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p-adic valuation

Definition
If 0 6= x ∈ Z, the p-adic valuation of x is

vp(x) = max{r : pr |x} ≥ 0

For a/b ∈ Q, the p-adic valuation of a/b

vp

(a
b

)
= vp(a)− vp(b)

We also introduce the convention that vp(0) =∞.

Lemma
If x , y ∈ Q, the vp has the following properties:

1 vp(x) =∞ if and only if x = 0;
2 vp(xy) = vp(x) + vp(y);
3 vp(x + y) ≥ min{vp(x), vp(y)} with equality if vp(x) 6= vp(y).
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p-adic norm

Definition
For x ∈ Q, let the p-adic norm of x be given by

|x |p =

{
p−vp(x) if x 6= 0,
p−∞ = 0 if x = 0.

Lemma

The function ||p : Q→ R+ has the properties:
1 |x |p = 0 if and only if x = 0;
2 |xy |p = |x |p|y |p;
3 |x + y |p ≤ max{|x |p, |y |p}, with equality if |x |p 6= |y |p.
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Distance

Definition

The distance between x , y ∈ R with respect to ||p is

dp(x , y) = |x − y |p ∈ R+

Lemma (The Isosceles Triangle Principle)

Let x , y , z ∈ R such that dp(x , z) 6= dp(z, y). Then

dp(x , y) = max{dp(x , z),dp(z, y)}.
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The limit

Definition

The sequence (an) tends to the limit a ∈ R with respect to ||p if

∀ε > 0∃M ∈ N such that n > M =⇒ |a− an|p = dp(a,an) < ε

Definition

The sequence (an) is Cauchy with respect to ||p if

∀ε > 0∃M ∈ N such that m,n > M =⇒ |am − an|p = dp(am,an) < ε

Example

Sequence (an), where an = 1 + p + p2 + . . .+ pn−1 is Cauchy and
has a limit in Q with respect to ||p.
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Cauchy sequences

Theorem

If lim(p)an exists, then (an) is Cauchy with respect to ||p.

Example

Consider (an) ⊆ Q whose n-th term is the decimal expansion of
√

2
up to the n-th decimal place, i.e., a1 = 1.4, a2 = 1.41, a3 = 1.414, etc.

Definition

A sequence (an) is called a null sequence if lim(p)an = 0.

CS(R) = the set of Cauchy sequences in R with respect to ||p,
Null(R) = the set of null sequences in R with respect to ||p.
addition and multiplication in CS(R)

(an) + (bn) = (an + bn), (an)× (bn) = (anbn)
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Completion

Definition

A ring with the norm ||p is complete with respect to the norm ||p if
every Cauchy sequence has a limit in R with respect to ||p.

Definition

Quotient ring CS(R)/Null(R) is called the completion of R with
respect to the norm ||p, and is denoted R̂.

Definition

The ring of p-adic numbers is the completion Q̂ of Q with respect to
||p; we will denote it Qp.

Definition
The unit ball about 0 ∈ Qp is the set of p-adic integers,

Zp = {α ∈ Qp : |α|p ≤ 1} = {α ∈ Qp : vp(α) ≥ 0}.
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p-adic expansion

Theorem
The set of p-adic integers Zp is a subring of Qp. Every element of Zp
is the limit of a sequence of (non-negative) integers and conversely,
every Cauchy sequence in Q consisting of integers has a limit in Zp.

p-adic expansion of α ∈ Zp:

α = α0 + α1p + α2p2 + . . . = . . . α2α1α0

- this expansion is unique
p-adic expansion of α ∈ Qp:

Suppose |α|p = pk , with k > 0.
Consider β = pkα, which has |β|p = 1.

β = β0 + β1p + β2p2 + . . .

Then
α = β0p−k +β1p−k+1+. . .+βk−1p−1+βk +βk+1p+. . .+βk+r pr +. . .
Can be written as

α = . . . βk+2βk+1βk , βk−1 . . . β1β0
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p-adic operations

Theorem
Every p-adic number α ∈ Qp has a unique p-adic expansion

α = α−r p−r + α1−r p1−r + . . . α−1p−1 + α0 + α1p + α2p2 + . . .

with an ∈ Z and 0 ≤ αn ≤ (p − 1). Furthermore, α ∈ Zp if and only if
α−r = 0 whenever r > 0.

Operations same as in p-adic representation of naturals.
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Hensel’s lemma

Theorem

Let f (X ) ∈ Zp[X ] be a polynomial and let α ∈ Zp be a p-adic number
for which

|f (α)|p < 1, |f ′(α)|p = 1.

Define a sequence in Qp by setting α0 = α and in general

αn+1 = αn −
f (αn)

f ′(αn)
.

Then each αn is in Zp and moreover

|f (αn)|p <
1
pn .

Hence the sequence (αn) is Cauchy with respect to ||p and

f (lim(p)
n→∞ αn) = 0.
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Formal Groups and formal logarithm
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Definition (Formal group)

A (one-dimensional) formal group F over a commutative ring R is a
power series F (X ,Y ) ∈ R[[X ,Y ]], such that

1 F (X ,Y ) = X + Y+ terms of higher degree
2 F (X ,F (Y ,Z )) = F (F (X ,Y ),Z ) (associativity)
3 F (X ,Y ) = F (Y ,X ) (commutativity)
4 ∃! power series i(T ) ∈ R[[T ]], such that F (T , i(T )) = 0 (inverse)
5 F (X ,0) = X and F (0,Y ) = Y

We call F (X ,Y ) the formal group law.

Definition

The formal additive group, denoted by Ĝa, is defined by

F (X ,Y ) = X + Y .

The formal multiplicative group, denoted by Ĝm, is defined by

F (X ,Y ) = X + Y + XY .
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Definition

Let (F ,F ) and (G ,G) be formal groups defined over R. A
homomoprhism from F to G defined over R is a power series
f ∈ R[[T ]] that satisfies

f (F (X ,Y )) = G(f (X ), f (Y )).

The formal groups F and G are isomorphic over R if there are
homomorphisms f : F → G and g : G → F defined over R such that

f(g(T)) = g(f(T)) = T.

Definition
Let R be a complete local ring with maximal ideal M and F a formal
group defined over R, with formal group law F (X ,Y ). The group
associated to F/R, denoted by F (M ), is the set M endowed with
the group operations.

x ⊕F y = F (x , y) (addition) for x , y ∈M ,
	F x = i(x) (inversion) for x ∈M .
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Associated groups vs. ideals

Lemma

Let F/R be a formal group defined over a complete local ring with
maximal ideal M . Then for each n ≥ 1, the map

F (M n)

F (M n+1)
→ M n

M n+1

induced by identity map x + M n+1 7→ x + M n+1 on sets is an
isomorphism of groups.

For any x , y ∈M n we have

x ⊕F y = F (x , y)
= x + y + (higher-order terms)

= x + y(mod M 2n).
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The invariant differential

Definition

An invariant differential on a formal group F/R is a differential form

ω(T ) = P(T )dT ∈ R[[T ]]dT

satisfying
ω ◦ F (T ,S) = ω(T ).

Writing this out, ω(T ) = P(T )dT is an invariant differential if it
satisfies

P(F (T ,S))FX (T ,S) = P(T ),

where FX (T ,S) is the partial derivative of F with respect to its first
variable. An invariant differential is said to be normalized if P(0) = 1.

On the additive group Ĝa, the differential ω = dT is invariant.
On the multiplicative group Ĝm, the differential ω = dT

1+T is
invariant.
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The normalized invariant differential

Theorem

Let F/R be a formal group. There exists a unique normalized
invariant differential on F/R. It is given by the formula

ω = FX (0,T )−1dT .

Suppose that P(T )dT is an invariant differential on F/R. Put T = 0.
Then

P(S)FX (0,S) = P(0).

From this we see that every invariant differential is of the form aω with
a ∈ R and ω = FX (0,T )−1dT .
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Formal logarithm

Definition (Formal logarithm)

Let R be a torsion-free ring, let K = R ⊗Q, let F/R be a formal
group, and let

ω(T ) = (1 + c1T + c2T 2 + . . .)dT

be the normalized invariant differential on F/R. The formal logarithm
of F/R is the power series

logF (T ) =

∫
ω(T ) = T +

c1

2
T 2 +

c2

3
T 3 + . . . ∈ K [[T ]].

The formal group law and invariant differential of the formal
multiplicative group F = Ĝm are

FF (X ,Y ) = X + Y + XY and ωF (T ) = (1 + T )−1dT .
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FF (X ,Y ) = X + Y + XY and ωF (T ) = (1 + T )−1dT .

19/23 Jan Butora British Elevator I



Going additive

Theorem

Let R be a torsion-free ring and let F/R be a formal group. Then

logF : F → Ĝa

is an isomorphism of formal groups over K = R ⊗Q.

Let ω(T ) be the normalized invariant differential on F/R, so

ω(F (T ,S)) = ω(T ).

Integrating both sides with respect to T gives

logF F (T ,S) = logF (T ) + C(S)

for some constant of integration C(S) ∈ K [[S]]. Taking T = 0 shows
that C(S) = logF (S).
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Lemma
Let R be a ring of characteristic 0 that is complete with respect to a
discrete valuation v, and let p ∈ Z be a prime with v(p) > 0. Let f (T )
be a power series of the form

f (T ) =
∞∑

n=1

an

n
T n with an ∈ R.

If x ∈ R satisfies v(x) > 0, then f (x) converges in R.

For a general term of f (x) we have

v(anxn/n) ≥ nv(x)− v(n)
≥ nv(x)− (logp n)v(p).

That means sequence ( an
n xn) is a null sequence, which means

sequence (sn) is Cauchy, where

sn =
n∑

m=0

am

m
xm.

Therefore f (x) converges.
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Main result

Theorem
Let K be a field of characteristic 0 that is complete with respect to a
normalized discrete valuation v, i.e., v(K ∗) = Z, let R be the
valuation ring of K , let M be the maximal ideal of R, and let p be a
prime with v(p) > 0. Consider a formal group F/R. Then the formal
logarithm induces injective homomorphism

logF : F (M )→ K ,

where the group law on K is addition.

We already know that

logF (F (X ,Y )) = logF (X ) + logF (Y )

Hence logF will be a homomorphism on M provided that logF (x)
converges for x ∈M . But logF (m) converges for every m ∈M from
previous theorem.
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Main result for elliptic curves

Corollary

There is an injective homomorphism

logÊ : Ê(pZp) ↪→ Qp

where Ê(pZp) is group associated to formal group E/Qp given by
formal group law for elliptic curves.

Corollary

Ê(pZp) ∼= pZp
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