 = (±πi1 · . . . · πic )3 = (a + b

√
−2)3

for some a, b ∈ Z. We proved at the beginning of this lecture that
then we have y = ±5 and x = 3. We have proved that the only
solutions of the equation y2 + 2 = x3 in integers are (3,±5).
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