
ALGEBRA I (LECTURE NOTES 2017/2018)
LECTURE 9 - CYCLIC GROUPS AND EULER’S

FUNCTION

PAVEL RŮŽIČKA

9.1. Congruence modulo n. Let us have a closer look at a particular
example of a congruence relation on the groupZ = (Z,+) of all integers
with the operation of addition. Since the group Z is commutative, all
subgroups of Z are normal (cf. Remark 6.2). For a positive integer n
there is the subgroup nZ with the universe

nZ := {na | a ∈ Z} = {b ∈ Z | n | b}
of the group Z. In fact, these are the only subgroups of Z:

Lemma 9.1. Let A be a non-trivial subgroup of Z. Then A = nZ
where n is the smallest positive integer from A.

Proof. Let A = (A, ·) be a non-trivial subgroup of Z. Since A is non-
trivial, it contains a positive integer, indeed, if s < 0 belongs to A,
then 0 < −s ∈ A as well. Let n be the smallest positive integer in A.
Since nZ is clearly the least subgroup of Z containing n, we have that
nZ ⊆ A. Let s ∈ A. Dividing s by n with remainder, we find integers
t, r such that s = n · t = r and 0 ≤ r < n. From r = s − n · t ∈ A
we infer that r = 0, since otherwise it will violate the choice of n.
Therefore n | s, and so s ∈ nZ. We conclude that A ⊆ nZ, and so the
two subgroups are equal. �

Adding the trivial subgroup to the picture we get that

Corollary 9.2. All subgroups of the group Z are of the form nZ for
some non-negative integer n.

We say integer s is congruent with an integer t modulo n, and write

s ≡ t (mod n),

if s is congruent with t modulo nZ, that is, if s ≡nZ t. By the definition
of the congruence relation modulo a normal subgroup in Subsection 7.5
(and the commutativity of the group Z), we have that

(9.1) s ≡ t (mod n) if and only if n | t− s.
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It follows from Lemma 7.23 that

Corollary 9.3. Let n be an integer. The following properties hold true.

(i) If s1 ≡ t1 (mod n) and s2 ≡ t2 (mod n), then

s1 + s2 ≡ t1 + t2 (mod n),

for all s1, s2, t1, t2 ∈ Z.
(ii) If s ≡ t (mod n), then −s ≡ −t (mod n), for all s, t ∈ Z.

Exercise 9.1. Prove Corollary 9.3 readily from the definition of the
congruence modulo n.

Let us denote by gcd(s, t) and lcm(s, t) respectively the greatest
common (non-negative) divisor and the least common (non-negative)
multiple of integers s, t. The next exercises cover some additional prop-
erties of congruences modulo positive integers.

Exercise 9.2. Let n be a positive integer. Prove that

(i) if s1 ≡ t1 (mod n) and s2 ≡ t2 (mod n), then

s1s2 ≡ t1t2 (mod n),

for all s1, s2, t1, t2 ∈ Z.
(ii) if s ≡ t (mod n), then sk ≡ tk (mod n), for all s, t ∈ Z and

all k ∈ N.

Exercise 9.3. Prove that

(i) if su ≡ tu (mod n) and gcd(u, n) = 1, then s ≡ t (mod n),
for all s, t, u ∈ Z and n ∈ N.

(ii) if s ≡ t (mod mi) for all m1, . . . ,mk, then

s ≡ t (mod lcm(m1, . . . ,mk)),

for all s, t ∈ Z and m1, . . . ,mk ∈ N.

9.2. Transversals. Let G be a group and H a subgroup of the group
G. A left (respectively right) transversal for H is a set picking one
element from each left (respectively right) coset of H .

Clearly, the size of a left (respectively right) transversal, say L (re-
spectively R), equals to the size of the set of all left (respectively right)
cosets of H . That is

|L| = |R| = [G : H ].

If N is a normal subgroup of the group G, then left and right
transversals for N coincide. In this case we will talk about transversals
for N .

Assume that we have a group G, a normal subgroup N of G, and
a transversal T for N , often containing the unit of G. If we have a
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nice algorithm that for a given a, b ∈ T computes c ∈ T such that
a · b ·N = c ·N , we can view the elements of the factor group G/N as
elements of the transversal T . The group operation of G/N will then
be determined by our algorithm.

The set Zn := {0, 1, . . . , n− 1} is a transversal for the subgroup nZ
in the additive group Z of all integers. Given an integer s, we divide s
by n with reminder. We denote the reminder by s mod n. This allows
us to define a binary operation on the set Zn,denoted by +n, as follows:

s+n t := (s+ t) mod n ∈ Zn for all s, t ∈ Zn.

We will call the operation +n the addition modulo n. As discussed
above Zn = (Zn,+n) is a group. The homomorphism πn : Z → Zn,
given by s 7→ s mod n, maps Z onto Zn. It is straightforward that
kerπn = nZ, and so there is a (unique) isomorphism µn : Z/nZ → Zn

such that πn = µn ◦ πZ/nZ due to The homomorphism theorem. The
isomorphism µn is given by the correspondence s · nZ 7→ s mod n.

9.3. Cyclic groups. The order of a finite group is the number of its
elements while the order of an infinite group is set to be ∞. A group
C is cyclic if it is generated by a single element, say g. We will use the
notation ⟨g⟩ for the cyclic group generated by g.

Observe that all elements of ⟨g⟩ are powers of g, and the map
εg : Z → ⟨g⟩ given by s 7→ gs is a group homomorphism onto ⟨g⟩. Ac-
cording to The first isomorphism theorem ⟨g⟩ ≃ Z/ ker εg. Applying
Lemma 9.1 it follows that either ker εg = 0 and ⟨g⟩ ≃ Z or ker εg = nZ
for some positive integer n and ⟨g⟩ ≃ Z/nZ ≃ Zn. In the latter case,
n is the order of ⟨g⟩ as well as the order of g. We showed that

Theorem 9.4. Up to isomorphism the cyclic groups are Z and Zn,
n ∈ N. The group Z is of an infinite order while the order of Zn

is n. In particular, a cyclic group is determined by its order up to
isomorphism.

Lemma 9.5. Let φ : G → H be a group homomorphism and K a
subgroup of the group H. Then

φ−1(K) := {g ∈ G | φ(g) ∈ K}
is a subgroup of G.

Proof. Since φ(uG) = uH ∈ K, we have that uG ∈ φ−1(K). In par-
ticular, φ−1(K) is non-empty. If g, h ∈ φ−1(K), then φ(g · h−1) =
φ(g) · φ(h)−1 ∈ K, hence g · h−1 ∈ φ−1(K). �
Lemma 9.6. Every factor-group and every subgroup of a cyclic group
is cyclic.
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Proof. Let C is a cyclic group generated by g. Then a factor group of
C is generated by the coset of g, in particular it is cyclic. According
to Lemma 9.1 non-trivial subgroups of Z are isomorphic to Z. In
particular, every subgroup of Z is cyclic. If D is a subgroup of C,
then ε−1

g (D) is a subgroup Z and D is its homomorphic image. We
conclude that D is cyclic. �

Let m,n be positive integers such that m | n. Then nZ ⊆ mZ
and the group mZ/nZ is cyclic due to Lemma 9.6. Observe that
ker ε1+mnZ = (n/m)Z, hence

(9.2) mZ/nZ ≃ Zn/m.

Lemma 9.7. If m divides n, there is a unique subgroup of Zn of order
m.

Proof. It follows from (9.2) that ε1((n/m)Z) is a subgroup of Zn of
order m. On the other hand, if D is a subgroup of Zn of order m, then
ε−1
1 (D) = (n/m)Z, again due to (9.2). It follows that the subgroup of
Zn of order m is unique. �
9.4. Orders of elements. Let G = (G, ·) be a group and g ∈ G. We
set

g0 := uG, gn := g · · · g︸ ︷︷ ︸
n times

and g−n := g−1 · · · g−1︸ ︷︷ ︸
n times

, for all n ∈ N.

Remark 9.8. Observe that

(i) gs·t = (gs)t,
(ii) gs+t = gs · gt,

for all g ∈ G, and all s, t ∈ Z.

An order of an element g of a group G, denote by o(g), is the least
n > 0 such that gn = uG. If no such n exists, we put o(g) := ∞. In
the first case we say that g has a finite order , in the latter we say that
g has an infinite order .

Lemma 9.9. The order of an element g of a finite group G divides
the order of the group.

Proof. The order, o(g), of an element g equals to the order of the cyclic
group ⟨g⟩ generated by g. The order of the subgroup ⟨g⟩ divides the
order of G, due to the Lagrange theorem. �
Lemma 9.10. Let G = (G, ·) be a group and g ∈ G. Then

(i) o(g) = ∞ if and only if gs ̸= gt for all pairs of distinct integers
s, t.
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(ii) If the element g is of a finite order, then gs = gt if and only
if s ≡ t (mod o(g)), for all s, t ∈ Z. In particular, gs = uG if
and only if o(g) | s.

Proof. Since gs+t = gs · gt, for all s, t ∈ Z, the map ε : Z → G given by
s 7→ gs is a group homomorphism. It follows from the definition and
Corollary 7.11 that o(g) = ∞ if and only if ker ε = 0 if and only if φ is
one-to-one. This settles (i) and implies that the element g has a finite
order if and only if the kernel of ε is non-trivial. If this is the case then
ker ε = nZ wher 0 < n = o(g), due to Lemma 9.1. It follows that
gs = gt if and only t − s ∈ ker ε if and only if t ≡ s (mod n). Since
uG = g0 we conclude that gs = uG if and only if s ≡ 0 (mod n). This
is exactly when o(g) | s, and so we have proved (ii). �

Recall that integers s and t are said to be relatively prime provided
that gcd(s, t) = 1.

Lemma 9.11. Let G = (G, ·) be a group and f, g ∈ G elements of a
finite order such that f · g = g · f . Then the following holds true:

(i) o(f · g) | lcm(o(f), o(g)).
(ii) if gcd(o(f), o(g)) = 1, then o(f · g) = o(f) · o(g).

Proof. (i) Put m = lcm(o(f), o(g)) and observe that fm = gm = uG,
indeed, both o(f) | m and o(g) | m hold true. Since the elements f
and g commute, we get that (f · g)m = fm · gm = uG. It follows that
o(f · g) | lcm(o(f), o(g)) due to Lemma 9.10.

(ii) Put n = o(f · g). It follows from (i) that n | o(f) · o(g). Since f
and g commute we have that

uG = (f · g)n·o(g) = fn·o(g) · gn·o(g) = fn·o(g) · (go(g))n = fn·o(g).

It follows from Lemma 9.10 that o(f) | n · o(g) and since o(f) and
o(g) are relatively prime, we get that o(f) | n. Similarly we prove that
o(g) | n and since gcd(o(f), o(g)) = 1, we conclude that o(f) · o(g) | n.
Therefore n = o(f) · o(g). �
Corollary 9.12. Let G = (G, ·) be a group and f, g ∈ G commuting
elements of a finite order. Putting m = gcd(o(f), o(g)), we get that

o(fm · g) = o(f · gm) = o(f) · o(g)
gcd(o(f), o(g))

= lcm(o(f), o(g)).

By induction we prove that

Corollary 9.13. Let g1, . . . , gk be commuting elements of a finite order
of a group G.

(i) Then o(g1 · · · gk) | lcm(o(g1), . . . , o(gk)).
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(ii) If o(g1), . . . , o(gn) are pairwise relatively prime, then

o(g1 · · · gk) = o(g1) · · · o(gk).

(iii) There are m1, . . . ,mk−1 ∈ N such that

o(gm1
1 · · · gmk−1

k−1 · gk) = lcm(o(g1), . . . , o(gk)).

Exercise 9.4. Let π = γ1 · · · γk be a decomposition of a permutation
π ∈ Sn into the product of independent cycles. Prove that o(π) =
lcm(|γ1|, . . . , |γk|).

Corollary 9.14. Let F = (F, ·) be a finite abelian group and g ∈ F an
element of the maximum order in A. Then o(f) | o(g) for all f ∈ F .

Proof. According to Corollary 9.13 (iii), there is g ∈ F such that

o(g) = lcm({o(f) | f ∈ F}).

�

Theorem 9.15. Every finite subgroup of the multiplicative group F ∗ =
(F \ {0}, ·) of a field F is cyclic.

Proof. Let G be a finite subgroup of F ∗. Let n be maximum order of
an element of G. It follows from Corollary 9.14 that o(g) | n for all
g ∈ G, hence every element of G is a root of the polynomial xn − 1.
This polynomial has at most n-distinct roots, hence |G| ≤ n. On the
other hand n | |G| as it follows from Lemma 9.9. We conclude that
n = |G|. Therefore the group G is cyclic. �

Example 9.16. There is no bound of o(f · g) by o(f) and o(g) in
general. For example let n ∈ N and

π := (1, 2n) · (2, 2n− 1) · (3, 2n− 2) · · · (n, n+ 1),

σ := (2, 2n) · (3, 2n− 1) · (4, 2n− 2) · · · (n, n+ 2)

be permutations from S2n. Since both π and σ are products of inde-
pendent transpositions o(π) = o(σ) = 2. Computing that

σ · π := (1, 2, 3, . . . , 2n)

is a 2n-cycle, we get that o(σ · π) = 2n.

Exercise 9.5. Can you guess the product π · σ without computing it?

Exercise 9.6. Let π and σ be a as in Example 9.16. Put ρ := (1, n+
1) · σ and compute that o(π) = o(ρ) = 2 while o(ρ · π) = n.
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9.5. Euler’s function. The cyclic group Z of an infinite order has
exactly two generators 1 and −1. A cyclic group of a finite order n
is isomorphic to Zn = (Zn = {0, 1, . . . , n− 1},+n). The following are
equivalent for an element s ∈ Zn:

(i) s is a generator of Zn,
(ii) o(s) = n,
(iii) ks ̸≡ 0 (mod n) for all k = 1, 2, . . . , n− 1,
(iv) gcd(s, n) = 1.

For a positive integer n we denote by Z∗
n the set of all generators of the

group Zn, i.e,

(9.3) Z∗
n := {s ∈ {1, . . . , n} | gcd(s, n) = 1}.

The Euler’s function is a map φ : N → N which assigns to a positive
integer n the number of generators of Zn, i.e, φ(n) = |Z∗

n|, for all
n ∈ N.

Lemma 9.17. Let p be a prime and m ∈ N. Then φ(pm) = pm−pm−1.

Proof. Since p is a prime, we have that

{s ∈ {1, 2, . . . , pm} | p divides s} = {pt | t ∈ {1, . . . , pm−1}}.
Therefore the set {1, 2, . . . , pm} contains exactly pm−1 numbers divisible
by p. The rest are elements relatively prime to p, thus φ(pm) = pm −
pm−1. �

The cartesian product G1 × · · · ×Gn of groups G1, . . . ,Gn consists
of all tuples ⟨g1, . . . , gn⟩ such that gi ∈ Gi for all i ∈ {1, 2, . . . , n}.
Elements of G1 × · · · ×Gn are multiplied coordinate-wise.

Lemma 9.18. Let n1, . . . , nk be positive integers. If they are pairwise
relatively prime, then

φ(n1 · · ·nk) = φ(n1) · · ·φ(nk).

Proof. Let ⟨s1, . . . , sk⟩ be an element Zn1 × · · · ×Znk
. Since o(si) | ni,

for all i = 1, . . . , k, the orders o(s1), . . . , o(sk) are relatively prime. We
get that

o(⟨s1, . . . , sk⟩) = o(s1) · · · o(sk),
due to Lemma 9.13 (i). It follows that ⟨s1, . . . , sk⟩ is a generator of
Zn1 × · · · ×Znk

if and only if si generates Zni
for all i ∈ {1, 2, . . . , k}.

We conclude that the cartesian product Zn1 × · · · × Znk
is cyclic of

order n1 · · ·nk and φ(n1 · · ·nk) = φ(n1) · · ·φ(nk). �
Exercise 9.7. Prove that Zn1 × · · · × Znk

is cyclic if and only if
n1, · · · , nk are pairwise relatively prime.
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Theorem 9.19. Let n = pm1
1 · · · pmk

k be a decomposition of a positive
integer n into the product of primes. Then

φ(n) = (pm1
1 − pm1−1

1 ) · · · (pmk
k − pmk−1

k ) = n(1− 1

p1
) · · · (1− 1

pk
).

Proof. We have that φ(n) = φ(pm1
1 . . . pmk

k ) = φ(pm1
1 ) · · ·φ(pmk

k ) due to
Lemma 9.18 and φ(pmi

i ) = pmi
i − pmi−1

i , for all i = 1, . . . , k, due to
Lemma 9.17. �
Theorem 9.20. For every positive integer n the equality

(9.4) n =
∑
m|n

φ(m)

holds true.

Proof. Observe that an element g of a group G is a generator of a
unique subgroup of G, namely the cyclic subgroup ⟨g⟩ consisting of all
powers of g. The cyclic group Zn has n elements, a unique subgroup of
order m for each m | n, due to Lemma 9.7, and the subgroup of order
m has exactly φ(m) generators. Equality (9.4) follows. �

The multiplication modulo a positive integer n is given by

s ·n t = s · t mod n,

is a binary operation on Zn. It follows from Exercise 9.2 that the set

Z∗
n := {s ∈ Zn | s ≡ 1 (mod n)}

together with the operation ·n form a group. We will denote the group
by Z∗

n.

Theorem 9.21 (Euler’s theorem). Let n be a positive integer. Then

(9.5) sφ(n) ≡ 1 (mod n),

for all integers s co-prime to n.

Proof. Let s be an integer co-prime to n. Then s ≡ t (mod n) for some
t ∈ Z∗

n. The order of t in Z∗
n divides φ(n) = the order of Z∗

n, due to
Lemma 9.9. It follows from Lemma 9.10 that

t ·n · · · ·n t︸ ︷︷ ︸
φ(n) times

= 1,

hence tφ(n) ≡ 1 (mod n). Since sφ(n) ≡ tφ(n) (mod n), due to Exer-
cise 9.2, we conclude that (9.5) holds true. �
Corollary 9.22 (Fermat’s theorem). Let p be a prime. If p - s, then

sp−1 ≡ 1 (mod p).
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Proof. Since p is prime, an integer s is co-prime to p if and only if p - s.
Since φ(p) = p− 1 for every prime p, Fermat’s theorem follows readily
form Euler’s theorem. �
Lemma 9.23 (Wilson’s theorem). Let 1 < q be an integer. Then

q | (q − 1)! + 1 if and only if q is a prime.

Proof. (⇒) If q is not prime, then clearly 1 < gcd(q, (q − 1)!), and
so q - (q − 1)! + 1. (⇐) Suppose that q is a prime number. Then
q | s2 − 1 = (s+ 1)(s− 1) if and only if q | s+ 1 or q | s+ 1. It follows
that the only elements of the group Z∗

q that are equal to their inverses
are 1 and q − 1. Consequently, we can pair the remaining elements of
Z∗

q , namely 2, · · · , q− 2, so that the members of every pair are inverse
to each other. We conclude that

2 · · · (q − 2) ≡ 1 (mod q),

hence
(q − 1)! ≡ (q − 1) ≡ −1 (mod q),

whence q | (q − 1)! + 1. �


