ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER'S FUNCTION

PAVEL RŮŽIČKA

9.1. Congruence modulo n. Let us have a closer look at a particular example of a congruence relation on the group $\mathbf{Z} = (\mathbb{Z}, +)$ of all integers with the operation of addition. Since the group \mathbf{Z} is commutative, all subgroups of \mathbf{Z} are normal (cf. Remark 6.2). For a positive integer n there is the subgroup $n\mathbf{Z}$ with the universe

 $n\mathbb{Z} := \{ na \mid a \in \mathbb{Z} \} = \{ b \in \mathbb{Z} \mid n \mid b \}$

of the group Z. In fact, these are the only subgroups of Z:

Lemma 9.1. Let A be a non-trivial subgroup of Z. Then A = nZwhere n is the smallest positive integer from A.

Proof. Let $\mathbf{A} = (A, \cdot)$ be a non-trivial subgroup of \mathbf{Z} . Since \mathbf{A} is non-trivial, it contains a positive integer, indeed, if s < 0 belongs to \mathbf{A} , then $0 < -s \in A$ as well. Let n be the smallest positive integer in \mathbf{A} . Since $n\mathbf{Z}$ is clearly the least subgroup of \mathbf{Z} containing n, we have that $n\mathbf{Z} \subseteq \mathbf{A}$. Let $s \in A$. Dividing s by n with remainder, we find integers t, r such that $s = n \cdot t = r$ and $0 \leq r < n$. From $r = s - n \cdot t \in A$ we infer that r = 0, since otherwise it will violate the choice of n. Therefore $n \mid s$, and so $s \in n\mathbb{Z}$. We conclude that $\mathbf{A} \subseteq n\mathbf{Z}$, and so the two subgroups are equal.

Adding the trivial subgroup to the picture we get that

Corollary 9.2. All subgroups of the group Z are of the form nZ for some non-negative integer n.

We say integer s is *congruent with* an integer $t \mod n$, and write

$$s \equiv t \pmod{n},$$

if s is congruent with t modulo $n\mathbf{Z}$, that is, if $s \equiv_{n\mathbb{Z}} t$. By the definition of the congruence relation modulo a normal subgroup in Subsection 7.5 (and the commutativity of the group \mathbf{Z}), we have that

(9.1)
$$s \equiv t \pmod{n}$$
 if and only if $n \mid t - s$.

Date: December 4, 2017.

It follows from Lemma 7.23 that

Corollary 9.3. Let n be an integer. The following properties hold true. (i) If $s_1 \equiv t_1 \pmod{n}$ and $s_2 \equiv t_2 \pmod{n}$, then

 $s_1 + s_2 \equiv t_1 + t_2 \pmod{n},$

for all $s_1, s_2, t_1, t_2 \in \mathbb{Z}$.

(ii) If $s \equiv t \pmod{n}$, then $-s \equiv -t \pmod{n}$, for all $s, t \in \mathbb{Z}$.

Exercise 9.1. Prove Corollary 9.3 readily from the definition of the congruence modulo n.

Let us denote by gcd(s,t) and lcm(s,t) respectively the greatest common (non-negative) divisor and the least common (non-negative) multiple of integers s, t. The next exercises cover some additional properties of congruences modulo positive integers.

Exercise 9.2. Let n be a positive integer. Prove that

(i) if $s_1 \equiv t_1 \pmod{n}$ and $s_2 \equiv t_2 \pmod{n}$, then

 $s_1 s_2 \equiv t_1 t_2 \pmod{n},$

for all $s_1, s_2, t_1, t_2 \in \mathbb{Z}$.

(ii) if $s \equiv t \pmod{n}$, then $s^k \equiv t^k \pmod{n}$, for all $s, t \in \mathbb{Z}$ and all $k \in \mathbb{N}$.

Exercise 9.3. Prove that

- (i) if $su \equiv tu \pmod{n}$ and gcd(u, n) = 1, then $s \equiv t \pmod{n}$, for all $s, t, u \in \mathbb{Z}$ and $n \in \mathbb{N}$.
- (ii) if $s \equiv t \pmod{m_i}$ for all m_1, \ldots, m_k , then

 $s \equiv t \pmod{\operatorname{lcm}(m_1, \dots, m_k)},$

for all $s, t \in \mathbb{Z}$ and $m_1, \ldots, m_k \in \mathbb{N}$.

9.2. **Transversals.** Let G be a group and H a subgroup of the group G. A *left* (respectively *right*) *transversal* for H is a set picking one element from each left (respectively right) coset of H.

Clearly, the size of a left (respectively right) transversal, say L (respectively R), equals to the size of the set of all left (respectively right) cosets of H. That is

$$|L| = |R| = [\boldsymbol{G} : \boldsymbol{H}].$$

If N is a normal subgroup of the group G, then left and right transversals for N coincide. In this case we will talk about *transversals* for N.

Assume that we have a group G, a normal subgroup N of G, and a transversal T for N, often containing the unit of G. If we have a *nice* algorithm that for a given $a, b \in T$ computes $c \in T$ such that $a \cdot b \cdot N = c \cdot N$, we can view the elements of the factor group G/N as elements of the transversal T. The group operation of G/N will then be determined by our algorithm.

The set $\mathbb{Z}_n := \{0, 1, \dots, n-1\}$ is a transversal for the subgroup $n\mathbf{Z}$ in the additive group \mathbf{Z} of all integers. Given an integer s, we divide s by n with reminder. We denote the reminder by $s \mod n$. This allows us to define a binary operation on the set \mathbb{Z}_n , denoted by $+_n$, as follows:

$$s +_n t := (s + t) \mod n \in \mathbb{Z}_n$$
 for all $s, t \in \mathbb{Z}_n$.

We will call the operation $+_n$ the *addition modulo* n. As discussed above $\mathbf{Z}_n = (\mathbb{Z}_n, +_n)$ is a group. The homomorphism $\pi_n \colon \mathbf{Z} \to \mathbf{Z}_n$, given by $s \mapsto s \mod n$, maps \mathbf{Z} onto \mathbf{Z}_n . It is straightforward that ker $\pi_n = n\mathbf{Z}$, and so there is a (unique) isomorphism $\mu_n \colon \mathbf{Z}/n\mathbf{Z} \to \mathbf{Z}_n$ such that $\pi_n = \mu_n \circ \pi_{\mathbf{Z}/n\mathbf{Z}}$ due to The homomorphism theorem. The isomorphism μ_n is given by the correspondence $s \cdot n\mathbf{Z} \mapsto s \mod n$.

9.3. Cyclic groups. The *order* of a finite group is the number of its elements while the *order* of an infinite group is set to be ∞ . A group C is *cyclic* if it is generated by a single element, say g. We will use the notation $\langle g \rangle$ for the cyclic group generated by g.

Observe that all elements of $\langle g \rangle$ are powers of g, and the map $\varepsilon_g \colon \mathbb{Z} \to \langle g \rangle$ given by $s \mapsto g^s$ is a group homomorphism onto $\langle g \rangle$. According to The first isomorphism theorem $\langle g \rangle \simeq \mathbb{Z}/\ker \varepsilon_g$. Applying Lemma 9.1 it follows that either $\ker \varepsilon_g = \mathbf{0}$ and $\langle g \rangle \simeq \mathbb{Z}$ or $\ker \varepsilon_g = n\mathbb{Z}$ for some positive integer n and $\langle g \rangle \simeq \mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n$. In the latter case, n is the order of $\langle g \rangle$ as well as the order of g. We showed that

Theorem 9.4. Up to isomorphism the cyclic groups are \mathbb{Z} and \mathbb{Z}_n , $n \in \mathbb{N}$. The group \mathbb{Z} is of an infinite order while the order of \mathbb{Z}_n is n. In particular, a cyclic group is determined by its order up to isomorphism.

Lemma 9.5. Let $\varphi \colon G \to H$ be a group homomorphism and K a subgroup of the group H. Then

$$\varphi^{-1}(\mathbf{K}) := \{ g \in G \mid \varphi(g) \in K \}$$

is a subgroup of G.

Proof. Since $\varphi(u_{\mathbf{G}}) = u_{\mathbf{H}} \in K$, we have that $u_{\mathbf{G}} \in \varphi^{-1}(K)$. In particular, $\varphi^{-1}(K)$ is non-empty. If $g, h \in \varphi^{-1}(K)$, then $\varphi(g \cdot h^{-1}) = \varphi(g) \cdot \varphi(h)^{-1} \in K$, hence $g \cdot h^{-1} \in \varphi^{-1}(K)$.

Lemma 9.6. Every factor-group and every subgroup of a cyclic group is cyclic.

PAVEL RŮŽIČKA

Proof. Let C is a cyclic group generated by g. Then a factor group of C is generated by the coset of g, in particular it is cyclic. According to Lemma 9.1 non-trivial subgroups of Z are isomorphic to Z. In particular, every subgroup of Z is cyclic. If D is a subgroup of C, then $\varepsilon_g^{-1}(D)$ is a subgroup Z and D is its homomorphic image. We conclude that D is cyclic.

Let m, n be positive integers such that $m \mid n$. Then $n\mathbb{Z} \subseteq m\mathbb{Z}$ and the group $m\mathbb{Z}/n\mathbb{Z}$ is cyclic due to Lemma 9.6. Observe that ker $\varepsilon_{1+mn\mathbb{Z}} = (n/m)\mathbb{Z}$, hence

(9.2)
$$m\mathbf{Z}/n\mathbf{Z} \simeq \mathbf{Z}_{n/m}.$$

Lemma 9.7. If m divides n, there is a unique subgroup of Z_n of order m.

Proof. It follows from (9.2) that $\varepsilon_1((n/m)Z)$ is a subgroup of Z_n of order m. On the other hand, if D is a subgroup of Z_n of order m, then $\varepsilon_1^{-1}(D) = (n/m)Z$, again due to (9.2). It follows that the subgroup of Z_n of order m is unique.

9.4. Orders of elements. Let $G = (G, \cdot)$ be a group and $g \in G$. We set

$$g^0 := u_G, \quad g^n := \underbrace{g \cdots g}_{n \text{ times}} \quad \text{and} \quad g^{-n} := \underbrace{g^{-1} \cdots g^{-1}}_{n \text{ times}}, \text{ for all } n \in \mathbb{N}.$$

Remark 9.8. Observe that

(i)
$$g^{s \cdot t} = (g^s)^t$$
,
(ii) $g^{s+t} = g^s \cdot g^t$,

for all $g \in G$, and all $s, t \in \mathbb{Z}$.

An *order* of an element g of a group G, denote by o(g), is the least n > 0 such that $g^n = u_G$. If no such n exists, we put $o(g) := \infty$. In the first case we say that g has a *finite order*, in the latter we say that g has an *infinite order*.

Lemma 9.9. The order of an element g of a finite group G divides the order of the group.

Proof. The order, o(g), of an element g equals to the order of the cyclic group $\langle g \rangle$ generated by g. The order of the subgroup $\langle g \rangle$ divides the order of G, due to the Lagrange theorem.

Lemma 9.10. Let $G = (G, \cdot)$ be a group and $g \in G$. Then

(i) $o(g) = \infty$ if and only if $g^s \neq g^t$ for all pairs of distinct integers s, t.

(ii) If the element g is of a finite order, then $g^s = g^t$ if and only if $s \equiv t \pmod{o(g)}$, for all $s, t \in \mathbb{Z}$. In particular, $g^s = u_G$ if and only if $o(g) \mid s$.

Proof. Since $g^{s+t} = g^s \cdot g^t$, for all $s, t \in \mathbb{Z}$, the map $\varepsilon \colon \mathbb{Z} \to G$ given by $s \mapsto g^s$ is a group homomorphism. It follows from the definition and Corollary 7.11 that $o(g) = \infty$ if and only if ker $\varepsilon = 0$ if and only if φ is one-to-one. This settles (i) and implies that the element g has a finite order if and only if the kernel of ε is non-trivial. If this is the case then ker $\varepsilon = n\mathbb{Z}$ wher 0 < n = o(g), due to Lemma 9.1. It follows that $g^s = g^t$ if and only $t - s \in \ker \varepsilon$ if and only if $t \equiv s \pmod{n}$. Since $u_{\mathbf{G}} = g^0$ we conclude that $g^s = u_{\mathbf{G}}$ if and only if $s \equiv 0 \pmod{n}$. This is exactly when $o(g) \mid s$, and so we have proved (ii).

Recall that integers s and t are said to be *relatively prime* provided that gcd(s,t) = 1.

Lemma 9.11. Let $G = (G, \cdot)$ be a group and $f, g \in G$ elements of a finite order such that $f \cdot g = g \cdot f$. Then the following holds true:

- (i) $o(f \cdot g) \mid \mathbf{lcm}(o(f), o(g)).$
- (ii) if gcd(o(f), o(g)) = 1, then $o(f \cdot g) = o(f) \cdot o(g)$.

Proof. (i) Put $m = \mathbf{lcm}(o(f), o(g))$ and observe that $f^m = g^m = u_G$, indeed, both $o(f) \mid m$ and $o(g) \mid m$ hold true. Since the elements f and g commute, we get that $(f \cdot g)^m = f^m \cdot g^m = u_G$. It follows that $o(f \cdot g) \mid \mathbf{lcm}(o(f), o(g))$ due to Lemma 9.10.

(ii) Put $n = o(f \cdot g)$. It follows from (i) that $n \mid o(f) \cdot o(g)$. Since f and g commute we have that

$$u_{\mathbf{G}} = (f \cdot g)^{n \cdot o(g)} = f^{n \cdot o(g)} \cdot g^{n \cdot o(g)} = f^{n \cdot o(g)} \cdot (g^{o(g)})^n = f^{n \cdot o(g)}.$$

It follows from Lemma 9.10 that $o(f) \mid n \cdot o(g)$ and since o(f) and o(g) are relatively prime, we get that $o(f) \mid n$. Similarly we prove that $o(g) \mid n$ and since $\mathbf{gcd}(o(f), o(g)) = 1$, we conclude that $o(f) \cdot o(g) \mid n$. Therefore $n = o(f) \cdot o(g)$.

Corollary 9.12. Let $G = (G, \cdot)$ be a group and $f, g \in G$ commuting elements of a finite order. Putting $m = \mathbf{gcd}(o(f), o(g))$, we get that

$$o(f^m \cdot g) = o(f \cdot g^m) = \frac{o(f) \cdot o(g)}{\operatorname{\mathbf{gcd}}(o(f), o(g))} = \operatorname{\mathbf{lcm}}(o(f), o(g)).$$

By induction we prove that

Corollary 9.13. Let g_1, \ldots, g_k be commuting elements of a finite order of a group G.

(i) Then $o(g_1 \cdots g_k) | \mathbf{lcm}(o(g_1), \dots, o(g_k)).$

PAVEL RŮŽIČKA

(ii) If $o(g_1), \ldots, o(g_n)$ are pairwise relatively prime, then

$$o(g_1 \cdots g_k) = o(g_1) \cdots o(g_k).$$

(iii) There are $m_1, \ldots, m_{k-1} \in \mathbb{N}$ such that

$$o(g_1^{m_1}\cdots g_{k-1}^{m_{k-1}}\cdot g_k) = \mathbf{lcm}(o(g_1),\ldots,o(g_k)).$$

Exercise 9.4. Let $\pi = \gamma_1 \cdots \gamma_k$ be a decomposition of a permutation $\pi \in S_n$ into the product of independent cycles. Prove that $o(\pi) = \operatorname{lcm}(|\gamma_1|, \ldots, |\gamma_k|)$.

Corollary 9.14. Let $\mathbf{F} = (F, \cdot)$ be a finite abelian group and $g \in F$ an element of the maximum order in \mathbf{A} . Then $o(f) \mid o(g)$ for all $f \in F$.

Proof. According to Corollary 9.13 (iii), there is $g \in F$ such that

$$o(g) = \mathbf{lcm}(\{o(f) \mid f \in F\}).$$

Theorem 9.15. Every finite subgroup of the multiplicative group $F^* = (\mathbb{F} \setminus \{0\}, \cdot)$ of a field F is cyclic.

Proof. Let G be a finite subgroup of F^* . Let n be maximum order of an element of G. It follows from Corollary 9.14 that $o(g) \mid n$ for all $g \in G$, hence every element of G is a root of the polynomial $x^n - 1$. This polynomial has at most n-distinct roots, hence $|G| \leq n$. On the other hand $n \mid |G|$ as it follows from Lemma 9.9. We conclude that n = |G|. Therefore the group G is cyclic.

Example 9.16. There is no bound of $o(f \cdot g)$ by o(f) and o(g) in general. For example let $n \in \mathbb{N}$ and

$$\pi := (1, 2n) \cdot (2, 2n - 1) \cdot (3, 2n - 2) \cdots (n, n + 1),$$

$$\sigma := (2, 2n) \cdot (3, 2n - 1) \cdot (4, 2n - 2) \cdots (n, n + 2)$$

be permutations from S_{2n} . Since both π and σ are products of independent transpositions $o(\pi) = o(\sigma) = 2$. Computing that

$$\sigma \cdot \pi := (1, 2, 3, \dots, 2n)$$

is a 2n-cycle, we get that $o(\sigma \cdot \pi) = 2n$.

Exercise 9.5. Can you guess the product $\pi \cdot \sigma$ without computing it?

Exercise 9.6. Let π and σ be a as in Example 9.16. Put $\rho := (1, n + 1) \cdot \sigma$ and compute that $o(\pi) = o(\rho) = 2$ while $o(\rho \cdot \pi) = n$.

9.5. Euler's function. The cyclic group Z of an infinite order has exactly two generators 1 and -1. A cyclic group of a finite order n is isomorphic to $Z_n = (\mathbb{Z}_n = \{0, 1, \ldots, n-1\}, +_n)$. The following are equivalent for an element $s \in \mathbb{Z}_n$:

- (i) s is a generator of \mathbf{Z}_{n} ,
- (ii) o(s) = n,
- (iii) $ks \not\equiv 0 \pmod{n}$ for all $k = 1, 2, \dots, n-1$,
- (iv) gcd(s, n) = 1.

For a positive integer n we denote by \mathbb{Z}_n^* the set of all generators of the group \mathbb{Z}_n , i.e,

(9.3)
$$\mathbb{Z}_n^* := \{ s \in \{1, \dots, n\} \mid \mathbf{gcd}(s, n) = 1 \}.$$

The *Euler's function* is a map $\varphi \colon \mathbb{N} \to \mathbb{N}$ which assigns to a positive integer *n* the number of generators of \mathbb{Z}_n , i.e., $\varphi(n) = |\mathbb{Z}_n^*|$, for all $n \in \mathbb{N}$.

Lemma 9.17. Let p be a prime and $m \in \mathbb{N}$. Then $\varphi(p^m) = p^m - p^{m-1}$.

Proof. Since p is a prime, we have that

$$\{s \in \{1, 2, \dots, p^m\} \mid p \text{ divides } s\} = \{pt \mid t \in \{1, \dots, p^{m-1}\}\}.$$

Therefore the set $\{1, 2, \ldots, p^m\}$ contains exactly p^{m-1} numbers divisible by p. The rest are elements relatively prime to p, thus $\varphi(p^m) = p^m - p^{m-1}$.

The cartesian product $G_1 \times \cdots \times G_n$ of groups G_1, \ldots, G_n consists of all tuples $\langle g_1, \ldots, g_n \rangle$ such that $g_i \in G_i$ for all $i \in \{1, 2, \ldots, n\}$. Elements of $G_1 \times \cdots \times G_n$ are multiplied coordinate-wise.

Lemma 9.18. Let n_1, \ldots, n_k be positive integers. If they are pairwise relatively prime, then

$$\varphi(n_1\cdots n_k)=\varphi(n_1)\cdots\varphi(n_k).$$

Proof. Let $\langle s_1, \ldots, s_k \rangle$ be an element $\mathbf{Z}_{n_1} \times \cdots \times \mathbf{Z}_{n_k}$. Since $o(s_i) \mid n_i$, for all $i = 1, \ldots, k$, the orders $o(s_1), \ldots, o(s_k)$ are relatively prime. We get that

$$o(\langle s_1,\ldots,s_k\rangle) = o(s_1)\cdots o(s_k),$$

due to Lemma 9.13 (i). It follows that $\langle s_1, \ldots, s_k \rangle$ is a generator of $\mathbf{Z}_{n_1} \times \cdots \times \mathbf{Z}_{n_k}$ if and only if s_i generates \mathbf{Z}_{n_i} for all $i \in \{1, 2, \ldots, k\}$. We conclude that the cartesian product $\mathbf{Z}_{n_1} \times \cdots \times \mathbf{Z}_{n_k}$ is cyclic of order $n_1 \cdots n_k$ and $\varphi(n_1 \cdots n_k) = \varphi(n_1) \cdots \varphi(n_k)$.

Exercise 9.7. Prove that $Z_{n_1} \times \cdots \times Z_{n_k}$ is cyclic if and only if n_1, \cdots, n_k are pairwise relatively prime.

Theorem 9.19. Let $n = p_1^{m_1} \cdots p_k^{m_k}$ be a decomposition of a positive integer n into the product of primes. Then

$$\varphi(n) = (p_1^{m_1} - p_1^{m_1 - 1}) \cdots (p_k^{m_k} - p_k^{m_k - 1}) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_k}).$$

Proof. We have that $\varphi(n) = \varphi(p_1^{m_1} \dots p_k^{m_k}) = \varphi(p_1^{m_1}) \cdots \varphi(p_k^{m_k})$ due to Lemma 9.18 and $\varphi(p_i^{m_i}) = p_i^{m_i} - p_i^{m_i-1}$, for all $i = 1, \dots, k$, due to Lemma 9.17.

Theorem 9.20. For every positive integer n the equality

(9.4)
$$n = \sum_{m|n} \varphi(m)$$

holds true.

Proof. Observe that an element g of a group G is a generator of a unique subgroup of G, namely the cyclic subgroup $\langle g \rangle$ consisting of all powers of g. The cyclic group \mathbb{Z}_n has n elements, a unique subgroup of order m for each $m \mid n$, due to Lemma 9.7, and the subgroup of order m has exactly $\varphi(m)$ generators. Equality (9.4) follows.

The *multiplication modulo* a positive integer n is given by

$$s \cdot_n t = s \cdot t \mod n$$
,

is a binary operation on \mathbb{Z}_n . It follows from Exercise 9.2 that the set

$$\mathbb{Z}_n^* := \{ s \in \mathbb{Z}_n \mid s \equiv 1 \pmod{n} \}$$

together with the operation \cdot_n form a group. We will denote the group by Z_n^* .

Theorem 9.21 (Euler's theorem). Let n be a positive integer. Then

(9.5)
$$s^{\varphi(n)} \equiv 1 \pmod{n}$$

for all integers s co-prime to n.

Proof. Let s be an integer co-prime to n. Then $s \equiv t \pmod{n}$ for some $t \in \mathbb{Z}_n^*$. The order of t in \mathbb{Z}_n^* divides $\varphi(n) =$ the order of \mathbb{Z}_n^* , due to Lemma 9.9. It follows from Lemma 9.10 that

$$\underbrace{t \cdot_n \cdots \cdot_n t}_{\varphi(n) \text{ times}} = 1,$$

hence $t^{\varphi(n)} \equiv 1 \pmod{n}$. Since $s^{\varphi(n)} \equiv t^{\varphi(n)} \pmod{n}$, due to Exercise 9.2, we conclude that (9.5) holds true.

Corollary 9.22 (Fermat's theorem). Let p be a prime. If $p \nmid s$, then $s^{p-1} \equiv 1 \pmod{p}$.

Proof. Since p is prime, an integer s is co-prime to p if and only if $p \nmid s$. Since $\varphi(p) = p - 1$ for every prime p, Fermat's theorem follows readily form Euler's theorem.

Lemma 9.23 (Wilson's theorem). Let 1 < q be an integer. Then

 $q \mid (q-1)! + 1$ if and only if q is a prime.

Proof. (\Rightarrow) If q is not prime, then clearly $1 < \mathbf{gcd}(q, (q-1)!)$, and so $q \nmid (q-1)! + 1$. (\Leftarrow) Suppose that q is a prime number. Then $q \mid s^2 - 1 = (s+1)(s-1)$ if and only if $q \mid s+1$ or $q \mid s+1$. It follows that the only elements of the group \mathbf{Z}_q^* that are equal to their inverses are 1 and q - 1. Consequently, we can pair the remaining elements of \mathbf{Z}_q^* , namely $2, \dots, q-2$, so that the members of every pair are inverse to each other. We conclude that

$$2\cdots(q-2) \equiv 1 \pmod{q},$$

hence

 $(q-1)! \equiv (q-1) \equiv -1 \pmod{q},$ whence $q \mid (q-1)! + 1.$