SHARPNESS OF THE ASSUMPTIONS FOR THE
REGULARITY OF A HOMEOMORPHISM

STANISLAV HENCL

ABSTRACT. The recent result shows that a homeomorphism f €
WEH(Q, R™) of finite distortion satisfies £~ € Wi (£(9),R™).

loc loc
We show that this result is sharp in a sense that the crutial regu-

larity condition |Df| € L™~! cannot be replaced by |adj Df| € L!
or by a requirement that | D f| belongs to some bigger Orlicz space.

1. INTRODUCTION

Let 0 C R™ be an open set. We say that a mapping f € VV&;CI(Q, R")
has finite (outer) distortion if J;(x) > 0 almost everywhere and J¢(x) =
0 = |Df(z)| = 0a.e. Moreover we say that a mapping f € W, (Q, R")
has finite inner distortion if Jy(z) > 0 almost everywhere and Jy(z) =
0 = |adj Df| = 0 a.e. (for basic properties, examples and applications
see e.g. [10]). Here adj A means an adjugate matrix - see Preliminaries
for the definition.

Our aim is to show the sharpness of the following recent result from
[1] (see also [6], [7], [14], [11] and [8]):

Theorem 1.1. Let Q C R™ be an open set and [ € Wl’"_l(Q,]R") be a

loc

homeomorphism of finite inner distortion. Then f~% € WEH(f(Q), R

loc
and f~' is a mapping of finite outer distortion. Moreover

(L1) /f D]y = / |adj Df (¢)] d.

This statement is actually claimed in [1] only for mappings of finite
outer distortion. However with a very slight modification of the ar-
guments given there (see Section 3 for details) it is possible to show
the statement also for a wider class of mappings of finite inner distor-
tion (see also [4]). Also formula (1.1) is not shown there, but it was
previously shown under stronger assumptions in [7] and under W1
regularity assumption in [16]. Let us also note that the assumption
that f has finite inner distortion is not artificial, because it was shown
in [9, Theorem 4] that each homeomorhism such that f € W, J; > 0
a.e. and f e Wﬁml is necessarily a mapping of finite inner distortion.
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Our aim is to show that assumptions of Theorem 1.1 are sharp in
a sense that the crutial regularity condition |Df| € L}".' cannot be
weakened. From the inequality (1.1) one may be tempted to believe
that for a conclusion Df~! € L' is could be enough to assume that

adj Df € L'. We show that this is not true:

Example 1.2. Let 0 < e <1 andn > 3. There exist a domain Q2 C R"
and homeomorphism f € WIm=1=¢(Q R") such that |adj Df| € L' (),
pointwise deriative V [~ exists a.e. in f(Q), but |V~ ¢ L'(f(Q)).

It is known that for any n > 3 and 0 < € < 1 there exists homeo-
morphism f € W5H"~1=% such that f~' ¢ W\ (see [8, Example 3.1] or
Example 1.2) and therefore Theorem 1.1 is sharp on a scale of Sobolev
spaces. Let us note that for many problems connected with the theory
of mapping of finite distortion the optimal regularity of Df is not on
the Lebesgue scale, but on some finer Orlicz scale (see [13] and refer-
ences given there). We show that this is not the case for Theorem 1.1
and no smaller integrability condition of D f is enough.

Example 1.3. Let n > 3 and suppose that g : [0,00) — (0,00) is a
decreasing function such that

lim g(s) = 0.
§—>00
Then there is a homeomorphism f € WH(B(0,1); R") such that
(12) [ s (D) de < .
B(0,1)

pointwise derivative V f~! exists almost everywhere in f(B(0,1)), but
IV ¢ Lie(F(B(0,1))).

Let us point out that the conclusion of our examples that V f ! exists
and is not integrable imply that f=' ¢ W' and even that f~' ¢ BV.

2. PRELIMINARIES

The Lebesgue measure of a set A C R” is denoted by L, (A).

Given a square matrix B € R™ ", we define the norm |B] as the
supremum of |Bz| over all vectors z of unit euclidean norm. The
adjugate adj B of a regular matrix B is defined by the formula

(2.1) BadjB = I det B,

where det B denotes the determinant of B and [ is the identity matrix.
The operator adj is then continuously extended to R"*".

2.1. Differentiability of radial functions. By [|z| we denote the
norm of x € R”, in fact we use either euclidean norm or maximum
norm ||z — y|| = max{|x; — y;| : i =1,...,n}. The following lemma
can be verified by an elementary calculation for the euclidean norm.
The maximum norm can be obtained from the euclidean norm by the
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bilipschitz change of variables and therefore it is easy to check that the
formulas hold also for this norm.

Lemma 2.1. Let p: (0,00) — (0,00) be a strictly monotone, differen-
tiable function. Then for the mapping

f(x) = ” G p(llxll), 2 #0

we have for almost every x

o gl e (PUD
D (@) ~ maxd S5 0l ) ~ o) (5 57)

ond i D) ~ max{ 2050, e} (2150)

2.2. Area formula. We say that a mapping f : {2 — R"” satisfies the
Lusin condition (N) if the implication |S| =0 = |f(S)| = 0 holds
for any measurable set S C 2.

Let f € WL'(Q;R") be a homeomorphism and let 7 be a non-
negative Borel-measurable function on R™. Without any additional
assumption we have

2.2) |t @lds < [ s

Moreover there exists a set €' C Q of full measure such that the area
formula holds for f on '

(2.9 J e = [

Also, the area formula holds on each set on which the Luzin condi-
tion (N) is satisfied. This follows from the area formula for Lipschitz
mappings, from the a.e. approximate differentiability of f [3, Theo-
rem 3.1.4], and a general property of a.e. approximately differentiable
functions [3, Theorem 3.1.8], namely that {2 can be exhausted up to a
set of measure zero by sets the restriction to which of f is Lipschitz
continuous.

3. FINITE INNER DISTORTION

The following lemma from [1, Lemma 4.3] contains the main ingre-
dient for the proof of Theorem 1.1.

Lemma 3.1. Let f € W' (Q,R") be a homeomorphism. Then

loc
a0 1w dddy<on [ adipieas
-1(B
for each ball B = B(yo,ro) C f(2), where

=1 1w
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and C = C(n).
The following theorem was shown in [1, Theorem 4.5].

Theorem 3.2. Let Q C R be an open set and f € WL (Q,R™) be a

oc

homeomorphism such that f~* € WS (£(Q),R™) and J; > 0 a.e. Then

loc
fYis a mapping of finite outer distortion.

In order to prove the equality (1.1) we will need the following tech-
nical lemma from [4, Lemma 2.1].

Lemma 3.3. Let f : Q — R™ be a homeomorphism such that f €
Wl (R and f~1 € Wi (£(Q2),R™). Set
E = {y € f(Q): f 1 is approzimatively differentiable at y
and |Jp-1(y)| > 0}.
Then there ezists a Borel set A C E such that |E'\ A| =0,

fYA) C E:={x € Q: f is approzimatively differentiable at x
and |J;(z)| > 0}

(3.2) and Df~'(y) = [Df(f_l(y))} - for every y € A.
Moreover |E \ f~1(A)| = 0.

Proof. Tt is enough to show that |E\ f~*(A)| = 0, because everything
else is stated and shown in [4, Lemma 2.1]. Suppose for contradiction

that there is a Borel set G C E\ f~'(A) such that |G| > 0. Without loss
of generality we can also suppose that (2.3) holds for G (i.e. G C Q)
and thus

@ = [ s dy= 171

Since J; > 0 on G we obtain that |f(G)| > 0. We know that the area
formula holds for f~ on a Borel subset M C f(G) of full measure.
From

/fl(M) Jp(x) de =|M| >0

we obtain that |f~'(M)| > 0. Therefore we can use area formula for
£~ to conclude

[ =160t on) >0
F(G)NM

It follows that J;-1 > 0 on a subset of f(G) of positive measure. Clearly
f~!is approximatively differentiable a.e. on f(G) and therefore f(G)N
A # () gives us a contradiction. O
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Proof of Theorem 1.1. We claim that there is a function g € L] _(f(Q))
such that

(3.3) A%mmmuﬂzég

This and Lemma 3.1 imply that the pair f, g satisfies a 1-Poincaré
inequality in f(€2). From [2, Theorem 9] we then deduce that f~! €
Wiee (f(2),R").

There is a set ' C € of full measure such that the area formula

(2.2) holds for f on Q. We define a function g: f(2) — R by setting

[diDI@] ¢ 1 e O and J(z) > 0,

9(f(x)) = { @

0 otherwise.

Since f is a mapping of finite inner distortion, we have

|adj Df (x)] = g(f(2)) Jr(x) a-e. in Q.
Hence for every A C f(Q)

[ ainf@lde= [ (@) dyle) da
J=HA)

AN

= /Ag(y) dy.

For A = B this gives (3.3) and for other sets A it also implies g € L]

loc*

Hence f~! € I/Vlf)’c1 and from Theorem 3.2 we obtain that f~! has finite
outer distortion.

We will use Lemma 3.3 to prove (1.1). First let us notice that the
Lusin (V) condition is valid on f~!(A) and therefore we can use (2.3)
there. Indeed, let S C f~!(A) be a set of measure zero and let us find
a Borel measurable set S; D S of measure zero. We can use (2.2) for

f~t and 5 = x5, and we obtain

| pizisi-o
f(S1)

Since Jy-1 > 0 on A it follows that |f(S;)] = 0. Since f! is a mapping
of finite distortion and each Wh! function is approximatively differen-
tiable almost everywhere we obtain

| priwla= [ priwl
F() B

(3.4)

and analogously

[ 18i Df(@)|de = [ |adi Di(o)] do
E Q
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since f is a mapping of finite inner distortion. Now we can use |E\ A| =
0, (2.3), (3.2), (2.1) and |E\ f7'(A)| = 0 to obtain

| i wlds= [ 1D wldy
f(Q) A
— [ G = [ (D) ) da
f=HA) F=1(4)

:/ |adef(x)]d:c:/|adef(x)]dx.
F-1(4) 0

4. CONSTRUCTION OF EXAMPLES

In this section we use a notation Q(c,r) for an open cube in R"~!
centered at ¢ with edge length 2r.

One of the main ingredients of the proof of Lemma 3.1 is the fact
that homeomorphism f € W1 must satisfy the (n — 1)-dimensional
Lusin (V) condition on almost all hyperplanes. First we construct an
auxiliary mapping that fails the Lusin (N) condition in R*"!. For a
construction of a homeomorphism that does not satisfy the Lusin con-
dition (N) we use Cantor type construction from [12] (see also [15],[5]).

Example 4.1. Let 0 < e <1 and n > 3. There is a homeomorphism
g € whrl=e((—1, )"t (=1, 1) 1) such that J, € L*((—1,1)" 1)
and |adj Dg| € L'((—1,1)"1), but g does not satisfy the Lusin condi-
tion (N).

Proof. By V we denote the set of 2" vertices of the cube [—1,1]*7'.
The sets VE =V x ... x V, k € N, will serve as the sets of indices for
our construction.

Let us denote

1 1 1
(4.1) = 7 and bk:§(1—|— kn—l)‘
Set 2z = 2, = 0 and let us define
(42) Ty = ak2_k and fk = bk2_k
It follows that (—1,1)"' = Q(z9,7¢) and further we proceed by induc-
tion. For v = [vy,...,v;] € V¥ we denote w = [vy,..., v 1] and we
define

k
1 1
Zy = Zw T+ 57%—11% =2+ B E 1 Tj-1Vj,
j:

va = Q(zm Tkg_l) and Qv = Q(zvark)-
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L

Fig. 1. Cubes Q, and Q. for v € V! and v € V2.

The number of the cubes {Q, : v € VF} is 20Dk [t is not difficult
to find out that the resulting Cantor set

ﬁ U @Qu=Ca=Cux...xC,

k=1 peVk
is a product of n — 1 Cantor sets in R. Moreover £,_1(C4) = 0 since
Lo (| Qo) =20k (2a,27 %)L £25% 0,
veVk

Analogously we define

k

. . 1. N 1 ~

2y = Zw + §rk,1vk =29+ 5 Z;levj,
j:

Q’v = Q(Z’lh fk%) and Q'v = Q(gvﬂ:k)-

The resulting Cantor set

satisfies £,,_1(Cp) > 0 since limg_,o b > 0. It remains to find a home-
omorphism g which maps C4 onto Cg and satisfies our assumptions.
Since L, 1(C4) =0 and L, 1(Cp) > 0 we will obtain that g does not
satisfy the (V) condition.

P’ =

P N
9

Fig. 2. The transformation of @'\ @° onto Q' \ Q°

Again we will proceed by induction and we will find a sequence of
homeomorphisms g, : (=1,1)"1 — (=1,1)""!. We set go(z) = = and
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for £k € N we define

Gk—1(7) for z ¢ Uver‘ Q%
g1 (z) = < gr—1(20) + (c||lT — 20| + Br) Ly forze @, \ Qy, v €VF
gr-1(20) + :—’;(33 — Zy) for x € Q,, v € V¥

where the constants oy and [, are given by
(43) QT + Bk: = Tk and ak 1 + Bk

It is not difficult to find out that each gr is a homeomorphism and

maps
U (), onto U Qo

veVvk veVk
The limit g(x) = limy_, gx(x) is clearly one to one and continuous
and therefore a homeomorphism. Moreover it is easy to see that ¢ is
differentiable almost everywhere, absolutely continuous on almost all
lines parallel to coordinate axes and maps Cy onto Cp.
Let £k € N and v € V¥, We need to estimate Dg(z), |adj Dg| and
Jy(z) in the interior of the annulus Q. \ (). Since

9(0) = gz0) + (anlle = 2ol + ) =2

oll

there, we can use Lemma 2.1, ry ~ 11, 7p ~ 71 (4.3), (4.2) and
(4.1) to obtain

Dg(z) ~ max{i—z,ak} ~ max{k, #} ~k,

. Tk n—2 Tr\" 2
|adj Dg(x)| ~ |Df( )y(rk) ~ k"% and J,(z) ~ ak(ﬁ) ~ 1.
It follows that J, € L*°((—1,1)"""). Moreover we can estimate
1
Lat(Q\ Qo) = (1) = (2"~ 27K
and we have 2¢=D7 annuli like that. Therefore

| IDyta <Y / Dg(a)|" ' da

k=1 'DGVk \Qv

<022k1n2 nlkknls 00
k—1

and/ |adj Dg(x |dx<ZZ/ |adj Dg(z)| dx
0 k= 1v€Vk Qu\@w

<) olk-lng-k k k” 2 < .
k—1
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Proof of Example 1.2. In this example we will use notation and results
from Example 4.1. Set

fla) = [gl([xl,...,a:n,l]),...,gn,l([xl,...,xn,l]),eﬂ’" .

Furher we define

Q= (Ca % (0,00)) U U( U @, Qv> % (0, log(k +1)).

k=1 peVk

Clearly f is a homeomorphism and both f and f~! are differentiable
almost everywhere. Moreover it is easy to check, that Q C (—1,1)""! x
(0,00) is an open set.

The matrix Df has a special form, because only one term in the
last column and in the last row is non-zero. This is the term ng’; and
therefore it is easy to check that

) . ) | Oe
[adj D (x)] ~ max{|Jy(#)]. | adi Dy (2)]| %] }.
where T = [z1,...,2,_1]. From

=3 Laa (@ \ Qu) log(k +1)

kEN ycVk
1

=> 2<’f—1)”2—’“<"—1>k—n log(k +1) < 0o

keN

and |J,] € L>*((—1,1)" ') we obtain |J,(z)| € L*(2). Further

de~n %
/|adeg(i)|‘e—‘dx§/ |adj Dg| / e dx, < oo
0 Oy, (=1,1)n-1 0
and hence |adj Df| € L'(Q2). Moreover

Df(x) = max{|Dg(z)|,|%; |} ~ | Dg(2)]

and therefore

/\Df ) de<zz</Q’\Qv |Dg(z)|" 1 de) log(k + 1)

k=1 ver

1
< CZQ(k’l)"Q’k(”’l)k—nk”’l’E log(k + 1) < oc.
k=1

Since C'y X (0,00) C Q we obtain that
F {ly,t] € F() : t€(0,1)}) =g ' (y) x (0,00) for every y € Cp
of !

and thus
1
v )| dt > —,t‘dt:
[vsrworaz [ 0

Since £, 1(Cg) > 0 we obtain that |V f~| & L'(f(Q)). O
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Remark 4.2. Let us note that the fact that Q is unbounded is not
essential for our arguments, it only makes them simpler. It would be
possible to twist our € and to obtain a bounded domain with the same
properties.

5. SHARPNESS ON THE ORLICZ SCALE

Lemma 5.1. Let h : (0,1) — (0,00) be an increasing function such
that lim;_,o4 h(t) = 0. Then there is a function f : (0,1) — (0,00)
such that im0 f(t) =0,

/lmdt:ooand /lwdt<00-
o 1 0 t

Proof. We can easily find an increasing differentiable function hy > h
that satisfies lim; o, h1(¢) = 0 and limy oy % = 0 which is some
sort, of strong concavity near 0. Thus we may assume without loss of

generality that h is differentiable and that the function

(5.1) £t) = t,’j(ff;)

An elementary computation gives us

/01 @ dt = /01 Z((tt)) dt = [1ogh(t)};; ~

and /01 w dt = /01 W(t) dt = [h(t)rl < .

t=0

satisfies 1tlim f(t)=0.

—04

O

Proof of Fxample 1.3. We write e; for the ¢-th unit vector in R”, i.e.
the vector with 1 on the i-th place and 0 everywhere else. Given x =
[x1,...,2,] € R* we denote & = [zy,...,7, 1] € R*™ and [|Z]| =
Vi + .o+ al.

From Lemma 5.1 we can find a function a : (0,00) — (0,00) such
that

A e =0
1 n—1 t
(5.2) /“ t()dt:oo and
0

(5.3) /01 an_}”g(%) dt < oo.

Without loss of generality we may also suppose that

1

(5.4) — < aft) for every t € (0, 3)
lognfl %
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since the integral in (5.2) is finite for the left hand side. Therefore it
is easy to see that without loss of generality we can also assume that
a is increasing and concave.

Set

n—1
x'_ T 5 : a(]|z
)= 2D + en (s el sin () )
=1

if ||Z|]| > 0 and f(z) = eyx, if ||Z|| = 0. Our mapping f is clearly
continuous and it is easy to check that f is a one-to-one map since

a([|zl]) =

a(||Z]]) for every i € {1,...,n—1} =

= a(||x||) = a(||Z]|) which implies ||Z|| = ||Z|| and hence
x; =z forevery i € {1,...,n — 1}.
Therefore f is a homeomorphism.

By Lemma 2.1 we obtain that the partial derivatives of f;, ¢ €
{1,...,n — 1}, are smaller than

55) Cmax{ 20D, gz~ )

12 1]

since a is concave and a(0) = 0. Moreover,

D) e sin( i
o0 . ‘(Nel)as a2
A~ g ) e

can be also bounded by (5.5). Analogously we can bound other deriva-
tives of f,, and therefore we can use substitution to spherical coordi-
nates in R"~! to obtain

- allial) ! allal)
Jru Pt tatis@ e [ €I @

Cl(t) n—2
< .
_C/O tn%gC’}f)t dt

From (5.4) we can find ¢ > 0 such that for every ¢ € (0,¢) we have
C@ > % and therefore the last integral is finite by (5.3) and the
condition (1.2) follows.

The inverse of f is given by

ZeZII l (s +e”(yn _Cfl(HZJH)Sin(a_‘l%'”gn)))

if [|[g]] > 0 and f~(y) = ey, if ||g|] = 0. The differential of f~! is
clearly continuous outside the segment {[0,--- ,0,¢] : t € R}.

o~
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Analogously to (5.6) we obtain

O D) _ a1y 1191 sim (=)

891
O R O (O
+ 0D (i~ e )

It follows that we can find § > 0 such that

(f aly) _ (e ([gl])
57 12U al0) 5 e D
(51) o 191=a= gy

a= (]

for every

yeS:={yeB(0,5): y> 3l |cos(=m) > 5}

Here we have also used the fact that (5.4) gives us

a”'(y) < exp(— —=7) for small enough y.
y 2

Clearly £,,(S) = CL,(G) for
G:={ye B(0,6): |cos(—Z )| > 42}

and thus we can use (5.7) to obtain

/ DF 7 (y)] dy > / A nle)
F(B(O,1))
—1
>0/Ww \MDy

Now let us consider a mappings

(5.8)

n—1

i 0 e a(]|z
) = X el + e (o + il cos(25)
i=1

if ||Z|| > 0 and h(x) = e,z, if ||Z]| = 0. Analougously as above we
obtain that h is a homeomorphism that satisfies (1.2) and that

a )
Yy

(5.9) /ﬁ Dh! |@>0/Mw WD g,

o) il

where

G = {yEB()é ‘sm%)>\f

for some possibly smaller §. By the formula of change of variables and
(5.2) we obtain that

@) (I3l @) s,
Lm”” (13 @>0/ 1@ !

6
>C/ )2 dt =

(5.10)
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From (5.8), (5.9), GUG = B(0,5) and (5.10) we obtain that either
Vf ¢ L' or Vh ¢ L' which is the desired conclusion. O
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