ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 5 - THE LAGRANGE THEOREM

PAVEL RŮŽIČKA

5.1. Lagrange theorem. Let $\boldsymbol{G} = (G, \cdot)$ be a grupoid. We set

 $(5.1) A \cdot B := \{a \cdot b \mid a, b \in G\},$

for all $A, B \subseteq G$. We will abuse our notation writing $a \cdot B$ and $A \cdot b$ respectively instead of $\{a\} \cdot B$ and $A \cdot \{b\}$, when one of the sets has a single element.

Given a set G, we put $\mathcal{P}(G) := \{A \mid A \subseteq G\}$, i.e., $\mathcal{P}(G)$ denotes the set of all subsets of G. Observe that if $\mathbf{G} = (G, \cdot)$ is a semigroup, the operation \cdot defined by (5.1) on the set $\mathcal{P}(G)$ is associative, and so $\mathcal{P}(\mathbf{G}) = (\mathcal{P}(G), \cdot)$ is a semigroup as well. Moreover, if \mathbf{G} has a unit, say u, then $\{u\}$ is a unit of $\mathcal{P}(\mathbf{G})$.

Exercise 5.1. Let $G = (G, \cdot)$ be a finite group and A, B subsets of G.

- (i) Prove that if |A| + |B| > |G|, then $A \cdot B = G$.
- (ii) Use (i) to prove that every element of a finite field is a sum of two squares.

Definition 5.1. Let $G = (G, \cdot)$ be a group and H a subgroup of G. The sets $g \cdot H$ and $H \cdot g$, $g \in G$, respectively are called *left cosets* and *right cosets* of H.

Lemma 5.2. Let $G := (G, \cdot)$ be a group and H a sub-universe of G containing the unit. For each $f, g \in G$, the following are equivalent:

(i) $g^{-1} \cdot f \in H$, (ii) $f \in g \cdot H$, (iii) $f \cdot H \subset q \cdot H$,

Proof. (i) \Rightarrow (ii) If $g^{-1} \cdot f \in H$, then $g = g \cdot (g^{-1} \cdot f) \in f \cdot H$. (ii) \Rightarrow (iii) Since H is a sub-universe of G, $h \cdot H \subseteq H$, for all $h \in H$. If $f \in g \cdot H$, then $f = g \cdot h$, for some $h \in H$. It follows that $f \cdot H = g \cdot h \cdot H \subseteq g \cdot H$. (iii) \Rightarrow (i) Assume that $f \cdot H \subseteq g \cdot H$. Left multiplying by g^{-1} gives that $g^{-1} \cdot f \cdot H \subseteq H$. Since the unit u belongs to H, we conclude that $g^{-1} \cdot f = g^{-1} \cdot f \cdot u \in g^{-1} \cdot f \cdot H \subseteq H$.

Date: October 31, 2017.

PAVEL RŮŽIČKA

Given a group $G := (G, \cdot)$. For each $H \subseteq G$ we define a binary relation \equiv_H on G by

(5.2)
$$f \equiv_H g \text{ if } g^{-1} \cdot f \in H, \text{ for all } f, g \in G.$$

Lemma 5.3. Let $G := (G, \cdot)$ be a group. If H is a subgroup of G, then \equiv_H is an equivalence relation and blocks of \equiv_H correspond to left cosets of H.

Proof. Since H is a subgroup, the set H is closed under inverses, and so the relation \equiv_H is symmetric. Indeed if $g^{-1} \cdot f \in H$, then $f^{-1} \cdot g = (g^{-1} \cdot f)^{-1} \in H$, for all $f, g \in G$. The reflexivity and transitivity of \equiv_H follows readily from Lemma 5.2(*i*) \Leftrightarrow (*iii*). We conclude that \equiv_H is an equivalence.

It follows from Lemma 5.2(*ii*) \Rightarrow (*i*) that if $f \in g \cdot H$, then $f \equiv_H g$. Consequently, each coset is contained in a single block of \equiv_H . Conversely, if $g \in k \cdot H$ and $f \equiv_H g$, for some $f, g, k \in G$, then $f \in g \cdot H \subseteq k \cdot H$, due to Lemma 5.2 (*i*) \Rightarrow (*ii*) \Rightarrow (*iii*). Therefore each coset is a union of blocks. We conclude that each coset equals to a single block of \equiv_H .

Lemma 5.4. Let $G := (G, \cdot)$ be a group and H a subgroup of G. Then all left cosets of H have the same size. In particular, $|g \cdot H| = |H|$, for all $g \in G$.

Proof. Let $g \in G$. It suffices to verify that the map $H \to g \cdot H$ given by $h \mapsto g \cdot h$ is a bijection. It clearly maps H onto $g \cdot H$. If $g \cdot h = g \cdot h'$, for some $h, h' \in H$, then h = h' due to left cancellativity of the group operation. Therefore the map is one-to-one.

Remark 5.5. We could argue similarly for right cosets instead of left ones. In particular, the right cosets form a partition and they are all of the same size. In fact, since H is both a right and left coset, the size of each right coset equals to the size of any left coset.

Definition 5.6. Let H be a subgroup of a group G. The number of left cosets of H is denoted by [G:H] and it is the *index* of H in G.

Exercise 5.2. Observe that the unit permutation and the transposition (1,2) form a subgroup, say T of S_3 . Compute all left and right cosets of T.

Since left cosets of H form a partition of G and all have the same size, we get that

Theorem 5.7 (Lagrange). Let H be a subgroup of a group G. Then |G| = [G : H]|H|.

 $\mathbf{2}$

In particular, if G is finite, then |H| divides |G|.

Example 5.1. Let $2 \leq n$ be an integer. If π and ρ are odd permutations from $\mathbf{S}_{\mathbf{n}}$, then the permutation $\rho^{-1} \cdot \pi$ is even, due to Lemmas 3.6 and 3.10. Therefore $\pi \equiv_{A_n} \rho$, and so all odd permutations form a left coset of $\mathbf{A}_{\mathbf{n}}$. We see that there are exactly two left cosets of $\mathbf{A}_{\mathbf{n}}$, the left coset of all odd and the left coset of all even permutations; the latter corresponds to A_n . Hence $[\mathbf{S}_n : \mathbf{A}_n] = 2$, whence

$$|A_n| = \frac{|S_n|}{2} = \frac{n!}{2},$$

due to the Lagrange theorem.