The "H-coefficients" Technique in a Nutshell

Miloslav Homer

Jarní škola katedry algebry

April 5, 2017

Table of Contents

1 Introduction

2 The Path to H-Coefficients

3 Lower Bounding the Ratio

Introduction

 \blacksquare Let $\mathcal{Z} = \{\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D}\}$ be a cryptosystem.

- Let $\mathcal{Z} = \{\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D}\}$ be a cryptosystem.
- An oracle is an object that takes queries and responds to them.

- Let $\mathcal{Z} = \{\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D}\}$ be a cryptosystem.
- An oracle is an object that takes queries and responds to them.
- We can construct a family of oracles corresponding to this cryptosystem in a following fashion:

- Let $\mathcal{Z} = \{\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D}\}$ be a cryptosystem.
- An oracle is an object that takes queries and responds to them.
- We can construct a family of oracles corresponding to this cryptosystem in a following fashion:
 - Pick a key $K \in \mathcal{K}$

- Let $\mathcal{Z} = \{\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D}\}$ be a cryptosystem.
- An oracle is an object that takes queries and responds to them.
- We can construct a family of oracles corresponding to this cryptosystem in a following fashion:
 - Pick a key $K \in \mathcal{K}$
 - (Encryption) Oracle R corresponding to this key on query P returns $E_K(P)$.

- Let $\mathcal{Z} = \{\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D}\}$ be a cryptosystem.
- An oracle is an object that takes queries and responds to them.
- We can construct a family of oracles corresponding to this cryptosystem in a following fashion:
 - Pick a key $K \in \mathcal{K}$
 - (Encryption) Oracle R corresponding to this key on query P returns $E_K(P)$.
- Define decryption oracles similarly and note we can also define a combination oracle.

- Let $\mathcal{Z} = \{\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D}\}$ be a cryptosystem.
- An oracle is an object that takes queries and responds to them.
- We can construct a family of oracles corresponding to this cryptosystem in a following fashion:
 - Pick a key $K \in \mathcal{K}$
 - (Encryption) Oracle R corresponding to this key on query P returns $E_K(P)$.
- Define decryption oracles similarly and note we can also define a combination oracle.
- We denote the family of them as Ω_{Real} .

Random Oracles

■ In general, an (encryption, decryption) random oracle compatible with cryptosystem Z is a random function from P to C (or C to P).

Random Oracles

- In general, an (encryption, decryption) random oracle compatible with cryptosystem \mathcal{Z} is a random function from P to C (or C to P).
- This may vary depending on the properties of \mathcal{Z} , for example when examining block ciphers we require oracles to be random permutations.

Random Oracles

- In general, an (encryption, decryption) random oracle compatible with cryptosystem \mathcal{Z} is a random function from P to C (or C to P).
- This may vary depending on the properties of \mathcal{Z} , for example when examining block ciphers we require oracles to be random permutations.
- We denote the family of these as Ω_{Random} .

■ Let *D* be a deterministic distinguisher, i.e. a deterministic algorithm which has an oracle *R* on input.

- Let *D* be a deterministic distinguisher, i.e. a deterministic algorithm which has an oracle *R* on input.
- The experiment will be conducted in following fashion:

- Let *D* be a deterministic distinguisher, i.e. a deterministic algorithm which has an oracle *R* on input.
- The experiment will be conducted in following fashion:
 - A coin is flipped. If heads a random element of Ω_{Real} is chosen as R, else chose R as element of Ω_{Random} .

- Let *D* be a deterministic distinguisher, i.e. a deterministic algorithm which has an oracle *R* on input.
- The experiment will be conducted in following fashion:
 - A coin is flipped. If heads a random element of Ω_{Real} is chosen as R, else chose R as element of Ω_{Random} .
 - *D* is given access to oracle *R*.

- Let *D* be a deterministic distinguisher, i.e. a deterministic algorithm which has an oracle *R* on input.
- The experiment will be conducted in following fashion:
 - A coin is flipped. If heads a random element of Ω_{Real} is chosen as R, else chose R as element of Ω_{Random} .
 - *D* is given access to oracle *R*.
 - *D* interacts (queries queries, do other computations) with *R*.

- Let *D* be a deterministic distinguisher, i.e. a deterministic algorithm which has an oracle *R* on input.
- The experiment will be conducted in following fashion:
 - A coin is flipped. If heads a random element of Ω_{Real} is chosen as R, else chose R as element of Ω_{Random} .
 - *D* is given access to oracle *R*.
 - *D* interacts (queries queries, do other computations) with *R*.
 - D outputs a bit 1 denoting that $R \in \Omega_{Real}$, 0 otherwise.

Advantage

■ Define advantage of distinguisher D on cryptosystem \mathcal{Z} :

$$\mathsf{Adv}^{Z}(\mathit{D}) = \mathsf{Pr}\left[R \in \Omega_{\mathit{Real}} \ \& \ \mathit{D}^{R} = 1\right] - \mathsf{Pr}\left[R \in \Omega_{\mathit{Random}} \ \& \ \mathit{D}^{R} = 1\right]$$

Advantage

■ Define advantage of distinguisher D on cryptosystem \mathcal{Z} :

$$\mathsf{Adv}^{\mathsf{Z}}(D) = \mathsf{Pr}\left[R \in \Omega_{\mathit{Real}} \ \& \ D^R = 1\right] - \mathsf{Pr}\left[R \in \Omega_{\mathit{Random}} \ \& \ D^R = 1\right]$$

We can also define resource bounded advantage, allowing D to only make q queries.

Advantage

■ Define advantage of distinguisher D on cryptosystem \mathcal{Z} :

$$\mathsf{Adv}^{Z}(D) = \mathsf{Pr}\left[R \in \Omega_{\mathit{Real}} \ \& \ D^{R} = 1\right] - \mathsf{Pr}\left[R \in \Omega_{\mathit{Random}} \ \& \ D^{R} = 1\right]$$

- We can also define resource bounded advantage, allowing D to only make q queries.
- We are really interested in resource bounded advantage independent on distinguishers, which can be defined like this:

$$\mathsf{Adv}^Z_q = \max_D \mathsf{Adv}^Z_q(D).$$

The Path to H-Coefficients

• From now on a distinguisher D and number of queries q is fixed.

- From now on a distinguisher D and number of queries q is fixed.
- Define view as set of queries and responses for R that D made during the experiment.

- From now on a distinguisher D and number of queries q is fixed.
- Define view as set of queries and responses for R that D made during the experiment.
- lacksquare A typical view u therefore looks like this:

$$\nu = \{(P_i, C_i) \mid i \leq q\}.$$

- From now on a distinguisher D and number of queries q is fixed.
- Define view as set of queries and responses for R that D made during the experiment.
- **A** typical view ν therefore looks like this:

$$\nu = \{(P_i, C_i) \mid i \leq q\}.$$

We don't care about the order of these queries.

- From now on a distinguisher D and number of queries q is fixed.
- Define view as set of queries and responses for R that D made during the experiment.
- **A** typical view ν therefore looks like this:

$$\nu = \{(P_i, C_i) \mid i \leq q\}.$$

- We don't care about the order of these queries.
- We assume that D doesn't repeat queries this implies that for all $i \neq j$ it holds that $P_i \neq P_j$ or $C_i \neq C_j$.

- From now on a distinguisher D and number of queries q is fixed.
- Define view as set of queries and responses for R that D made during the experiment.
- **A** typical view ν therefore looks like this:

$$\nu = \{(P_i, C_i) \mid i \leq q\}.$$

- We don't care about the order of these queries.
- We assume that D doesn't repeat queries this implies that for all $i \neq j$ it holds that $P_i \neq P_j$ or $C_i \neq C_j$.
- Denote the set of all views *V*.

 Denote X the probability distribution on views induced by Real oracles

- Denote X the probability distribution on views induced by Real oracles
- we therefore ask: given distinguisher D and view ν how probable it is that D produced view ν after interaction with a random element from Ω_{Real} ?

- Denote X the probability distribution on views induced by Real oracles
- we therefore ask: given distinguisher D and view ν how probable it is that D produced view ν after interaction with a random element from Ω_{Real} ?
- Denote this probability $Pr[X = \nu]$.

- Denote X the probability distribution on views induced by Real oracles
- we therefore ask: given distinguisher D and view ν how probable it is that D produced view ν after interaction with a random element from Ω_{Real} ?
- Denote this probability $Pr[X = \nu]$.
- Similarly denote Y the probability distribution on views induced by Random oracles.

Obtainable views

• A view ν is obtainable if $\Pr[X = \nu] > 0$.

Obtainable views

- A view ν is obtainable if $Pr[X = \nu] > 0$.
- From now on we only consider obtainable views, i.e. such ν that at least one of $\Pr[X = \nu]$, $\Pr[Y = \nu]$ is nonzero.

Obtainable views

- A view ν is obtainable if $\Pr[X = \nu] > 0$.
- From now on we only consider obtainable views, i.e. such ν that at least one of $\Pr[X = \nu]$, $\Pr[Y = \nu]$ is nonzero.
- Therefore V is now the set of all obtainable views

Statistical Distance

Denote $\Delta(X, Y)$ the statistical distance (also called total variation):

$$\Delta(X, Y) = \frac{1}{2} \sum_{\nu \in V} |\Pr[X = \nu] - \Pr[Y = \nu]|,$$

$$= \sum_{\nu : \Pr[Y = \nu] > \Pr[X = \nu]} \Pr[Y = \nu] - \Pr[X = \nu],$$

$$= \sum_{\nu : \Pr[X = \nu] > \Pr[Y = \nu]} \Pr[X = \nu] - \Pr[Y = \nu].$$

Upper-Bounding Advantage

• For fixed deterministic distinguisher *D* we have:

$$\Delta(X, Y) \geq Adv(D)$$
.

Upper-Bounding Advantage

• For fixed deterministic distinguisher *D* we have:

$$\Delta(X, Y) \ge Adv(D)$$
.

■ Since *D* is deterministic, *D*'s decision is based only on view that it produces during experiment.

Upper-Bounding Advantage

■ For fixed deterministic distinguisher *D* we have:

$$\Delta(X, Y) \ge Adv(D)$$
.

- Since D is deterministic, D's decision is based only on view that it produces during experiment.
- That implies *D*'s advantage can be rewritten as:

$$Pr[D(X) = 1] - Pr[D(Y) = 1].$$

$$\Delta(X,Y) = \sum_{\nu \colon \Pr[Y = \nu] > \Pr[X = \nu]} \Pr[Y = \nu] - \Pr[X = \nu]$$

$$\begin{split} \Delta(X,Y) &= \sum_{\nu \colon \Pr[Y=\nu] > \Pr[X=\nu]} \Pr[Y=\nu] - \Pr[X=\nu] \\ &= \sum_{\nu \colon \Pr[Y=\nu] > \Pr[X=\nu]} \Pr[Y=\nu] \left(1 - \frac{\Pr[X=\nu]}{\Pr[Y=\nu]}\right) \end{split}$$

$$\begin{split} \Delta(X,Y) &= \sum_{\nu \colon \Pr[Y=\nu] > \Pr[X=\nu]} \Pr[Y=\nu] - \Pr[X=\nu] \\ &= \sum_{\nu \colon \Pr[Y=\nu] > \Pr[X=\nu]} \Pr[Y=\nu] \left(1 - \frac{\Pr[X=\nu]}{\Pr[Y=\nu]}\right) \\ &= \sum_{\nu \in V} \Pr[Y=\nu] \left(1 - \min\left(1, \frac{\Pr[X=\nu]}{\Pr[Y=\nu]}\right)\right) \end{split}$$

$$\begin{split} \Delta(X,Y) &= \sum_{\nu \colon \Pr[Y=\nu] > \Pr[X=\nu]} \Pr[Y=\nu] - \Pr[X=\nu] \\ &= \sum_{\nu \colon \Pr[Y=\nu] > \Pr[X=\nu]} \Pr[Y=\nu] \left(1 - \frac{\Pr[X=\nu]}{\Pr[Y=\nu]}\right) \\ &= \sum_{\nu \in V} \Pr[Y=\nu] \left(1 - \min\left(1, \frac{\Pr[X=\nu]}{\Pr[Y=\nu]}\right)\right) \\ &= 1 - \mathbb{E}_{\nu \in Y} \left[\min\left(1, \frac{\Pr[X=\nu]}{\Pr[Y=\nu]}\right)\right] \end{split}$$

■ Let $V = V_1 \cup V_2$ be such that V_1, V_2 are disjoint.

- Let $V = V_1 \cup V_2$ be such that V_1, V_2 are disjoint.
- We then examine:

$$\nu \in V_i \Rightarrow \frac{\Pr[X = \nu]}{\Pr[Y = \nu]} \ge 1 - \epsilon_i.$$

- Let $V = V_1 \cup V_2$ be such that V_1, V_2 are disjoint.
- We then examine:

$$\nu \in V_i \Rightarrow \frac{\Pr[X = \nu]}{\Pr[Y = \nu]} \ge 1 - \epsilon_i.$$

• We are free to define classes V_1 , V_2 as we like.

- Let $V = V_1 \cup V_2$ be such that V_1, V_2 are disjoint.
- We then examine:

$$\nu \in V_i \Rightarrow \frac{\Pr[X = \nu]}{\Pr[Y = \nu]} \ge 1 - \epsilon_i.$$

- We are free to define classes V_1 , V_2 as we like.
- It is very useful to have one big class for which is the ratio close to one (those would be called "good" iews) and a smaller class for which the ratio is large (call these the "bad" views").

Then the following holds:

$$1 - \mathbb{E}_{\nu \in Y} \left[\min \left(1, \frac{\Pr[X = \nu]}{\Pr[Y = \nu]} \right) \right]$$

Then the following holds:

$$\begin{split} &1 - \mathbb{E}_{\nu \in Y} \left[\min \left(1, \frac{\Pr[X = \nu]}{\Pr[Y = \nu]} \right) \right] \\ &= \sum_{\nu \in V} \Pr[Y = \nu] \left(1 - \min \left(1, \frac{\Pr[X = \nu]}{\Pr[Y = \nu]} \right) \right) \end{split}$$

Then the following holds:

$$\begin{split} &1 - \mathbb{E}_{\nu \in Y} \left[\min \left(1, \frac{\Pr\left[X = \nu \right]}{\Pr\left[Y = \nu \right]} \right) \right] \\ &= \sum_{\nu \in V} \Pr\left[Y = \nu \right] \left(1 - \min \left(1, \frac{\Pr\left[X = \nu \right]}{\Pr\left[Y = \nu \right]} \right) \right) \\ &= \sum_{\nu \in V_1} \Pr\left[Y = \nu \right] \left(1 - \min \left(1, \frac{\Pr\left[X = \nu \right]}{\Pr\left[Y = \nu \right]} \right) \right) \\ &+ \sum_{\nu \in V_2} \Pr\left[Y = \nu \right] \left(1 - \min \left(1, \frac{\Pr\left[X = \nu \right]}{\Pr\left[Y = \nu \right]} \right) \right) \end{split}$$

■ And combined with (for $\nu \in V_i$):

$$\min\left(1, \frac{\Pr\left[X = \nu\right]}{\Pr\left[Y = \nu\right]}\right) \ge 1 - \epsilon_i,$$

■ And combined with (for $\nu \in V_i$):

$$\min\left(1, \frac{\Pr\left[X = \nu\right]}{\Pr\left[Y = \nu\right]}\right) \ge 1 - \epsilon_i,$$

we get

$$\sum_{\nu \in V_i} \Pr[Y = \nu] \left(1 - \min\left(1, \frac{\Pr[X = \nu]}{\Pr[Y = \nu]}\right) \right) \ge \Pr[Y \in V_i] (1 - \epsilon_i),$$

■ And combined with (for $\nu \in V_i$):

$$\min\left(1, \frac{\Pr\left[X = \nu\right]}{\Pr\left[Y = \nu\right]}\right) \ge 1 - \epsilon_i,$$

we get

$$\sum_{\nu \in V_i} \Pr\left[Y = \nu\right] \left(1 - \min\left(1, \frac{\Pr\left[X = \nu\right]}{\Pr\left[Y = \nu\right]}\right)\right) \ge \Pr\left[Y \in V_i\right] (1 - \epsilon_i),$$

and finally

$$\mathbb{E}_{\nu \in Y}\left[\ldots\right] \geq \Pr\left[Y \in V_1\right] (1 - \epsilon_1) + \Pr\left[Y \in V_2\right] (1 - \epsilon_2).$$

Good and Bad Views part 2

Then we can conclude proposition 5, because:

$$\Delta(X,Y) = 1 - \mathbb{E}_{\nu \in Y} \left[\min \left(1, \frac{\Pr\left[X = \nu\right]}{\Pr\left[Y = \nu\right]} \right) \right],$$

Good and Bad Views part 2

Then we can conclude proposition 5, because:

$$\begin{split} \Delta(X,Y) &= 1 - \mathbb{E}_{\nu \in Y} \left[\min \left(1, \frac{\Pr[X = \nu]}{\Pr[Y = \nu]} \right) \right], \\ &\geq 1 - \left(\Pr[Y \in V_1] \left(1 - \epsilon_1 \right) + \Pr[Y \in V_2] \left(1 - \epsilon_2 \right) \right), \end{split}$$

Good and Bad Views part 2

Then we can conclude proposition 5, because:

$$\begin{split} \Delta(X,Y) &= 1 - \mathbb{E}_{\nu \in Y} \left[\min \left(1, \frac{\Pr[X = \nu]}{\Pr[Y = \nu]} \right) \right], \\ &\geq 1 - \left(\Pr[Y \in V_1] \left(1 - \epsilon_1 \right) + \Pr[Y \in V_2] \left(1 - \epsilon_2 \right) \right), \\ &= \Pr[Y \in V_1] \epsilon_1 + \Pr[Y \in V_2] \epsilon_2. \end{split}$$

The Main Result

■ If we now conclude that V_1 is "large" therefore $\Pr[Y \in V_1]$ is approx 1 and that ϵ_2 is also close to one we immediately obtain the main result:

$$Adv(D) \leq \Delta(X, Y) \leq \epsilon_1 + Pr[Y \in V_2].$$

The Main Result

■ If we now conclude that V_1 is "large" therefore $\Pr[Y \in V_1]$ is approx 1 and that ϵ_2 is also close to one we immediately obtain the main result:

$$Adv(D) \leq \Delta(X, Y) \leq \epsilon_1 + Pr[Y \in V_2].$$

It translates to: Advantage is upper-bounded by probability of "bad" views in ideal world plus the distance between the ratio and one.

Lower Bounding the Ratio

■ We call view ν compatible with oracle R if for any $(P, C) \in \nu$ it holds that R(P) = C.

- We call view ν compatible with oracle R if for any $(P, C) \in \nu$ it holds that R(P) = C.
- Given view ν denote $\operatorname{comp}_{\Omega}(\nu)$ set of oracles of Ω that are compatible with view ν .

- We call view ν compatible with oracle R if for any $(P, C) \in \nu$ it holds that R(P) = C.
- Given view ν denote $\operatorname{comp}_{\Omega}(\nu)$ set of oracles of Ω that are compatible with view ν .
- This does not imply that if ν is compatible with R that D produces view ν when interacting with R.

- We call view ν compatible with oracle R if for any $(P, C) \in \nu$ it holds that R(P) = C.
- Given view ν denote $\operatorname{comp}_{\Omega}(\nu)$ set of oracles of Ω that are compatible with view ν .
- This does not imply that if ν is compatible with R that D produces view ν when interacting with R.
- However it implies that when D produced ν compatible with R then when D interacts with R it produces ν as well.

■ Let D interact with oracle R_1 producing view $\nu = \{(P_i, C_i) | i \leq q\}.$

- Let D interact with oracle R_1 producing view $\nu = \{(P_i, C_i) | i \leq q\}.$
- Say ν is compatible with R_2 then let D interact with R_2

- Let D interact with oracle R_1 producing view $\nu = \{(P_i, C_i) | i \leq q\}.$
- Say ν is compatible with R_2 then let D interact with R_2
- The first query D makes is the same as when interacting with R_1

- Let D interact with oracle R_1 producing view $\nu = \{(P_i, C_i) | i \leq q\}.$
- Say ν is compatible with R_2 then let D interact with R_2
- The first query D makes is the same as when interacting with R_1
- The response from R_2 is also the same, since it is compatible with ν

- Let D interact with oracle R_1 producing view $\nu = \{(P_i, C_i) | i \leq q\}.$
- Say ν is compatible with R_2 then let D interact with R_2
- The first query D makes is the same as when interacting with R_1
- The response from R_2 is also the same, since it is compatible with ν
- lacksquare By induction D produces the same view when interacting with R_2

Central Insight

Given view ν :

$$\Pr\left[X = \nu\right] = \frac{\left|\mathsf{comp}_{\Omega_{Real}}(\nu)\right|}{\left|\Omega_{Real}\right|} \ \ \mathsf{and} \ \ \Pr\left[Y = \nu\right] = \frac{\left|\mathsf{comp}_{\Omega_{Random}}(\nu)\right|}{\left|\Omega_{Random}\right|}.$$

Consequences

Right from the definition of compatibility and the central insight we get:

I The order in which queries appear in a view ν does not affect the probability of ν occurring, only the set of queries does.

Consequences

Right from the definition of compatibility and the central insight we get:

- In The order in which queries appear in a view ν does not affect the probability of ν occurring, only the set of queries does.
- 2 If two different deterministic distinguishers can obtain ν with nonzero probability they would obtain ν with equal probability (even if the order of queries differs).

Reformulate the ratio

We can therefore transform the ratio:

$$\frac{\Pr\left[X = \nu\right]}{\Pr\left[Y = \nu\right]} = \frac{\left|\Omega_{\textit{Random}}\right| \left|\mathsf{comp}_{\Omega_{\textit{Real}}}\right|}{\left|\Omega_{\textit{Real}}\right| \left|\mathsf{comp}_{\Omega_{\textit{Random}}}\right|}$$

Thank you for your attention. Do you have any questions?