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Partitions

4 = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

••••

••••

••••

••••

••••

Definition
A partition of the positive integer n is any nonincreasing sequence of positive
integers λ1, . . . , λr such that n = λ1 + · · ·+ λr .
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Partition Function

Definition

The partition function p(n) is the number of partitions of n.
By convention is p(0) = 1 and p(−n) = 0 for each n > 0.

p(1) = 1 : 1
p(2) = 2 : 2 = 1 + 1
p(3) = 3 : 3 = 2 + 1 = 1 + 1 + 1
p(4) = 5 : 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1
p(5) = 7 : 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = . . .
p(6) = 11 : 6 = 5 + 1 = 4 + 2 = 4 + 1 + 1 = 3 + 2 + 1 = . . .

...
p(10) = 42
p(20) = 627
p(50) = 204 226
p(100)= 190 569 292
p(200)= 3 972 999 029 388
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Generating Function

We know that if |x | < 1, then

1

1− x
= 1 + x + x2 + x3 + x4 + . . . .

We expand the infinite product:

∞∏
n=1

1

1− xn
= (1 + x + x2 + x3 + . . . )(1 + x2 + x4 + . . . )(1 + x3 + x6 + . . . ) . . .

= 1 + x + 2x2 + 3x3 + 5x4 + . . . .

Then the coefficient of xn is equal to p(n) and we get the following lemma:

Lemma (Generating function)
∞∑
n=0

p(n)xn =
∞∏
n=1

1

1− xn
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Number of Partitions with Distinct and Odd Parts

Denote by p(D, n) the number of all partitions of n with distinct parts.

E.g. the partition 3 + 2 + 1 of 6 has distinct parts but 4 + 1 + 1 does not.

Lemma (Distinct parts)
∞∑
n=0

p(D, n)xn =
∞∏
n=1

(1 + xn)

Similarly, denote by p(O, n) the number of all partitions of n with only odd
parts.

E.g. the partition 3 + 1 + 1 + 1 of 6 has only odd parts but 4 + 1 + 1 does not.

Lemma (Odd parts)
∞∑
n=0

p(O, n)xn =
∞∏
n=1

1

1− x2n−1
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Number of Partitions with Distinct and Odd Parts

Compute:
∞∏
n=1

(1 + xn) =
∞∏
n=1

1− x2n

1− xn
=
∞∏
n=1

1

1− x2n−1

But we know:
∞∑
n=0

p(D, n)xn =
∞∏
n=1

(1 + xn)

∞∑
n=0

p(O, n)xn =
∞∏
n=1

1

1− x2n−1

We have just proved the following lemma:

Lemma

p(D, n) = p(O, n)
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Reccurent Formula

Theorem (Euler’s Pentagonal Number Theorem)
∞∏
n=1

(1− xn) =
∞∑

k−∞

(−1)kx (3k2−k)/2 = 1− x − x2 + x5 + x7 − x12 − . . .

Combining with the generating function
∑∞

n=0 p(n)xn =
∏∞

n=1
1

1−xn we get

1 =

( ∞∏
n=1

1

1− xn

)( ∞∏
n=1

(1− xn)

)

=

( ∞∑
n=0

p(n)xn

)(
1− x − x2 + x5 + x7 − x12 − . . .

)
.

This implies:

Corollary

p(n) = p(n − 1) + p(n − 2)− p(n − 5)− p(n − 7) + p(n − 12) + · · ·
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Ramanujan’s Congruences

Arithmetic properties of the partition function?

Suspicion: the values of p(n) are distributed evenly modulo 2.

Computation of the first 10,000 values:

4,996 are even,
5,004 are odd.

Similarly with the residues modulo 3, of the first 10,000 values:

3,313 are congruent 0,
3,325 are congruent 1,
3,362 are congruent 2.

But 3,611 of the first 10,000 values of p(n) are divisible by 5.

1 1 2 3 5
7 11 15 22 30

42 56 77 101 135
176 231 297 385 490
627 792 1002 1255 1575

1958 2436 3010 3718 4565
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Ramanujan’s Congruences

Ramanujan computed the first 200 values of p(n).

He discovered and proved the following congruences:

Theorem (Ramanujan’s congruences)

p(5n + 4) ≡ 0 (mod 5)

p(7n + 5) ≡ 0 (mod 7)

p(11n + 6) ≡ 0 (mod 11)

To prove the first two congruences he used the following identities:

∞∑
n=0

p(5n + 4)qn = 5
∞∏
n=0

(1− q5n)5

(1− qn)6
,

∞∑
n=0

p(7n + 5)qn = 7
∞∏
n=0

(1− q7n)3

(1− qn)4
+ 49q

∞∏
n=0

(1− q7n)7

(1− qn)8
.
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Partition function (Revision)

Partition of n - a finite nonincreasing sequence of positive integers, i.e. the
sum of them is equal to n.

Partition function p(n) - the number of partitions of n.

Generating function
∞∑
n=0

p(n)xn =
∞∏
n=1

1

1− xn
.
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Modular Forms (Revision)

Definition
We denote by H the upper-half plane, i.e. the set of complex numbers with
positive imaginary part.

Function f on H is called modular form of weight 2k if it satisfies following
conditions:

f (z) = (cz + d)−2k f

(
az + b

cz + d

)
for

(
a b
c d

)
∈ SL2(Z),

f is holomorphic on H,

f is holomorphic at ∞.

Modular form is called cusp form if it satisfies also

f (∞) = 0.
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Eisenstein Series (Revision)

Definition
Let z ∈ H. For an integer k ≥ 2 we define the Eisenstein series of index k by the
following series:

Ek(z) =
∑

(m,n)∈Z2\(0,0)

1

(mz + n)2k
.

Ek is a modular form of weight 2k .

Ek(∞) = 2ζ(2k), where ζ denotes the Riemann zeta function.

Definition

∆ = (60E2)3 − 27(140E3)2

∆ is a cusp form of weight 12.

Kristýna Zemková Partitions and Modular Forms November 19, 2015 12 / 26



Jacobi Theorem

Theorem (Jacobi)

Let z ∈ H, then

∆(z) = (2π)12q
∞∏
n=1

(1− qn)24,

where q = e2πiz .

Proof (main idea)

We know that ∆ is a cusp form of weight 12.

dimSk = 1 (the space of cusp forms of weight 12).

We put F (z) = q
∏∞

n=1 (1− qn)24.

It suffices to show that F is a modular form of weight 12.

We only have to prove that F (−1/z) = z12F (z).

It follows from a computation with double series.

�
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Ramanujan Function

Definition
The Ramanujan function is the function τ : N→ Z defined as the nth coefficient
of the cusp form F (z) = (2π)−12∆(z). Thus

∞∑
n=1

τ(n)qn = q
∞∏
n=1

(1− qn)24
,

where q = e2πiz .

n 1 2 3 4 5 6 7 8 9
τ(n) 1 -24 252 -1,472 4,830 -6,048 -16,744 84,480 -113,643
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Ramanujan Function

Theorem (Properties of τ(n))

1 τ(n) = O(n11/2+ε) for every ε > 0,

2 τ(mn) = τ(m)τ(n) if GCD(m, n) = 1,

3 τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1) for p prime, n > 1.

The first property follows from:

(Hecke theorem) If an is the nth coefficient of a cusp form of the weight 2k,
then

an = O(nk−1/2+ε).

τ(n) is defined as the nth coefficient of a cusp form of the weight 12.

The second property says that τ(n) is multiplicative.
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L-functions (Revision)

Definition

Let X = (an)n∈N be a sequence of complex numbers and put

L(s,X ) =
∑
n∈N

an
ns
.

Furthermore suppose that following holds:

L(s,X ) is absolutely convergent for Re(s) > k , k ∈ N
L(s,X ) has analytic continuation to C
L(s,X ) = γ(s,X )L(k − s,X ′) for some ”elementary” function γ, k ∈ N
L(s,X ) =

∏
p∈P hp(p−s)−1 where hp is a polynomial for each p ∈ P.

Then L(s,X ) is called a (general) L-function.
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Ramanujan Function

Theorem (Properties of τ(n))

1 τ(n) = O(n11/2+ε) for every ε > 0,

2 τ(mn) = τ(m)τ(n) if GCD(m, n) = 1,

3 τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1) for p prime, n > 1.

We have F (z) =
∑∞

n=1 τ(n)qn = (2π)−12∆(z).
Put L(s,F ) =

∑∞
n=1 τ(n)n−s .

We are looking for polynomials hp, such that L(s,F ) =
∏

p∈P
1

hp(p−s ) .

Put hp(x) = 1− τ(p)x + p11x2.
At first we would like to show that

∑∞
m=0 τ(pm)p−ms = 1

hp(p−s ) .
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Kristýna Zemková Partitions and Modular Forms November 19, 2015 17 / 26



Ramanujan Function

Theorem (Properties of τ(n))

1 τ(n) = O(n11/2+ε) for every ε > 0,

2 τ(mn) = τ(m)τ(n) if GCD(m, n) = 1,

3 τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1) for p prime, n > 1.

We have F (z) =
∑∞

n=1 τ(n)qn = (2π)−12∆(z).

Put L(s,F ) =
∑∞

n=1 τ(n)n−s .

Could it be a L-function?

We will check the last condition.

We are looking for polynomials hp, such that L(s,F ) =
∏

p∈P
1

hp(p−s ) .

Put hp(x) = 1− τ(p)x + p11x2.

At first we would like to show that
∑∞

m=0 τ(pm)p−ms = 1
hp(p−s ) .
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1 τ(n) = O(n11/2+ε) for every ε > 0,

2 τ(mn) = τ(m)τ(n) if GCD(m, n) = 1,

3 τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1) for p prime, n > 1.
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n=0

τ(pn)xn

)(
1− τ(p)x + p11x2

)

=
∞∑
n=0

τ(pn)xn −
∞∑
n=0

τ(pn)τ(p)xn+1 +
∞∑
n=0

p11τ(pn)xn+2

= τ(p0)x0 − τ(p)x + τ(p)x +
∞∑
n=1

(
τ(pn+1)− τ(p)τ(pn) + p11τ(pn−1)

)
xn

(3)
= 1
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Kristýna Zemková Partitions and Modular Forms November 19, 2015 19 / 26



Ramanujan Function

Theorem (Properties of τ(n))

1 τ(n) = O(n11/2+ε) for every ε > 0,

2 τ(mn) = τ(m)τ(n) if GCD(m, n) = 1,

3 τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1) for p prime, n > 1.

We have F (z) =
∑∞

n=1 τ(n)qn = (2π)−12∆(z).

Put L(s,F ) =
∑∞

n=1 τ(n)n−s .

Could it be a L-function?

We will check the last condition.

We are looking for polynomials hp, such that L(s,F ) =
∏

p∈P
1

hp(p−s ) .

Put hp(x) = 1− τ(p)x + p11x2.

At first we would like to show that
∑∞

m=0 τ(pm)p−ms = 1
hp(p−s ) - done.

Thanks to (2) we can write
∑∞

n=1 τ(n)n−s =
∏

p∈P (
∑∞

m=0 τ(pm)p−ms).

We get L(s,F ) =
∑∞

n=1 τ(n)n−s =
∏

p∈P
1

hp(p−s ) .

Kristýna Zemková Partitions and Modular Forms November 19, 2015 19 / 26



Ramanujan Function

Theorem (Properties of τ(n))

1 τ(n) = O(n11/2+ε) for every ε > 0,

2 τ(mn) = τ(m)τ(n) if GCD(m, n) = 1,

3 τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1) for p prime, n > 1.

We have F (z) =
∑∞

n=1 τ(n)qn = (2π)−12∆(z).

Put L(s,F ) =
∑∞

n=1 τ(n)n−s .

Could it be a L-function?

We will check the last condition.

We are looking for polynomials hp, such that L(s,F ) =
∏

p∈P
1

hp(p−s ) .

Put hp(x) = 1− τ(p)x + p11x2.
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Connection between Partition Function and Modular Forms

Lets look at these two identities:∑∞
n=0 p(n)qn =

∏∞
n=1

1
1−qn

,∑∞
n=1 τ(n)qn = q

∏∞
n=1 (1− qn)24.

We can put them together:( ∞∑
n=0

p(n)qn

)24( ∞∑
n=1

τ(n)qn

)
= q

∞∏
n=1

(1− qn)24

(1− qn)24

So we get:

Theorem
∞∑
n=1

τ(n)qn−1 =
1

(
∑∞

n=1 p(n)qn)
24
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Back to Ramanujan’s Congruences

Recall that:

Theorem (Ramanujan’s congruences)

p(5n + 4) ≡ 0 (mod 5)

p(7n + 5) ≡ 0 (mod 7)

p(11n + 6) ≡ 0 (mod 11)

Ramanujan expected that these three congruences are the only congruences
of this form.

In his own words:

“It appears that there are no equally simple properties for any moduli involving
primes other than these three.”
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Back to Ramanujan’s Congruences

Formally, there are not any congruences of the form

p(`n + β) ≡ 0 (mod `)

for all n ∈ Z, ` 6= 5, 7, 11 prime, and some fixed β ∈ Z.
We will show that there are no Ramanujan congruences modulo 2 or 3.

Let ` = 2.
Then β ∈ {0, 1} .
p(2n + β) ≡ 0 (mod `) has to be true for all n ∈ Z, specially for n = 0.
But p(0) = p(1) = 1 6≡ 0 (mod 2).

Let ` = 3.
Then β ∈ {0, 1, 2} .
p(3n + β) ≡ 0 (mod `) has to be true for all n ∈ Z, specially for n = 0.
But p(0) = p(1) = 1, p(2) = 2 and 1, 2 6≡ 0 (mod 3).
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Back to Ramanujan’s Congruences

Other cases are much more difficult.

It can be shown that if there exists a β ∈ Z such that

p(`n + β) ≡ 0 (mod `)

holds for all n, then 24β ≡ 1 (mod `).

The proof is based on the function ∆(z) = (2π)12q
∏∞

n=1 (1− qn)24.
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Back to Ramanujan’s Congruences

Ramanujan also made the following conjecture:

Ramanujan’s conjecture

If δ = 5a7b11c and 24λ ≡ 1 (mod δ), then p(δn + λ) ≡ 0 (mod δ).

It follows easily from the cases when the moduli are powers of 5, 7, or 11.

But this conjecture is not quite correct.

Counterexample: p(243) 6≡ 0 (mod 73).

We know the following:

Theorem

If δ = 5a7b11c and 24λ ≡ 1 (mod δ), then p(δn + λ) ≡ 0 (mod 5a7b
b
2c+111c).
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Conclusion

Conjecture (Erdös)

If ` is prime, then there is at least one nonnegative integer n`, for which

p(n`) ≡ 0 (mod `).

Conjecture (M. Newman)

If m is an integer, then for every residue class r (mod m) there are infinitely many
nonnegative integers n for which p(n) ≡ r (mod m).

Theorem
For any prime ` ≥ 5, there exist infinitely many congruences of the form

p(An + B) ≡ 0 (mod `).
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Srinivasa Ramanujan

22 December 1887 - 26 April 1920

Indian mathematician.

Almost no formal training in pure mathematics.

Repeatedly failing college exams in other subjects
and losing scholarship.

Work as a clerk.

First paper published in 1911 in the Journal of the
Indian Mathematical Society.

A real genius or a crank?

Approval from a famous mathematician G. H. Hardy.

Five-year collaboration with Hardy - explicit formula for p(n).

Problems with health in England, return to India (1919).

Most of his papers unpublished until 1957, resp. 1988.

Some of his work discovered by other mathematicians.
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