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Let’s start with a mathematical joke :)

There was a competition in constructing proofs in feminine logic.
The first price was won by random number generator.
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What does it mean to break a cipher?

It is not enough just to find what is in the message in order to
break it. In some cases this can be done by statistical analysis.
We want to obtain some useful information about the key (e.g.
values of some bits or their combination).
It is essential that that any attacker with reasonable
computing power is unable to break the cipher from knowledge
of plaitexts - ciphertext pairs.
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Real life examples of attack scenarios.

Cipher text only.
I’ve found something, what is in there?

Known plaintext.
I know what is in there, does it help?

Chosen plaintext.
I can decide what is in there, I have the power, muhehehe...

Chosen cipher text.
I don’t know what’s inside, but I have a plan.
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Matsui’s method

1993: Mitsuru Matsui - Linear Cryptanalysis method for DES Cipher
Suppose that the following equation holds with probability p 6= 1

2 .

P[i1, . . . , ia] + C [j1, . . . , jb] = K [k1, . . . , kc ]

Where:

P is the plaintext
C is the ciphertext
K is the key
i1, . . . , ia, j1, . . . , jb, k1, . . . , kc are some fixed bit locations

A[a1, . . . , an] =
n∑

k=1

A[ak ]
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Matsui’s method

Let T be the number of plaintexts such that the left side of

P[i1, . . . , ia] + C [j1, . . . , jb] = K [k1, . . . , kc ]

is equal to zero.

If T > N
2 (N is the number of plaintexts),

then guess K [k1, . . . , kc ] = 0 (when p > 1
2) or 1 (when p < 1

2),
else guess K [k1, . . . , kc ] = 1 (when p > 1

2) or 0 (when p < 1
2).
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What is important

Success rate of the Matsui’s method increases with N and
∣∣p − 1

2

∣∣.
Therefore we need the best linear expression (

∣∣p − 1
2

∣∣ is maximal).
We need to:

1 Find effective linear expressions.
2 Find explicit description of the success rate by N and p.
3 Find the best expression and calculate the best probability.
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Success rate estimates

Let N be the number of given random plaintexts and let p be the
probability that equation

P[i1, . . . , ia] + C [j1, . . . , jb] = K [k1, . . . , kc ]

holds. Then the success rate of Matsui’s method is∫ ∞
−2
√

N|p− 1
2 |

1√
2π

e−
x2
2 dx .

We show some numerical estimates.

N 1
4

∣∣p − 1
2

∣∣−2 1
2

∣∣p − 1
2

∣∣−2 ∣∣p − 1
2

∣∣−2 2
∣∣p − 1

2

∣∣−2

Success rate 84,1% 92,1% 97,7% 99,8%
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Importance of nonlinearity in Boolean functions

What if the relationship between plaintext, ciphertext and key was
linear?
Let’s consider function

f (P,K )[i ] = P[ai ,1, . . . , ai ,b] + K [ci ,1, . . . , ci ,d ],

where i , b, d ∈ {1, . . . , n}. Then all we need to do to obtain the key
is to get n linearly independent plaintexts and their corresponding
ciphertexts and solve n linear equations over Z2. It is obvious, that
for the sake of cryptographic use we want the function f : Zn

2 → Zn
2

as nonlinear as possible.
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W-H spectrum as a measure of nonlinearity

What does the Walsh-Hadamard spectrum of a function tell us
about its behavior?
Let’s say we have function f : Zn

2 → Z2. There are 2n linear
functions from Zn

2 to Zn
2 (we will denote them l0, ..., l2n−1). Then

W (f (a)) is a real vector of correlation coefficients of f against
those linear functions (i.e. W (f )i = C (f , li )).
The worst case is that W (f ) = (0, . . . , 0,±1, 0, . . . , 0), because
that means that our function is linear(or affine in the negative case).
The ideal case is that the m = maxi=0,...,2n−1{|W (f )i |} is small.
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Example of invertible boolean transformation

Let’s consider function f : Z3
2 → Z3

2 with values defined in a table
below.

a1 a2 a3 f1(a1, a2, a3) f2(a1, a2, a3) f3(a1, a2, a3)
0 0 0 0 1 0
1 0 0 0 1 1
0 1 0 0 0 1
1 1 0 1 0 0
0 0 1 1 1 1
1 0 1 0 0 0
0 1 1 1 1 0
1 1 1 1 0 1

Algebraic normal form of this transformation is:

f1(a1, a2, a3) = a3 + a1a2 + a1a3,

f2(a1, a2, a3) = 1+ a2 + a1a3 + a2a3,

f2(a1, a2, a3) = a1 + a2 + a3.
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Correlation matrix of our f : Z3
2 → Z3

2

Correlation matrix of f : Z3
2 → Z3

2

0 a1 a2 a1 + a2 a3 a1 + a3 a2 + a3 a1 + a2 + a3
0 1 0 0 0 0 0 0 0
f1 0 0 1

2
1
2 − 1

2
1
2 0 0

f2 0 − 1
2 − 1

2 0 0 1
2 − 1

2 0
f1 + f2 0 1

2 0 − 1
2 − 1

2 0 − 1
2 0

f3 0 0 0 0 0 0 0 1
f1 + f3 0 0 1

2 − 1
2

1
2

1
2 0 0

f2 + f3 0 − 1
2

1
2 0 0 − 1

2 − 1
2 0

f1 + f2 + f3 0 − 1
2 0 − 1

2 − 1
2 0 1

2 0

Note: f3 is afine.

No. of differences 0 1 2 3 4 5 6 7 8
Corr. coef. 1 3

4
1
2

1
4 0 − 1

4 − 1
2 − 3

4 -1
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Correlation matrix of compositions of transformations

∑
w Cu,vCv ,w = Cu+v ,0 i.e. correlation of linear combinations

of function components defined by u, v ∈ Zn
2 is equal to

convolution of columns u and v in the correlation matrix.
Correlation matrix of composition two transformation is equal
to product of their correlation matrices.
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Characterization of invertible transformations

A Boolean transformation h is invertible iff every linear
combination of its component functions is a balanced function.
Proof:
⇒: If h is invertible transformation, then its correlation matrix
C is orthogonal. Since C0,0 = 1 and all rows and columns have
norm equal to 1, it follows that every other element in row 0
or column 0 is equal to 0. Hence, C (uTh(a), 0) = δ(u) or
uTh(a) is balanced for all u 6= 0.
⇐: Output parities are balanced iff Cu,0 for u 6= 0.
C × CT = I iff

∑
w Cu,wCv ,w = δ(u + v) for all u, v ∈ Zn

2. We
know that

∑
w Cu,vCv ,w = Cu+v ,0. Since Cu,0 = 0 for all

nonzero u and C0,0 = 1, therefore the asserted condition holds
for all u, v .
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Elements of the correlation matrix are integer multiples of
something

Let C be a correlation matrix of a boolean transformation f
with domain Zn

2. Then elements of correlation matrix of this
transformation are integer multiples of 21−n.
Proof:
Recall that C (f (a),wTa) = 2−n∑

a f̂ (a)(−1)wT a.
The sum on the right side is always even since it is of the form
k (̇1) + (2n − k)(̇− 1) = 2k − 2n, therefore spectrum values
must be integral multiples of 21−n
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Wow, two proofs were done and nobody is sleeping! That
needs another joke!

Question: What is the difference between real women and real
numbers?

Answer: Real numbers are rational iff they have a period.
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Who the hell would want to do this on something big?

Usually ciphers consist of many functions that are somehow
composed and it is much easier to study properties of these
than of the whole function (e.g. rounds in DES with S-boxes).

Also the correlation matrix is exponentially big and can be
computed for n of reasonable size (e.g. 8-bit S-boxes in DES).
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Linear trail of composition

Let β be an iterative transformation on n-bits vectors:

β = ρ(r) ◦ · · · ◦ ρ(1).
The correlation matrix of β is the product of the correlation
matrices corresponding to the respective boolean transformations:

C (β) = C (ρ(r)) × · · · × C (ρ(1)).

A linear trail U over an iterative Boolean transformation consists of
a sequence of r + 1 selection patterns:

U =
(
u(0), . . . , u(r)

)
.

This linear trail is a sequence of of r linear steps
(
u(i−1), u(i)) that

have a correlation

C
(
u(i)Tρ(i)(a), u(i−1)Ta

)
.
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What is it good for?

The correlation contribution of a linear trail is the product of
the correlation of all its steps:

Cp(U) =
∏
i

C ρ(i)

u(i)u(i−1)

Linear trail composition theorem:
The correlation between output parity uTβ(a) and input parity
wTa of an iterated Boolean transformation with r rounds is
the sum of the correlation contributions of all r -round linear
trails U with initial selection pattern w and final selection
pattern u:

C (uTβ(a),wTa) =
∑

u(0)=w ,u(r)=u

Cp(U)
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Thank you for being on hell of an audience!

Děkuji vám za pozornost!
Je vous remercie de votre attention!
Ďakujem vám za pozornosť!
Dziękuję za uwagę!
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