
ALGEBRA I (LECTURE NOTES 2017/2018)
LECTURE 5 - THE LAGRANGE THEOREM

PAVEL RŮŽIČKA

5.1. Lagrange theorem. Let G = (G, ·) be a grupoid. We set

(5.1) A ·B := {a · b | a, b ∈ G},
for all A,B ⊆ G. We will abuse our notation writing a · B and A · b
respectively instead of {a} · B and A · {b}, when one of the sets has a
single element.

Given a set G, we put P(G) := {A | A ⊆ G}, i.e., P(G) denotes
the set of all subsets of G. Observe that if G = (G, ·) is a semigroup,
the operation · defined by (5.1) on the set P(G) is associative, and so
P(G) = (P(G), ·) is a semigroup as well. Moreover, if G has a unit,
say u, then {u} is a unit of P(G).

Exercise 5.1. Let G = (G, ·) be a finite group and A,B subsets of G.

(i) Prove that if |A|+ |B| > |G|, then A ·B = G.
(ii) Use (i) to prove that every element of a finite field is a sum of

two squares.

Definition 5.1. Let G = (G, ·) be a group and H a subgroup of G.
The sets g ·H and H · g, g ∈ G, respectively are called left cosets and
right cosets of H .

Lemma 5.2. Let G := (G, ·) be a group and H a sub-universe of G
containing the unit. For each f, g ∈ G, the following are equivalent:

(i) g−1 · f ∈ H,
(ii) f ∈ g ·H,
(iii) f ·H ⊆ g ·H,

Proof. (i) ⇒ (ii) If g−1 ·f ∈ H, then g = g ·(g−1 ·f) ∈ f ·H. (ii) ⇒ (iii)
Since H is a sub-universe of G, h ·H ⊆ H, for all h ∈ H. If f ∈ g ·H,
then f = g ·h, for some h ∈ H. It follows that f ·H = g ·h ·H ⊆ g ·H.
(iii) ⇒ (i) Assume that f · H ⊆ g · H. Left multiplying by g−1 gives
that g−1 · f ·H ⊆ H. Since the unit u belongs to H, we conclude that
g−1 · f = g−1 · f · u ∈ g−1 · f ·H ⊆ H. �
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Given a group G := (G, ·). For each H ⊆ G we define a binary
relation ≡H on G by

(5.2) f ≡H g if g−1 · f ∈ H, for all f, g ∈ G.

Lemma 5.3. Let G := (G, ·) be a group. If H is a subgroup of G,
then ≡H is an equivalence relation and blocks of ≡H correspond to left
cosets of H.

Proof. Since H is a subgroup, the set H is closed under inverses, and
so the relation ≡H is symmetric. Indeed if g−1 · f ∈ H, then f−1 · g =
(g−1 · f)−1 ∈ H, for all f, g ∈ G. The reflexivity and transitivity of ≡H

follows readily from Lemma 5.2(i) ⇔ (iii). We conclude that ≡H is an
equivalence.

It follows from Lemma 5.2(ii) ⇒ (i) that if f ∈ g ·H, then f ≡H g.
Consequently, each coset is contained in a single block of ≡H . Con-
versely, if g ∈ k ·H and f ≡H g, for some f, g, k ∈ G, then f ∈ g ·H ⊆
k ·H, due to Lemma 5.2 (i) ⇒ (ii) ⇒ (iii). Therefore each coset is a
union of blocks. We conclude that each coset equals to a single block
of ≡H . �
Lemma 5.4. Let G := (G, ·) be a group and H a subgroup of G. Then
all left cosets of H have the same size. In particular, |g ·H| = |H|, for
all g ∈ G.

Proof. Let g ∈ G. It suffices to verify that the map H → g · H given
by h 7→ g ·h is a bijection. It clearly maps H onto g ·H. If g ·h = g ·h′,
for some h, h′ ∈ H, then h = h′ due to left cancellativity of the group
operation. Therefore the map is one-to-one. �
Remark 5.5. We could argue similarly for right cosets instead of left
ones. In particular, the right cosets form a partition and they are all
of the same size. In fact, since H is both a right and left coset, the size
of each right coset equals to the size of any left coset.

Definition 5.6. Let H be a subgroup of a group G. The number of
left cosets of H is denoted by [G : H ] and it is the index of H in G.

Exercise 5.2. Observe that the unit permutation and the transposition
(1, 2) form a subgroup, say T of S3. Compute all left and right cosets
of T .

Since left cosets of H form a partition of G and all have the same
size, we get that

Theorem 5.7 (Lagrange). Let H be a subgroup of a group G. Then

|G| = [G : H ]|H|.
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In particular, if G is finite, then |H| divides |G|.

Example 5.1. Let 2 ≤ n be an integer. If π and ρ are odd permutations
from Sn, then the permutation ρ−1 · π is even, due to Lemmas 3.6 and
3.10. Therefore π ≡An ρ, and so all odd permutations form a left coset
of An. We see that there are exactly two left cosets of An, the left
coset of all odd and the left coset of all even permutations; the latter
corresponds to An. Hence [Sn : An] = 2, whence

|An| =
|Sn|
2

=
n!

2
,

due to the Lagrange theorem.


