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0. The plan

This survey will present both standard steady-state models used to describe

steady-state of ferromagnetic rigid bodies as well as some evolution models. Typ-
ical phenomenon that makes the modelling rather nontrivial is the microstructure

of magnetization typically occurring in (even single crystals of) ferromagnets. The
steady-state models are based on the energy minimization principle in the frame-

work of continuum level. Even on such a level, one can distinguish three levels
depending on the resolution with which the microstructure is described, namely a

microscopical, a mesoscopical, and (rather for completeness we will also mention)

a macroscopical ones; the first level does not mean an atomic level, however. Al-
though minimization of total magnetic energy implicitly expect zero activation and

inevitably results to zero hysteresis, which has limited application to magnetically
soft materials only, it is illustrative to start the survey with such sort of models. The

change of magnetization is, however, an activated process yielding a rate-independent

hysteresis. This will be reflected in evolution models extending naturally the corre-

sponding steady-state models. Besides, an anisothermal extension of the evolution
1
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mesoscopical model will be presented in Section 3. The plan is summarized in the

following table:

Level: micro meso macro
Type:

steady-state Sect.1.1 Sect.1.2 Sect.1.3

evolution Sect.2.1 Sect.2.2 Sect.2.3

with temperature — Sect.3 —

Table 1: The plan of the paper.

Let us emphasize that, while mutual relations between the presented steady-state
models are well established, the same cannot be said about evolution models. This

is certainly a very challenging question, as well as relations between steady-state

models and the evolution ones, which is connected with asymptotical behaviour of
the latter ones.

1. Steady-state models in micromagnetism

A configuration of a rigid ferromagnetic body occupying a bounded domain Ω ⊂
R

3 can be described, from an electromagnetic viewpoint, by a magnetization m :

Ω → R
3 depending on a position x ∈ Ω and having a given temperature-dependent

magnitude

(1.1) |m(x)| = Ms = Ms(θ) for almost all x ∈ Ω ;

with Ms the so-called saturation magnetization; Ms(θ) > 0 for θ < θC while Ms(θ) =
0 for θ ≥ θC, the so-called Curie point.

Except Section 3, we will treat the isothermal case with the temperature θ fixed
below the Curie point.

1.1 Microscopical level.

On microscopical level, the magnetic Gibbs energy consists of four parts, namely
an anisotropy energy

∫

Ω
ϕ(m(x)) dx with a density ϕ which is supposed to be an

even nonnegative function depending on material properties and exhibiting crys-
tallographic symmetry, an exchange energy ε

∫

Ω
|∇m(x)|2dx having a quantum-

theoretical origin (ε > 0 is very small from a macroscopical viewpoint), and even-
tually a magnetostatic energy 1

2

∫

R3 |hdem(x)|2dx with the self-induced demagnetizing

field hdem governed by the equations

(1.2) ∇× hdem = 0 & div(hdem + χΩm) = 0

arising from Maxwell equations after a lot of simplifications, where χΩ : R
3 →

{0, 1} denotes the characteristic function of Ω. The former relation enables us to
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introduce a potential u such that hdem = ∇u, so that the magnetostatic energy is
1
2

∫

R3 |∇u(x)|
2dx with u related with m through div(∇u−mχΩ) = 0. Eventually, the

fourth part is an interaction energy
∫

Ω
h(x) ·m(x) dx involving the outer magnetic

field h.
A generally accepted model for steady-state configuration is due to Landau and

Lifshitz [25, 26] (see e.g. Brown [4, 5, 6] or Hubert and Schäfer [14]), relying on a
minimum-of-Gibbs’-energy principle, i.e.

(1.3)







minimize Eε(m, u) −

∫

Ω

h ·m dx (Gibbs’ energy)

where Eε(m, u) :=

∫

Ω

ϕ(m) + ε|∇m|2 dx

+
1

2

∫

R3

|∇u|2 dx, (Helmholtz’ energy)

subject to |m| = Ms on Ω , (magnetization constraint)

div(∇u− χΩm) = 0 on R
3, (rest of Maxwell’s equations)

m ∈ L∞(Ω; R3), u ∈ W 1,2(R3),

where we used standard notation L∞(Ω; R3) for the Lebesgue space of measurable,
essentially bounded functions Ω → R

3 and W 1,2(R3) for Sobolev space of functions

u : R
3 → R belonging together with their distributional derivative to the space of

squared integrable functions, i.e. u ∈ L2(R3) and ∇u ∈ L2(R3; R3). The part Eε

plays the role of the Helmholtz free energy.
This problem is always nonconvex because of the constraint |m| = Ms. Moreover,

we assume that ϕ attains minimum at several point {sα} ⊂ SMs
:= {s ∈ R

3; |s| =
Ms}; each sα determines a direction of easy magnetization. Typical examples are two

minimizers sα for uni-axial magnets and 6 or 8 for cubic magnets. The exchange en-
ergy guarantees that the problem (1.3) has a (possibly not unique) solution (mε, uε).

However, for ε small, mε will typically exhibit fast spatial oscillations, so-called fine

structure.

Such model has been recently investigated, e.g., by Choksi and Kohn [7], DeSi-
mone [9], DeSimone, Kohn, Müller, Otto and Schäfer [10], James and Müller [16],

James and Kinderlehrer [15], Pedregal [34, 35], Rogers [40], Tartar [44] and also in

[23, 41].

1.2 Mesoscopical level.

Since ε > 0 is very small, it is natural to consider it only as a singular pertur-
bation and to investigate behaviour when ε → 0. It leads to a so-called relaxed

problem (1.4) involving a so-called Young measure ν, i.e. a probability measure νx

on SMs
parameterized (in a measurable way) by x ∈ Ω, which describe the relevant

“mesoscopical” character of the fine structure of m. At a given “macroscopical”



4

point x ∈ Ω, νx represents a volume fraction regarding to particular magnetiza-

tions on SMs
. It can be proved [9, 34] that the limit configuration q ≡ (ν, u) solves

the following minimization problem involving “mesoscopical” Gibbs’ and Helmholtz’

energies:

(1.4)







minimize E(ν, u) −

∫

Ω

h · (id •ν) dx, (mesoscopical Gibbs’ energy)

where E(ν, u) :=

∫

Ω

ϕ •ν dx +
1

2

∫

R3

|∇u|2 dx, (Helmholtz’ energy)

subject to div
(

∇u− χΩ(id •ν)
)

= 0 on R
3,

ν ∈ Y(Ω;SMs
), u ∈ W 1,2(R3),

where we abbreviated [f •ν](x) :=
∫

R3 f(m)νx(dm) and id : R
3 → R

3 is the identity.

Here, Y(Ω;SMs
) ⊂ L∞

w (Ω; rca(SMs
)) ∼= L1(Ω;C(SMs

))∗ denotes the set of all Young
measures, i.e. all weakly measurable essentially bounded mappings x 7→ νx : Ω →

rca(SMs
) ∼= C(SMs

)∗ such that νx is a probability Radon measure on SMs
for a.a. x∈

Ω.

Alternatively, the relaxed problem (1.4) can be viewed simply as a continuous
extension of the original problem (1.3) considered for ε = 0. Let us note that the

problem (1.4) has a convex structure. Therefore, its solution (ν, u) can be fully
characterized by the first-order optimality conditions which read here as:

(1.5) E ′(ν, u) +NQ(ν, u) 3 F := (h⊗ id, 0),

where E ′ denotes the Gâteaux differential of E, and NQ(ν, u) is the normal cone to
the admissible set

(1.6) Q :=
{

(ν, u) ∈ Y(Ω;SMs
) ×W 1,2(R3); div(∇u− χΩ(id •ν)) = 0

}

at the point (ν, u), and eventually the tensorial product h ⊗ id ∈ L1(Ω;C(SMs
)) is

defined naturally by [h⊗ id](x,m) :=
∑n

i=1 hi(x)mi. Let us remark that (1.5) leads
to a certain Weierstraß maximum principle, cf. [23] for details. This also enables

efficient numerical solution, cf. [21, 22]. Typically, ν is nontrivial (i.e. {νx}x∈Ω are
not Dirac measures for a.a. x ∈ Ω) though sometimes the opposite case may occur,

cf. Dacorogna and Fonseca [8].

1.3 Macroscopical level.

Let us also remark that id •ν appearing in (1.4) represents a macroscopical mag-

netization, let us denote it by M . It was shown by DeSimone [9] that M solves the

“coarsely” relaxed problem involving a convexification of the energy ϕ augmented
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by the indicator function δSMs
of SMs

, i.e.

(1.7)







minimize Ē(M,u) :=

∫

Ω

[
ϕ+ δSMs

]
∗∗

(M(x)) − h(x) ·M(x) dx

+
1

2

∫

R3

|∇u(x)|2 dx,

subject to div(∇u− χΩM) = 0 on R
3,

M ∈ L∞(Ω; R3) , u ∈ W 1,2(R3) ,

where

(1.8) δSMs
(s) =

{
0 if |s| = Ms,
+∞ otherwise,

and [ · ]∗∗ denotes the convex envelope. The relation between a solution (ν, u) to

(1.4) and a solution (M,u) to (1.7) is

(1.9) M(x) = id •ν :=

∫

SMs

mνx(dm).

However, we want to emphasize that the macroscopical viewpoint already neglects

the information about microstructure which will certainly be further essential to
determine an evolution.

2. Evolution models

When the outer magnetic field h varies in time, the configuration (m, u) (see
(1.3)) or (ν, u) (see (1.4)) eventually may start to evolve, too. Experimentally it

has repeatedly been proved that this evolution is an activated process accompanied
by dissipation that leads, except very-high-frequency ranges, to a very typical rate-

independent hysteretic response of the magnet. There are models on each mentioned
level reflecting this phenomenon.

2.1 Microscopical level.

A standard evolution model is the Gilbert-Landau-Lifshitz one [12, 25], governed

by the equation

(2.1)
∂m

∂t
= λ1m× heff − λ2m× (m× heff), heff := h− ϕ′(m) + ε∆m−

1

2
∇u,

while u is again determined from div(∇u−χΩm) = 0. Here ϕ′ stands for a derivative
of ϕ, assumed as defined also outside SMs

. The balance of magnetic energy Eε

(see (1.3)) can be obtained by multiplying (2.1) by the “effective magnetic field” heff

and integrating over Ω, yielding

(2.2)
dEε(m, u)

dt
= −

∫

Ω

heff ·
∂m

∂t
dx = −λ2

∫

Ω

|m× heff |
2dx ≤ 0,
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which expresses Clausius-Duhem’s inequality. In particular, the “precession” λ1-

term does not dissipate energy, while λ2-term determines, roughly speaking, phe-
nomenologically a “viscous” damping of the process.

The multiwell structure of ϕ (restricted on SMs
) together with the λ2-term may

cause a nearly rate-independent hysteretic response, which is typical for ferromagnet-

ical materials; cf. Blatensperger and Helman [2] for pursuit of this idea on microscop-
ical level. The width of the hysteresis loop in the m/h-diagram, which determines

dissipated energy, can thus be indirectly controlled by a shape of ϕ. This is, how-
ever, very implicit and that is why the applications of the model (2.1) are generally

accepted rather with limitations, though it has often been used (see e.g. [27, 39, 43]),
even for commercial codes (see [33]).

One can be inspired by models used in classical mechanics for plasticity and/or
dry friction phenomena to augment the dissipation mechanism in (2.1). Indeed,

Visintin [46] augmented heff in (2.1) by a set-valued term L∂| · |, L > 0, so that

(2.3) heff ∈ h− ϕ′(m) + ε∆m−
1

2
∇u+ Lω(

∂m

∂t
),

ω(z) =

{
z/|z| if z 6= 0,
{z∈R

3; |z| ≤ 1} if z = 0.

This leads to the additional dissipation term

(2.4) L

∫

Ω

∣
∣
∣
∣

∂m

∂t

∣
∣
∣
∣

dx

in the energy balance (2.2). This dissipation mechanism is rate-independent which

may cause that the width of the h/m-hysteresis loop can be determined explicitly by
the phenomenological parameter L, assuming that influence of the viscous damping

through λ2-term is suppressed for sufficiently slow loading processes h = h(t). For
such sort of models but in multi-well elasticity, this effect was computationally tested

in [36] in the context of shape-memory alloys.

For extension of this model considering full Maxwell system instead of (1.2) we
refer to Visintin [47], while for other dry-friction type models we refer to Bergqvist

[1]. For simulation of a hysteresis in a pure quasistationar model see Kinderlehrer
and Ma [19].

2.2 Mesoscopical level.

Certain disadvantage of the models from Sect.2.1 is that they can describe rather

micro-scale (at most 10−3m scale where the exchange energy dominates) than
engineering-scale situations. This can be overcome by a mesoscopical model.

If we want to define the evolution t 7→ q(t) ≡ (ν(t), u(t)) with ν(t) describing
the mesoscopical microstructure at a given time instance t like in (1.4), we must

also postulate the generalized impulse q̇ ≡ (ν̇, u̇) with the dot indicating the time
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derivative, for which we need some geometric structure. This is, in fact, a matter of

a certain choice: it appears fruitful to take the convex geometry of Q induced from
the linear space L1(Ω;C(SMs

))∗ ×W 1,2(R3), which will yield the desired response

as indicated by the energy balance (2.7)–(2.9) and demonstrated computationally
in [24, 42].

The dissipation (2.4) could be implemented on the mesoscopical level by the
dissipation function R (i.e. the potential of generalized dissipative force) in the form

R(ν̇, u̇) = L
∫

Ω
|id • ν̇| dx. For uni-axial magnets (oriented in x3-direction) it rather

occurs that only the x3-component of id • ν̇ dissipates. Therefore, forK an anisotropy

parameter, the data ϕ and R can be considered as

(2.5a) ϕ(m) = ϕ(m1, m2, m3) = K(m2
1 +m2

2) ,

(2.5b) R(ν̇, u̇) =

∫

Ω

|λ • ν̇| dx with λ(m) = Hcm3;

recall that we defined [λ • ν̇](x) :=
∫

R3 λ(m)ν̇x(dm). Now we wrote Hc instead of

L, the parameter Hc having the definite meaning of the coercive field, cf. Figure 1

below. In view of (1.9), (2.5b) can also be written as R(ν̇, u̇) =
∫

Ω
|Ṁ3| dx.

Likewise the plasticity models in metals and shape-memory alloys, the desired

dissipation/hysteretic effects can be achieved by the evolution t 7→ q(t) governed

by the following first-order evolution inclusion (see [42], cf. also Eve, Reddy, and
Rockafellar [11], Krejč́ı [20], or Mielke, Theil and Levitas [31, 32] for general inves-

tigations):

(2.6) ∂R(
dq

dt
) + E ′(q) +NQ(q) 3 F (t) , q(0) = q0,

where ∂R(q̇) = {z ∈ L1(Ω;C(SMs
))×W−1,2(R3); ∀q̃ ∈ L∞

w (Ω; rca(SMs
))×W 1,2(R3) :

R(q̃) ≥ R(q̇) + 〈z, q̃ − q̇〉} denotes the subdifferential of R at q̇. The set-valued

mapping ∂R is monotone and even so-called maximal responsive, see [11] for a deep

investigation. Besides, q0 ≡ (ν0, u0) is the initial configuration; in fact, only the
momenta of q0 involved in R are relevant, which means here that only λ •ν0 is to be

set up for, i.e. one must set up the initial volume fraction of the poles.
A justification of the model (2.6) is the desired energy balance which can be then

obtained, at least formally, by testing the inclusion (2.6) by d
dt
q and integrating over

a time interval, say [0, T ]. This gives, for any z ∈ NQ(q), that

(2.7) 0 = −

∫ T

0

〈z,
dq

dt
〉 dt =

∫ T

0

〈

∂R(
dq

dt
) + E ′(q) − F (t),

dq

dt

〉

dt

=

∫ T

0

(
d

dt
E(q) + ξ(

dq

dt
) − 〈F (t),

dq

dt
〉

)

dt
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= E(q(T ))
︸ ︷︷ ︸

final
energy

+

∫ T

0

ξ(
dq

dt
) dt

︸ ︷︷ ︸

dissipated
energy

−

∫ T

0

〈F (t),
dq

dt
〉 dt

︸ ︷︷ ︸

work made by
external field h

− E(q0)
︸ ︷︷ ︸

initial
energy

where ξ denotes the rate of dissipation given here by

(2.8) ξ(
dq

dt
) = 〈z,

dq

dt
〉 =

∫

Ω

∣
∣
∣
∣
λ •

dν

dt

∣
∣
∣
∣
dx ∀z ∈ ∂R(

dq

dt
) .

One can also notice that (2.7) expresses, in particular, the Clausius-Duhem inequality
d
dt
E(q)−〈F, d

dt
q〉 ≤ 0, cf. Brown [5, Sect.3.2] or also Bergqvist [1]. Especially, having

in mind (2.5), the bilance (2.7) turns into

(2.9) E(ν(T ), u(T )) +

∫

Ω

(

Var
t∈[0,T ]

λ •ν

)

dx =

∫ T

0

∫

Ω

h·(id •ν) dxdt + E(ν0, u0)

where “Var” denotes the total variation over the time interval indicated. This is
just the desired effect: the energy dissipated in a “macroscopical infinitesimally

small volume” dx counts how many times the pole transformed within the time
interval [0, T ] in dx.

Moreover, as the subdifferential ∂R is assumed maximal responsive, by [11,
Lemma 4.1(c,d)] the latter inclusion in (2.8) is equivalent to

(2.10) 〈
dq

dt
, z〉 = max

z̃∈C

〈
dq

dt
, z̃〉

where the convex set C = ∂R(0) = {z; ∀q : 〈z, q〉 ≤ R(q)} determines the region of

nondissipative (i.e. nonhysteretic) response. The relation (2.10) is just what is called
(in plasticity Hill’s [13]) maximum-dissipation principle, and expresses the rule that

the rate of change of the configuration q is normal to C at z where, from (2.6), one has
z + E ′(q) +NQ(q) 3 F (t). For a connection with a (vector) play operator routinely

used in hysteresis theory see Brokate and Sprekels [3], Krejč́ı [20] or Visintin [45]. By
analyzing the abstract principle (2.10) for the special case (2.5b), one can identify the

point-wise explicit activation rule that triggers the magnetization evolution process:

(2.11)
dM3

dt







= 0 ⇐= −Hc < H < Hc,
> 0 =⇒ H = Hc,
< 0 =⇒ H = −Hc.

cf. [42, Formula (5.13)]. Moreover, one can see that the scalar function H = H(x, t)
appearing in (2.11), which plays a role of an effective field activating the magnetiza-

tion process, satisfies H(x, t) ∈ Hcsign(M3) where sign(M3) denotes the set-valued
function being equal to (resp. -1) for M3 positive (resp. negative) and to the interval

[-1,1] for M3 = 0.
The existence of a weak solution to the inclusion (2.6) involving, however, a certain

regularization of E has been proved in [42].
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2.3 Macroscopical level.

For completeness, let us mention phenomenological models that do not involve
explicitly any microstructure. Such models are quite popular among engineers and

physicists, too. Classical approaches are Rayleigh’s modification [38] of Prandtl
and Ishlinskĭı model or Preisach’s model [37] (see also Jiles [17], Mayergoyz [30],

or Visintin [45]). This makes possible to involve even a continuum of activation
thresholds. Another one is, e.g., due to Jiles and Atherton [18].

Besides, the one-threshold dry-friction idea like (2.11) has been used in a model
based on macroscopical magnetization M from (1.9) by Visintin [47].

3. Thermodynamical evolution on mesoscopical level

We already mentioned dependence of (1.4) on temperature θ through dependence

of SMs
= SMs(θ), cf. (1.1). So far, we considered isothermal processes, assuming that

the dissipated magnetic energy does not influence temperature θ.

Of course, a more realistic model must consider a temperature field θ = θ(x, t) to
be coupled with the evolution of magnetic field. The model (2.6) clearly specified

the amount of dissipated magnetic energy and, of course, this energy eventually
transforms to chaotic vibration of atoms, i.e. to heat. This heat energy may increase

the temperature θ. Let us develop formally a thermodynamically consistent theory
based on the mesoscopical level model (2.6).

The simplest possibility is to consider a constant specific heat c > 0, which con-

tributes to the specific Helmholtz free energy ψ by a term −cθln(θ), so that it gets
the form

(3.1) ψ(ν, u, θ) = χΩ

(

ϕ •ν + δMs(θ)(ν) − cθln(θ)
)

+
1

2
|∇u|2,

where δMs(θ)(ν) :=







0 if supp(νx) ∈ SMs(θ(x))

for a.a. x∈Ω,
+∞ otherwise.

Again, u ∈ W 1,2(R3) is related with ν by div(∇u− χΩ(id •ν)) = 0.

This may cause, as a side effect, a temperature dependence of the dissipated

energy as well as of the anisotropy. For example, in the case (2.5), the dependence
of the h/m-diagramme is on Figure 1 for a model 3D axisymetrical case with Ω a

cylinder with the axis x3 (i.e. oriented vertically, cf. Figure 2) as well as the easy-
magnetization axis and the external magnetic field h = h(t) and θ constant over Ω,

playing a role of a parameter:
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θ
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(   )=1.3

(   )=0.8

M

M

M

H

(   )=1.8
component of

averaged over Ω

component 
of external field

the magnetization

3

3

C

h  -

m  -

[kA/m]

720220-720 -220

M - M

The gray scale:

S S
M

Fig.1: h/m-diagramme for a cylin-

drical uni-axial magnet.

Fig.2: The cross-section of Ω with one

snapshot of the macroscopical mag-

netization M3 inside Ω and the de-

magnetizing field hdem around Ω.

The varying gray levels on Figure 2 indicate inhomogeneity of macroscopical mag-
netization inside the bulk magnet Ω, which causes the hysteresis loops on Figure 1

to be curved. The dissipated energy (per unit volume) within the transformation of
one pole m = (±Ms(θ), 0, 0) into the other one (∓Ms(θ), 0, 0) is then 2HcMs(θ), so

that the area of the hysteresis loop in h/m-diagram is 4HcMs(θ).
To pursue the standard thermodynamical procedure, it seems more suitable to

transform ψ by introducing a normalized magnetization µ supported on the unit
sphere S1 ⊂ R

3, i.e. µ ∈ Y(Ω;S1), related with ν by

(3.2) ν = T ∗

Ms(θ)µ, with T ∗

Ms(θ) =
(
TMs(θ)

)
∗

,

where TMs(θ)h(x, s) := h(x,Ms(θ(x))s)

and where (·)∗ denotes the adjoint operator. To explain this definition, let us realize
that for µ = i(m̃) one has ν = i(m) with m = Ms(θ)m̃. Indeed, one has the

following simple chain: 〈ν, h〉 = 〈T ∗

Ms(θ)µ, h〉 = 〈T ∗

Ms(θ)i(m̃), h〉 = 〈i(m̃), TMs(θ)h〉 =
∫

Ω
h(x,Ms(θ(x))m̃(x)) dx = 〈i(Ms(θ)m̃), h〉 = 〈i(m), h〉. Also, one has id •T ∗

Ms(θ)µ =

Ms(θ)(id •µ).

Considering the special case (2.5), this gives the transformed specific free energy
and dissipation rate

(3.3a) ψ̃(µ, u, θ) = χΩ

(

Ms(θ)
2ϕ •µ+ δ1(µ) − cθln(θ)

)

+
1

2
|∇u|2,

(3.3b) ξ̃(
dµ

dt
, θ) = Ms(θ)

∣
∣
∣
∣
λ •

dµ

dt

∣
∣
∣
∣
,
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respectively. Now u and µ are coupled by

(3.4) div(∇u−Ms(θ)χΩ(id •µ)) = 0.

The equation (2.6) now uses Q depending on θ, which results to the equation for

(µ, u):

(3.5) ∂(µ,u)R̃(
d(µ, u)

dt
, θ) + Ψ̃′

(µ,u)(µ, u, θ) +NQ̃(θ) 3 F̃ (t, θ)

with Ψ̃(µ, u, θ) =
∫

R3 ψ̃(µ, u, θ)dx with ψ̃ from (3.3a), R̃( d
dt

(µ, u), θ) = ξ̃( d
dt
µ, θ) with

ξ̃ from (3.3b),

(3.6) Q̃(θ) = {(µ, u) ∈ Y(Ω;S1) ×W 1,2(R3); (3.4) holds},

and F̃ (t, θ) = (Ms(θ)(h(t) ⊗ id), 0).

Then the standard thermodynamically consistent theory would define a specific
entropy by s = −∂ψ̃/∂θ. Here, however, ψ̃ depends on θ also through u via the

equation (3.4) which has a nonlocal character. Thus we must start with the total

free energy Ψ̃(µ, u, θ) =
∫

R3 ψ̃(µ, u, θ)dx and seek s as the gradient −Ψ̃′

θ(µ, u, θ),

i.e.
∫

R3 sϑ dx equals to the directional derivative −[Ψ̃′

θ(µ, u, θ)](ϑ) of Ψ̃ for any di-
rection ϑ. One can call s the specific entropy and find the nonlocal formula

(3.7) s = χΩ

(

−2M ′

s(θ)Ms(θ)(ϕ •µ)

−M ′

s(θ)(id •µ) · ∇∆−1div(χΩMs(θ)(id •µ)) + c(1 + ln(θ))
)

and then, through Gibbs’ relation, the specific internal energy

(3.8) e = ψ + θs = χΩ

(

(Ms(θ)
2 − 2θM ′

s(θ)Ms(θ))(ϕ •µ)

− θM ′

s(θ)(id •µ) ·∇∆−1div(χΩMs(θ)(id •µ)) + cθ
)

+
1

2
|∇u|2 .

The classical energy balance says that

(3.9)
d

dt

∫

R3

e(x) dx = power of external forces =

∫

Ω

Ms(θ)h · (id •µ) dx.

Testing (3.5) by d
dt

(µ, u) gives, after using (3.8) and s = −Ψ̃′

θ and also (3.9), the

following balance:

(3.10) 0 =

〈

Ψ̃′

(µ,u)(µ, u, θ),
d

dt
(µ, u)

〉

+ R̃(
d(µ, u)

dt
, θ) −

〈

F̃ (t, θ),
d

dt
(µ, u)

〉

=
d

dt
Ψ̃(µ, u, θ)−

〈

Ψ̃′

θ(µ, u, θ),
dθ

dt

〉

+R̃(
d(µ, u)

dt
, θ)−

〈

F̃ (t, θ),
d

dt
(µ, u)

〉

=

∫

R3

∂ψ̃

∂t
dx +

∫

Ω

(

s
∂θ

∂t
+ ξ̃(

dµ

dt
, θ) −Ms(θ)h · (id •µ)

)

dx
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=

∫

R3

∂e

∂t
dx +

∫

Ω

(

−θ
∂s

∂t
+ ξ̃(

dµ

dt
, θ) −Ms(θ)h · (id •µ)

)

dx

=

∫

Ω

(

ξ̃(
dµ

dt
, θ) − θ

∂s

∂t

)

dx.

Furthermore, we consider isotropical heat conduction through Fourier’s law, i.e. the

heat flux is −κ∇θ with κ denoting heat conductivity coefficient of the material. The
total energy balance (3.10) then yields the following entropy equation

(3.11) θ
∂s

∂t
+ div(κ∇θ) = dissipation rate = ξ̃(

dµ

dt
, θ) .

Substituting s from (3.7) gives the equation for temperature

(3.12) c
∂θ

∂t
− div(κ∇θ) = ξ̃(

dµ

dt
, θ) − θ

∂

∂t

(

2M ′

s(θ)Ms(θ)(ϕ •µ)

+ M ′

s(θ)(id •µ) · ∇∆−1div(χΩMs(θ)(id •µ))

)

,

which closes the system through (3.5)–(3.6).
Let us also remark that the system (3.5)–(3.6)–(3.12) is consistent with 2nd ther-

modynamical law. E.g., assuming the magnet Ω thermally isolated, which corre-
sponds to the Neumann boundary conditions for θ, the Clausius-Duhem inequality

for the total entropy
∫

Ω
s dx can be obtained by multiplying (3.11) by 1/θ, integrat-

ing it over Ω, and applying Green’s formula. This gives

(3.13)
d

dt

∫

Ω

s dx =

∫

Ω

ξ̃(dµ

dt
, θ) − div(κ∇θ)

θ
dx =

∫

Ω

ξ̃(dµ

dt
, θ)

θ
+ κ

|∇θ|2

θ2
dx ≥ 0

valid if θ ≥ 0, which is ensured in case the initial condition for (3.12) is non-negative.

Let us emphasize, however, that rigorous mathematical theory of the coupled
system (3.5)–(3.6)–(3.12) seems highly nontrivial and is not developed yet.
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[21] M. Kruž́ık: Variational models for microstructures in shape memory alloys and in micro-

magnetics and their numerical treatment. In: this volume.
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