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The Rubik’s Cube

Labeling and notation
Basic structure

- Structure of cube - three layers

- corner, edge and central subcubes

- twist and flip



The Rubik’s Cube

Labeling and notation
The group of illegal moves

- the basic moves are F,U,R,B,D,L

- the illegal moves via disassembling

- group H = 〈{R, L,F ,B,U,D} ∪ {’illegal moves’}〉



The Rubik’s Cube

Labeling and notation
Reference marks

- The standard reference mark

- edges: uf, ur, ub, ul, lf, fr, rb, bl, df, dr, db, dl

- corners: U or D facets

- The relative reference mark



The Rubik’s Cube

Labeling and notation
numbering of subcubes

- The set of edges E , |E | = 12

- The set of vertices V , |V | = 8



The Rubik’s Cube

Labeling and notation
subcube permutations

- The action of H on E induces a homomorphism σ : H → S12

- The action of H on V induces a homomorphism ρ : H → S8



The Rubik’s Cube

Labeling and notation
orientation vectors

- Orientation of an edge: Number of flips needed to obtain the
standard position. (0 or 1)

- Orientation of an edge ’is in’ C2

- Orientation vector ’is in’ C 12
2

- Edge orientation change is w : H → C 12
2 , where h ∈ H is

mapped to the orientation vector after applying move h.

Lemma 1: For g , h ∈ H: w(gh) = w(g) + Pw(h), where P is
permutation matrix of σ(g)−1.

’Proof’: After move g , the numbers of edges are changed.



The Rubik’s Cube

Labeling and notation
orientation vectors

- Orientation of an edge: Number of flips needed to obtain the
standard position. (0 or 1)

- Orientation of an edge ’is in’ C2

- Orientation vector ’is in’ C 12
2

- Edge orientation change is w : H → C 12
2 , where h ∈ H is

mapped to the orientation vector after applying move h.

Lemma 1: For g , h ∈ H: w(gh) = w(g) + Pw(h), where P is
permutation matrix of σ(g)−1.

’Proof’: After move g , the numbers of edges are changed.



The Rubik’s Cube

Labeling and notation
orientation vectors

- Orientation of an edge: Number of flips needed to obtain the
standard position. (0 or 1)

- Orientation of an edge ’is in’ C2

- Orientation vector ’is in’ C 12
2

- Edge orientation change is w : H → C 12
2 , where h ∈ H is

mapped to the orientation vector after applying move h.

Lemma 1: For g , h ∈ H: w(gh) = w(g) + Pw(h), where P is
permutation matrix of σ(g)−1.

’Proof’: After move g , the numbers of edges are changed.



The Rubik’s Cube

Labeling and notation
orientation vectors

- Orientation of an edge: Number of flips needed to obtain the
standard position. (0 or 1)

- Orientation of an edge ’is in’ C2

- Orientation vector ’is in’ C 12
2

- Edge orientation change is w : H → C 12
2 , where h ∈ H is

mapped to the orientation vector after applying move h.

Lemma 1: For g , h ∈ H: w(gh) = w(g) + Pw(h), where P is
permutation matrix of σ(g)−1.

’Proof’: After move g , the numbers of edges are changed.



The Rubik’s Cube

Labeling and notation
orientation vectors

- Orientation of an edge: Number of flips needed to obtain the
standard position. (0 or 1)

- Orientation of an edge ’is in’ C2

- Orientation vector ’is in’ C 12
2

- Edge orientation change is w : H → C 12
2 , where h ∈ H is

mapped to the orientation vector after applying move h.

Lemma 1: For g , h ∈ H: w(gh) = w(g) + Pw(h), where P is
permutation matrix of σ(g)−1.

’Proof’: After move g , the numbers of edges are changed.



The Rubik’s Cube

Labeling and notation
orientation vectors

- Orientation of an edge: Number of flips needed to obtain the
standard position. (0 or 1)

- Orientation of an edge ’is in’ C2

- Orientation vector ’is in’ C 12
2

- Edge orientation change is w : H → C 12
2 , where h ∈ H is

mapped to the orientation vector after applying move h.

Lemma 1: For g , h ∈ H: w(gh) = w(g) + Pw(h), where P is
permutation matrix of σ(g)−1.

’Proof’: After move g , the numbers of edges are changed.



The Rubik’s Cube

Labeling and notation
orientation vectors

- Orientation of a vertex: Number of (clockwise) twists needed
to obtain the standard position. (0, 1 or 2)

- Orientation of a vertex ’is in’ C3

- Orientation vector ’is in’ C 8
3

- Vertex orientation change is v : H → C 8
3 , where h ∈ H is

mapped to the orientation vector after applying move h.

Lemma 1: For g , h ∈ H: v(gh) = v(g) + Pv(h), where P is permutation
matrix of ρ(g)−1.
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The Rubik’s Cube

It looks familiar, doesn’t it?



The Rubik’s Cube

The group structure
semi-direct product

- Consider the following semi-direct product:

H ′ = (C 8
3 oϕ S8)× (C 12

2 oψ S12),

- together with
ϕ : SV → Aut(C 8

3 ),

π 7→ P, where P is the permutation matrix of π−1

and
ψ : SE → Aut(C 12

2 ),

ω 7→ Q, where Q is the permutation matrix of ω−1



The Rubik’s Cube

The group structure
semi-direct product

Proposition: H ∼= H ′

Proof: The isomorphism is
φ : g 7→ (v(g), ρ(g),w(g), σ(g)). (Lemma 1)
φ is surjective, because we can disassemble the
cube.
Kerφ is trivial.



The Rubik’s Cube

The group structure
legal moves

By previous proposition, we can represent the
positions of the Rubik’s cube as elements of
C 8
3 × S8 × C 12

2 × S12.

Question: Given a 4-tuple (v , r ,w , s) ∈ C 8
3 × S8 × C 12

2 × S12,
how can we decide, whether it is a legal move of the
Rubik’s cube?

Answer: next theorem



The Rubik’s Cube

The group structure
legal moves

Theorem: For all g ∈ H:

g ∈ 〈{R, L,F ,B,U,D}〉 (i.e. g is a legal move)

if and only if the following conditions hold

(P) sgn(ρ(g)) = sgn(σ(g))
(F)

∑8
i=1(v(g))i = 0 (mod 3)

(T)
∑12

i=1(w(g))i = 0 (mod 2)



The Rubik’s Cube

Proof of Theorem
downward implication

Assume that g = (v , r ,w , s) ∈ C 8
3 × S8 × C 12

2 × S12 is a legal
move.

It means that g = X1X2 . . .Xk , where Xi are basic moves.

For each basic move X : sgn(ρ(X )) = sgn(σ(X ))

sgn(r) = sgn(ρ(g)) = Πk
i=1sgn(ρ(Xi )) = Πk

i=1sgn(σ(Xi )) =
= sgn(s).

And it’s the condition (P).
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The Rubik’s Cube

Proof of Theorem
downward implication

We know g = X1X2 . . .Xk , where Xi are basic moves.

Assume k is minimal. The condition (T) follows from
induction on k .

v = v(g) = v(X1X2 . . .Xk) = Pv(Xk) + v(X1X2 . . .Xk−1) (By
Lemma 1)

But condition (T) holds for both summands on the right hand
size.

The condition (F) may be prooved analogically.
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The Rubik’s Cube

Proof of Theorem
upward implication

Assume g = (v , r ,w , s) satisfies conditions (P), (T), (F).

We will ’solve the cube’.

At first, we find a move m1 = (a, π, b, τ), such that
gm1 = (a′, 1, b′, τ ′). So m1 solves the corners.

Lets look at the move m0 = (DRD−1R−1F )3.

ρ(m0) = (dbr, urb)

There exists ω, such that ρ(m0)ω is an arbitrary transposition
of corners.

So there exists the desired legal move m1.
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The Rubik’s Cube

Proof of Theorem
upward implication

Now we need to solve the orientation of corners.

Lets look at the move n0 = (DR−1)3(D−1R)3

v(n0) = (0, 2, 0, 0, 1, 0, 0, 0), ρ(n0) = 1

By conjugation, we can twist any pair of corners.

So we can set 7 corners into right orientation.

The 8th corner has to be oriented right, thanks to the
condition (T).
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The Rubik’s Cube

Proof of Theorem
upward implication

How to solve the edges?

m′0 = LR−1U2L−1RB2 is a 3-cycle of edges.

Moreover ρ(m′0) = 1, v(m′0) = 0 (and w(m′0) = 0)

By conjugation, we can cycle arbitrary three edges without
affecting corners.

So we can perform any even permutation on the edges.
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The Rubik’s Cube

Proof of Theorem
upward implication

We have moves m1,m2 such that gm1m2 = (0, 1,w ′, τ ′′),
where τ ′′ = sσ(m1)σ(m2)

τ ′′ is even permutation

sgn(τ ′′) = sgn(s)sgn(σ(m1))sgn(σ(m2)) =
= sgn(r)sgn(ρ(m1))sgn(ρ(m2)) = sgn(rρ(m1)ρ(m2))

sgn(τ ′′) = sgn(1)

So we can perform the move m3, such that ρ(m3) = 1,
v(m3) = 0 and σ(m3) = (τ ′′)−1

It remains to orient the edges.

Try
LR−1FLR−1DLR−1BLR−1ULR−1F−1LR−1D−1LR−1B−1LR−1U−1
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The Rubik’s Cube

The Rubik’s cube group

Consider G0 = {(v , r ,w , s) ∈ H|conditions(T), (F)hold}, with
the group operation of H.

The Rubik’s cube group G is the kernel of homomorphism

φ : G0 → {−1, 1},

where (v , r ,w , s) 7→ sgn(r)sgn(s).

[H : G ] = 12


