CATEGORIES OF MODULES AND HOMOLOGICAL ALGEBRA

EXERCISE 1

Instructions: Please work alone. Try to answer all questions. Questions indicated with (*) are more difficult. It is highly recommended that you type your solutions in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$. If you don't know $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$, now is the perfect time to learn it. I am happy to help. Please submit your homework by 11.3.2020 to the email address catmodules2019@gmail.com
(1) Let R be a ring, and let $\left\{E_{k}\right\}_{k \in K}$ be a family of injective R-modules. Show that

$$
\prod_{k \in K} E_{k}
$$

is an injective R-module. Deduce that if E_{1}, \ldots, E_{n} are finitely many injective R-modules, then $\oplus_{k=1}^{n} E_{k}$ is an injective R-module.
(2) $\left(^{*}\right)$ Give an example of a ring R, and a collection of projective R-modules $\left\{P_{k}\right\}_{k \in K}$, such that the R-module

$$
\prod_{k \in K} P_{k}
$$

is not projective.
(3) Let R be a principal ideal domain. Show that any injective R-module is divisible.
(4) Let R be a ring. Recall that a short exact sequence of left R-modules

$$
0 \rightarrow A \xrightarrow{i} B \xrightarrow{p} C \rightarrow 0
$$

is called split if there exists an R-linear map $h: C \rightarrow B$ such that $p \circ h=1_{C}$. Prove that a short exact sequence is split if and only if there exists an R-linear map $j: B \rightarrow A$, such that $j \circ i=1_{A}$.
(5) Use (4) to show that an R-module E is injective if and only if every short exact sequence of the form

$$
0 \rightarrow E \xrightarrow{i} B \xrightarrow{p} C \rightarrow 0
$$

is split.
(6) Let R, S be rings.
(a) Given an $R-S$ bimodule M and a left R-module N, verify that $\operatorname{Hom}_{R}(M, N)$ is a left S-module with structure given by

$$
(s \cdot f)(m)=f(m \cdot s)
$$

(b) Given an $R-S$ bimodule M and a right S-module N, verify that $\operatorname{Hom}_{R}(M, N)$ is a right R-module with structure given by

$$
(f \cdot r)(m)=f(r \cdot m)
$$

(c) Define the category of $R-S$-bimoudles $\operatorname{BiMod}_{R, S}$, and check that given a fixed left R-module N, the operation $\operatorname{Hom}_{R}(-, N)$ defines a functor

$$
\operatorname{BiMod}_{R, S} \rightarrow \operatorname{Mod}(S)
$$

