
SHARPNESS OF THE ASSUMPTIONS FOR THEREGULARITY OF A HOMEOMORPHISM
STANISLAV HENCL

Abstract. The recent result shows that a homeomorphism f 2W 1;n�1loc (
;Rn) of �nite distortion satis�es f�1 2 W 1;1loc (f(
);Rn).We show that this result is sharp in a sense that the crutial regu-larity condition jDf j 2 Ln�1 cannot be replaced by j adjDf j 2 L1or by a requirement that jDf j belongs to some bigger Orlicz space.
1. IntroductionLet 
 � Rn be an open set. We say that a mapping f 2 W 1;1loc (
;Rn)has �nite (outer) distortion if Jf (x) � 0 almost everywhere and Jf (x) =0) jDf(x)j = 0 a.e. Moreover we say that a mapping f 2 W 1;1loc (
;Rn)has �nite inner distortion if Jf (x) � 0 almost everywhere and Jf (x) =0) j adjDf j = 0 a.e. (for basic properties, examples and applicationssee e.g. [10]). Here adjA means an adjugate matrix - see Preliminariesfor the de�nition.Our aim is to show the sharpness of the following recent result from[1] (see also [6], [7], [14], [11] and [8]):Theorem 1.1. Let 
 � Rn be an open set and f 2 W 1;n�1loc (
;Rn) be ahomeomorphism of �nite inner distortion. Then f�1 2 W 1;1loc (f(
);Rn)and f�1 is a mapping of �nite outer distortion. Moreover

(1.1) Z
f(
) jDf�1(y)j dy =

Z

 j adjDf(x)j dx:This statement is actually claimed in [1] only for mappings of �niteouter distortion. However with a very slight modi�cation of the ar-guments given there (see Section 3 for details) it is possible to showthe statement also for a wider class of mappings of �nite inner distor-tion (see also [4]). Also formula (1.1) is not shown there, but it waspreviously shown under stronger assumptions in [7] and under W 1;n�1regularity assumption in [16]. Let us also note that the assumptionthat f has �nite inner distortion is not arti�cial, because it was shownin [9, Theorem 4] that each homeomorhism such that f 2 W 1;1loc , Jf � 0a.e. and f�1 2 W 1;1loc is necessarily a mapping of �nite inner distortion.
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Our aim is to show that assumptions of Theorem 1.1 are sharp ina sense that the crutial regularity condition jDf j 2 Ln�1loc cannot beweakened. From the inequality (1.1) one may be tempted to believethat for a conclusion Df�1 2 L1 is could be enough to assume thatadjDf 2 L1. We show that this is not true:Example 1.2. Let 0 < " < 1 and n � 3. There exist a domain 
 � Rnand homeomorphism f 2 W 1;n�1�"(
;Rn) such that j adjDf j 2 L1(
),pointwise derivative rf�1 exists a.e. in f(
), but jrf�1j =2 L1(f(
)).It is known that for any n � 3 and 0 < " < 1 there exists homeo-morphism f 2 W 1;n�1�" such that f�1 =2 W 1;1loc (see [8, Example 3.1] orExample 1.2) and therefore Theorem 1.1 is sharp on a scale of Sobolevspaces. Let us note that for many problems connected with the theoryof mapping of �nite distortion the optimal regularity of Df is not onthe Lebesgue scale, but on some �ner Orlicz scale (see [13] and refer-ences given there). We show that this is not the case for Theorem 1.1and no smaller integrability condition of Df is enough.Example 1.3. Let n � 3 and suppose that g : [0;1) ! (0;1) is adecreasing function such thatlims!1 g(s) = 0:
Then there is a homeomorphism f 2 W 1;1(B(0; 1);Rn) such that
(1.2) Z

B(0;1) jDf(x)jn�1g(jDf(x)j) dx <1;
pointwise derivative rf�1 exists almost everywhere in f(B(0; 1)), butjrf�1j =2 L1loc(f(B(0; 1))).Let us point out that the conclusion of our examples thatrf�1 existsand is not integrable imply that f�1 =2 W 1;1 and even that f�1 =2 BV .

2. PreliminariesThe Lebesgue measure of a set A � Rn is denoted by Ln(A).Given a square matrix B 2 Rn�n, we de�ne the norm jBj as thesupremum of jBxj over all vectors x of unit euclidean norm. Theadjugate adjB of a regular matrix B is de�ned by the formula(2.1) B adjB = I detB;where detB denotes the determinant of B and I is the identity matrix.The operator adj is then continuously extended to Rn�n.2.1. Di�erentiability of radial functions. By kxk we denote thenorm of x 2 Rn, in fact we use either euclidean norm or maximumnorm kx � yk = maxfjxi � yij : i = 1; : : : ; ng. The following lemmacan be veri�ed by an elementary calculation for the euclidean norm.The maximum norm can be obtained from the euclidean norm by the
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bilipschitz change of variables and therefore it is easy to check that theformulas hold also for this norm.Lemma 2.1. Let � : (0;1)! (0;1) be a strictly monotone, di�eren-tiable function. Then for the mappingf(x) = xkxk�(kxk); x 6= 0
we have for almost every x

Df(x) � maxn�(kxk)kxk ; j�0(kxk)jo; Jf (x) � �0(kxk)��(kxk)kxk �n�1
and j adjDf(x)j � maxn�(kxk)kxk ; j�0(kxk)jo��(kxk)kxk �n�2:

2.2. Area formula. We say that a mapping f : 
! Rn satis�es theLusin condition (N) if the implication jSj = 0 =) jf(S)j = 0 holdsfor any measurable set S � 
.Let f 2 W 1;1loc (
;Rn) be a homeomorphism and let � be a non-negative Borel-measurable function on Rn. Without any additionalassumption we have
(2.2) Z


 �(f(x))jJf (x)jdx �
Z
Rn
�(y)dy:

Moreover there exists a set 
0 � 
 of full measure such that the areaformula holds for f on 
0:
(2.3) Z


0
�(f(x))jJf (x)jdx = Z

f(
0) �(y)dyAlso, the area formula holds on each set on which the Luzin condi-tion (N) is satis�ed. This follows from the area formula for Lipschitzmappings, from the a.e. approximate di�erentiability of f [3, Theo-rem 3.1.4], and a general property of a.e. approximately di�erentiablefunctions [3, Theorem 3.1.8], namely that 
 can be exhausted up to aset of measure zero by sets the restriction to which of f is Lipschitzcontinuous.
3. Finite inner distortionThe following lemma from [1, Lemma 4.3] contains the main ingre-dient for the proof of Theorem 1.1.Lemma 3.1. Let f 2 W 1;n�1loc (
;Rn) be a homeomorphism. Then

(3.1) Z
B jf�1(y)� cj dy � Cr0 Zf�1(B) j adjDf(x)j dx;for each ball B = B(y0; r0) � f(
), where

c = �ZB f�1(y) dy
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and C = C(n).The following theorem was shown in [1, Theorem 4.5].
Theorem 3.2. Let 
 � Rn be an open set and f 2 W 1;n�1loc (
;Rn) be ahomeomorphism such that f�1 2 W 1;1loc (f(
);Rn) and Jf � 0 a.e. Thenf�1 is a mapping of �nite outer distortion.In order to prove the equality (1.1) we will need the following tech-nical lemma from [4, Lemma 2.1].Lemma 3.3. Let f : 
 ! Rn be a homeomorphism such that f 2W 1;1loc (
;Rn) and f�1 2 W 1;1loc (f(
);Rn). SetE = �y 2 f(
) : f�1 is approximatively di�erentiable at yand jJf�1(y)j > 0	:Then there exists a Borel set A � E such that jE n Aj = 0,

f�1(A) � ~E := fx 2 
 : f is approximatively di�erentiable at xand jJf (x)j > 0g
(3.2) and Df�1(y) = �Df(f�1(y))��1 for every y 2 A:
Moreover j ~E n f�1(A)j = 0.
Proof. It is enough to show that j ~E n f�1(A)j = 0, because everythingelse is stated and shown in [4, Lemma 2.1]. Suppose for contradictionthat there is a Borel setG � ~Enf�1(A) such that jGj > 0. Without lossof generality we can also suppose that (2.3) holds for G (i.e. G � 
0)and thus Z

G Jf (x) dx = Z
Rn
�f(G)(y) dy = jf(G)j:

Since Jf > 0 on G we obtain that jf(G)j > 0. We know that the areaformula holds for f�1 on a Borel subset M � f(G) of full measure.From Z
f�1(M) Jf (x) dx = jM j > 0

we obtain that jf�1(M)j > 0. Therefore we can use area formula forf�1 to concludeZ
f(G)\M jJf�1(y)j dy = jG \ f�1(M)j > 0:

It follows that Jf�1 > 0 on a subset of f(G) of positive measure. Clearlyf�1 is approximatively di�erentiable a.e. on f(G) and therefore f(G)\A 6= ; gives us a contradiction. �
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Proof of Theorem 1.1. We claim that there is a function g 2 L1loc(f(
))such that
(3.3) Z

f�1(B) j adjDf j =
Z
B g:This and Lemma 3.1 imply that the pair f; g satis�es a 1-Poincar�einequality in f(
): From [2, Theorem 9] we then deduce that f�1 2W 1;1loc (f(
);Rn).There is a set 
0 � 
 of full measure such that the area formula(2.2) holds for f on 
0. We de�ne a function g : f(
)! R by setting

g(f(x)) = ( j adjDf(x)jJf (x) if x 2 
0 and Jf (x) > 0;0 otherwise.
Since f is a mapping of �nite inner distortion, we have

j adjDf(x)j = g(f(x)) Jf (x) a.e. in 
:
Hence for every A � f(
)
(3.4)

Z
f�1(A) j adjDf(x)j dx = Z

f�1(A)\
0
g(f(x)) Jf (x) dx

= Z
A g(y) dy:For A = B this gives (3.3) and for other sets A it also implies g 2 L1loc.Hence f�1 2 W 1;1loc and from Theorem 3.2 we obtain that f�1 has �niteouter distortion.We will use Lemma 3.3 to prove (1.1). First let us notice that theLusin (N) condition is valid on f�1(A) and therefore we can use (2.3)there. Indeed, let S � f�1(A) be a set of measure zero and let us �nda Borel measurable set S1 � S of measure zero. We can use (2.2) forf�1 and � = �S1 and we obtainZ

f(S1) jJf�1j � jS1j = 0:
Since Jf�1 > 0 on A it follows that jf(S1)j = 0. Since f�1 is a mappingof �nite distortion and each W 1;1 function is approximatively di�eren-tiable almost everywhere we obtainZ

f(
) jDf�1(y)j dy =
Z
E jDf�1(y)j dyand analogouslyZ

~E j adjDf(x)j dx = Z

 j adjDf(x)j dx



6 STANISLAV HENCL

since f is a mapping of �nite inner distortion. Now we can use jEnAj =0, (2.3), (3.2), (2.1) and j ~E n f�1(A)j = 0 to obtainZ
f(
)jDf�1(y)j dy =

Z
A jDf�1(y)j dy

= Z
f�1(A) jDf�1(f(x))j Jf (x) dx = Z

f�1(A) j(Df(x))�1jJf (x) dx
= Z

f�1(A) j adjDf(x)j dx = Z

 j adjDf(x)j dx:

�

4. Construction of examplesIn this section we use a notation Q(c; r) for an open cube in Rn�1centered at c with edge length 2r.One of the main ingredients of the proof of Lemma 3.1 is the factthat homeomorphism f 2 W 1;n�1 must satisfy the (n� 1)-dimensionalLusin (N) condition on almost all hyperplanes. First we construct anauxiliary mapping that fails the Lusin (N) condition in Rn�1. For aconstruction of a homeomorphism that does not satisfy the Lusin con-dition (N) we use Cantor type construction from [12] (see also [15],[5]).
Example 4.1. Let 0 < " < 1 and n � 3. There is a homeomorphismg 2 W 1;n�1�"((�1; 1)n�1; (�1; 1)n�1) such that Jg 2 L1((�1; 1)n�1)and j adjDgj 2 L1((�1; 1)n�1), but g does not satisfy the Lusin condi-tion (N).
Proof. By V we denote the set of 2n vertices of the cube [�1; 1]n�1.The sets Vk = V� : : :� V, k 2 N, will serve as the sets of indices forour construction.Let us denote
(4.1) ak = 1k and bk = 12�1 + 1kn�1�:Set z0 = ~z0 = 0 and let us de�ne
(4.2) rk = ak2�k and ~rk = bk2�k:It follows that (�1; 1)n�1 = Q(z0; r0) and further we proceed by induc-tion. For v = [v1; : : : ; vk] 2 Vk we denote w = [v1; : : : ; vk�1] and wede�ne

zv = zw + 12rk�1vk = z0 + 12
kX

j=1 rj�1vj;
Q0
v = Q(zv; rk�12 ) and Qv = Q(zv; rk):
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Fig. 1. Cubes Qv and Q0
v for v 2 V1 and v 2 V2.The number of the cubes fQv : v 2 Vkg is 2(n�1)k. It is not di�cultto �nd out that the resulting Cantor set1\

k=1
[
v2VkQv =: CA = Ca � : : :� Ca

is a product of n� 1 Cantor sets in R. Moreover Ln�1(CA) = 0 since
Ln�1� [

v2VkQv
� = 2(n�1)k(2ak2�k)n�1 k!1! 0:

Analogously we de�ne
~zv = ~zw + 12~rk�1vk = ~z0 + 12

kX
j=1 ~rj�1vj;

~Q0
v = Q(~zv; ~rk�12 ) and ~Qv = Q(~zv; ~rk):The resulting Cantor set1\
k=1

[
v2Vk ~Qv =: CB = Cb � : : :� Cb

satis�es Ln�1(CB) > 0 since limk!1 bk > 0. It remains to �nd a home-omorphism g which maps CA onto CB and satis�es our assumptions.Since Ln�1(CA) = 0 and Ln�1(CB) > 0 we will obtain that g does notsatisfy the (N) condition.

�
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~P 0~P

Fig. 2. The transformation of Q0 nQ� onto ~Q0 n ~Q�Again we will proceed by induction and we will �nd a sequence ofhomeomorphisms gk : (�1; 1)n�1 ! (�1; 1)n�1. We set g0(x) = x and
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for k 2 N we de�ne
gk(x) =

8><>:
gk�1(x) for x =2 Sv2Vk Q0

vgk�1(zv) + (�kkx� zvk+ �k) x�zvkx�zvk for x 2 Q0
v nQv; v 2 Vkgk�1(zv) + ~rkrk (x� zv) for x 2 Qv; v 2 Vk

where the constants �k and �k are given by(4.3) �krk + �k = ~rk and �k rk�12 + �k = ~rk�12 :It is not di�cult to �nd out that each gk is a homeomorphism andmaps [
v2VkQv onto [

v2Vk ~Qv:
The limit g(x) = limk!1 gk(x) is clearly one to one and continuousand therefore a homeomorphism. Moreover it is easy to see that g isdi�erentiable almost everywhere, absolutely continuous on almost alllines parallel to coordinate axes and maps CA onto CB.Let k 2 N and v 2 Vk. We need to estimate Dg(x), j adjDgj andJg(x) in the interior of the annulus Q0

v nQv. Sinceg(x) = g(zv) + (�kkx� zvk+ �k) x� zvkx� zvkthere, we can use Lemma 2.1, rk � rk�1, ~rk � ~rk�1 (4.3), (4.2) and(4.1) to obtain
Dg(x) � maxn~rkrk ; �k

o � maxnk; 1kn�2o � k;
j adjDg(x)j � jDf(x)j�~rkrk

�n�3 � kn�2 and Jg(x) � �k�~rkrk
�n�2 � 1:

It follows that Jg 2 L1((�1; 1)n�1). Moreover we can estimate
Ln�1(Q0

v nQv) = (rk�1)n�1 � (2rk)n�1 � 2�k(n�1) 1knand we have 2(k�1)n annuli like that. ThereforeZ
Q0
jDg(x)jn�1�" dx � 1X

k=1
X
v2Vk

Z
Q0
vnQv

jDg(x)jn�1�" dx
� C 1X

k=1 2(k�1)n2�k(n�1) 1knkn�1�" <1
and Z

Q0
j adjDg(x)j dx � 1X

k=1
X
v2Vk

Z
Q0
vnQv

j adjDg(x)j dx
� C 1X

k=1 2(k�1)n2�k(n�1) 1knkn�2 <1:
�
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Proof of Example 1.2. In this example we will use notation and resultsfrom Example 4.1. Setf(x) = hg1([x1; : : : ; xn�1]); : : : ; gn�1([x1; : : : ; xn�1]); e�xni:Furher we de�ne

 = �CA � (0;1)� [ 1[

k=1
� [
v2VkQ0

v nQv

�� (0; log(k + 1)):
Clearly f is a homeomorphism and both f and f�1 are di�erentiablealmost everywhere. Moreover it is easy to check, that 
 � (�1; 1)n�1�(0;1) is an open set.The matrix Df has a special form, because only one term in thelast column and in the last row is non-zero. This is the term @fn@xn andtherefore it is easy to check that

j adjDf(x)j � maxnjJg(~x)j; j adjDg(~x)j���@e�xn@xn
���o;

where ~x = [x1; : : : ; xn�1]. FromLn(
) =X
k2N

X
v2Vk Ln�1�Q0

v nQv
� log(k + 1)

=X
k2N 2(k�1)n2�k(n�1) 1kn log(k + 1) <1

and jJgj 2 L1((�1; 1)n�1) we obtain jJg(~x)j 2 L1(
). FurtherZ

 j adjDg(~x)j

���@e�xn@xn
��� dx � Z(�1;1)n�1

j adjDgj Z 1
0 e�xn dxn <1

and hence j adjDf j 2 L1(
). MoreoverDf(x) = maxfjDg(~x)j; j@e�xn@xn jg � jDg(~x)jand thereforeZ

 jDf(x)jn�1�" dx �

1X
k=1

X
v2Vk

�Z
Q0
vnQv

jDg(~x)jn�1�" d~x� log(k + 1)
� C 1X

k=1 2(k�1)n2�k(n�1) 1knkn�1�" log(k + 1) <1:
Since CA � (0;1) � 
 we obtain thatf�1�f[y; t] 2 f(
) : t 2 (0; 1)g� = g�1(y)� (0;1) for every y 2 CBand thus Z 1

0 jrf�1(y; t)j dt � Z 1
0
���@f�1@t (y; t)��� dt =1:

Since Ln�1(CB) > 0 we obtain that jrf�1j =2 L1(f(
)). �
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Remark 4.2. Let us note that the fact that 
 is unbounded is notessential for our arguments, it only makes them simpler. It would bepossible to twist our 
 and to obtain a bounded domain with the sameproperties.
5. Sharpness on the Orlicz scaleLemma 5.1. Let h : (0; 1) ! (0;1) be an increasing function suchthat limt!0+ h(t) = 0. Then there is a function f : (0; 1) ! (0;1)such that limt!0+ f(t) = 0,Z 1
0 f(t)t dt =1 and Z 1

0 f(t)h(t)t dt <1:
Proof. We can easily �nd an increasing di�erentiable function h1 � hthat satis�es limt!0+ h1(t) = 0 and limt!0+ th01(t)h1(t) = 0 which is somesort of strong concavity near 0. Thus we may assume without loss ofgenerality that h is di�erentiable and that the function
(5.1) f(t) := th0(t)h(t) satis�es limt!0+ f(t) = 0:
An elementary computation gives usZ 1

0 f(t)t dt = Z 1
0 h0(t)h(t) dt = hlog h(t)it=1t=0 =1

and Z 1
0 f(t)h(t)t dt = Z 1

0 h0(t) dt = hh(t)it=1t=0 <1:
�Proof of Example 1.3. We write ei for the i-th unit vector in Rn, i.e.the vector with 1 on the i-th place and 0 everywhere else. Given x =[x1; : : : ; xn] 2 Rn we denote ~x = [x1; : : : ; xn�1] 2 Rn�1 and k~xk =px21 + : : :+ x2n�1.From Lemma 5.1 we can �nd a function a : (0;1) ! (0;1) suchthat limt!0+ a(t) = 0;

(5.2) Z 1
0 an�1(t)t dt =1 and

(5.3) Z 1
0 an�1(t)t g� 1pt�dt <1:

Without loss of generality we may also suppose that
(5.4) 1log 2

n�1 1t � a(t) for every t 2 (0; 12)
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since the integral in (5.2) is �nite for the left hand side. Therefore itis easy to see that without loss of generality we can also assume thata is increasing and concave.Set
f(x) = n�1X

i=1 ei xik~xka(k~xk) + en�xn + k~xk sin�a(k~xk)k~xk ��
if k~xk > 0 and f(x) = enxn if k~xk = 0. Our mapping f is clearlycontinuous and it is easy to check that f is a one-to-one map sincexik~xka(k~xk) = zik~zka(k~zk) for every i 2 f1; : : : ; n� 1g )

) a(k~xk) = a(k~zk) which implies k~xk = k~zk and hencexi = zi for every i 2 f1; : : : ; n� 1g:Therefore f is a homeomorphism.By Lemma 2.1 we obtain that the partial derivatives of fi, i 2f1; : : : ; n� 1g, are smaller than
(5.5) Cmaxna(k~xk)k~xk ; a0(k~xk)o � Ca(k~xk)k~xk ;
since a is concave and a(0) = 0. Moreover,
(5.6)

@fn(x)@x1 =x1k~xk�1 sin�a(k~xk)k~xk �
+ k~xk�a0(k~xk)x1k~xk2 � a(k~xk)x1k~xk3 � cos�a(k~xk)k~xk �

can be also bounded by (5.5). Analogously we can bound other deriva-tives of fn and therefore we can use substitution to spherical coordi-nates in Rn�1 to obtainZ
B(0;1) jDf(x)jn�1g(jDf(x)j) dx � C ZB(0;1) a(k~xk)

n�1k~xkn�1 g�Ca(k~xk)k~xk � dx
� C Z 1

0 a(t)n�1tn�1 g�Ca(t)t �tn�2 dt:
From (5.4) we can �nd " > 0 such that for every t 2 (0; ") we haveC a(t)t � 1pt and therefore the last integral is �nite by (5.3) and thecondition (1.2) follows.The inverse of f is given by

f�1(y) = n�1X
i=1 ei yik~yka�1(k~yk) + en�yn � a�1(k~yk) sin� k~yka�1(k~yk)��

if k~yk > 0 and f�1(y) = enyn if k~yk = 0. The di�erential of f�1 isclearly continuous outside the segment f[0; � � � ; 0; t] : t 2 Rg.
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Analogously to (5.6) we obtain@(f�1)n(y)@y1 =(a�1)0(k~yk)y1k~yk�1 sin� k~yka�1(k~yk)�
+ a�1(k~yk)� y1k~yka�1(k~yk) � y1(a�1)0(k~yk)a�1(k~yk)2 � cos� k~yka�1(k~yk)�:

It follows that we can �nd � > 0 such that
(5.7) ���@(f�1)n(y)@y1

��� � Ck~yk(a�1)0(k~yk)a�1(k~yk)for everyy 2 S := �y 2 B(0; �) : y1 > 12 jj~yjj; j cos� k~yka�1(k~yk)�j � p22 	:Here we have also used the fact that (5.4) gives usa�1(y) � exp�� 1y n�12

� for small enough y:
Clearly Ln(S) = CLn(G) forG := �y 2 B(0; �) : ��cos� k~yka�1(k~yk)��� � p22 	and thus we can use (5.7) to obtain
(5.8)

Z
f(B(0;1)) jDf�1(y)j dy �

Z
S
���@(f�1)n(y)@y1

��� dy
� C ZG k~yk(a

�1)0(k~yk)a�1(k~yk) dy:
Now let us consider a mappings

h(x) = n�1X
i=1 ei xik~xka(k~xk) + en�xn + k~xk cos�a(k~xk)k~xk ��

if k~xk > 0 and h(x) = enxn if k~xk = 0. Analougously as above weobtain that h is a homeomorphism that satis�es (1.2) and that
(5.9) Z

h(B(0;1)) jDh�1(y)j dy � C Z ~G k~yk(a
�1)0(k~yk)a�1(k~yk) dy

where ~G = �y 2 B(0; �) : ��sin� k~yka�1(k~yk)��� � p22 	for some possibly smaller �. By the formula of change of variables and(5.2) we obtain that
(5.10)

Z
B(0;�) k~yk(a

�1)0(k~yk)a�1(k~yk) dy � C Z �
0 s(a�1)0(s)a�1(s) sn�2 ds

� C Z a�1(�)
0 a(t)1t a(t)n�2 dt =1:
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From (5.8), (5.9), G [ ~G = B(0; �) and (5.10) we obtain that eitherrf =2 L1 or rh =2 L1 which is the desired conclusion. �
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