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Key problem

Let G be a wallpaper group. We have the following data:

◮ T ≃ Z
2 . . . lattice of translations in G,

◮ G0 . . . the point group, acting on T ,

◮ G0 ≃ G/T.
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Key problem

Let G be a wallpaper group. We have the following data:

◮ T ≃ Z
2 . . . lattice of translations in G,

◮ G0 . . . the point group, acting on T ,

◮ G0 ≃ G/T.

Question
How can be the group G recovered from the data?
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Key problem

Let G be a wallpaper group. We have the following data:

◮ T ≃ Z
2 . . . lattice of translations in G,

◮ G0 . . . the point group, acting on T ,

◮ G0 ≃ G/T.

Question
How can be the group G recovered from the data?

Answer: Via the second cohomology group H2(G0, T ).
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Definition

◮ A sequence of groups and group homomorphisms

· · · An−1 An An+1 · · ·
fn−2 fn−1 fn fn+1

is called an exact sequence if for every integer n,
Ker fn+1 = Im fn.
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◮ A sequence of groups and group homomorphisms

· · · An−1 An An+1 · · ·
fn−2 fn−1 fn fn+1

is called an exact sequence if for every integer n,
Ker fn+1 = Im fn.

◮ An exact sequence of the form

· · · 1 1 A B C 1 1 · · ·

· · · A−2 A−1 A0 A1 A2 · · ·

is called a short exact sequence, or an extension of A by C.
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Definition
Two extensions of A by C

1 A Bi C 1, i = 1, 2
αi βi

are equivalent if there exists a group isomorphism g : B1 −→ B2

such that the diagram

1 A B1 C 1

1 A B2 C 1

α1 β1

g

α2 β2

is commutative, that is, g ◦ α1 = α2 and β2 ◦ g = β1.
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Example

Consider two extensions

1 Z3 Z9 Z3 1

1 Z3 Z9 Z3 1

a 7→3a b 7→b%3

a 7→3a b 7→2b%3
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Claim: These are not equivalent.

1 Z3 Z9 Z3 1

1 Z3 Z9 Z3 1

a 7→3a

	1

b 7→b%3

?∃g	2

a 7→3a b 7→2b%3
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Claim: These are not equivalent.

1 Z3 Z9 Z3 1

1 Z3 Z9 Z3 1

a 7→3a

	1

b 7→b%3

?∃g	2

a 7→3a b 7→2b%3

g : a 7→ ka for some k ∈ {1, 2, 4, 5, 7, 8}
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Claim: These are not equivalent.

1 Z3 Z9 Z3 1

1 Z3 Z9 Z3 1

a 7→3a

	1

b 7→b%3

?∃g	2

a 7→3a b 7→2b%3

g : a 7→ ka for some k ∈ {1, 2, 4, 5, 7, 8}

1. g(3a) = 3a, a = 1, 2, 3

⇒ g = [b 7→ kb] for k = 1, 4, 7
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Claim: These are not equivalent.

1 Z3 Z9 Z3 1

1 Z3 Z9 Z3 1

a 7→3a

	1

b 7→b%3

?∃g	2

a 7→3a b 7→2b%3

g : a 7→ ka for some k ∈ {1, 2, 4, 5, 7, 8}

1. g(3a) = 3a, a = 1, 2, 3

⇒ g = [b 7→ kb] for k = 1, 4, 7

2. 2g(a)% 3 = a%3, a = 1, 2, 3

⇒ g = [b 7→ kb] for k = 2, 5, 8
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Proposition

Consider a group extension

1 T G G0 1
⊆ π

with T Abelian. For each g ∈ G0, choose xg ∈ G such that

π(xg) = g. Then

g ∗ t := xgtx
−1
g , g ∈ G0, t ∈ T

is a correctly and uniquely defined action of G0 on T .
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Proof
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Proof

◮ “uniquely defined”:
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Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0
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Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0  x′g = xgt
′, t′ ∈ T
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Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0  x′g = xgt
′, t′ ∈ T

t ∈ T . . .
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Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0  x′g = xgt
′, t′ ∈ T

t ∈ T . . . x′gt(x
′
g)

−1
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Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0  x′g = xgt
′, t′ ∈ T
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Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0  x′g = xgt
′, t′ ∈ T

t ∈ T . . . x′gt(x
′
g)

−1 = xgt
′tt′−1x−1

g = xgtx
−1
g

◮ “action”:
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Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0  x′g = xgt
′, t′ ∈ T

t ∈ T . . . x′gt(x
′
g)

−1 = xgt
′tt′−1x−1

g = xgtx
−1
g

◮ “action”:

g ∗ (h ∗ t)
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Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0  x′g = xgt
′, t′ ∈ T

t ∈ T . . . x′gt(x
′
g)

−1 = xgt
′tt′−1x−1

g = xgtx
−1
g

◮ “action”:

g ∗ (h ∗ t) = xg(xhtx
−1
h )x−1

g
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Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0  x′g = xgt
′, t′ ∈ T

t ∈ T . . . x′gt(x
′
g)

−1 = xgt
′tt′−1x−1

g = xgtx
−1
g

◮ “action”:

g ∗ (h ∗ t) = xg(xhtx
−1
h )x−1

g = xghtx
−1
gh
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Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0  x′g = xgt
′, t′ ∈ T

t ∈ T . . . x′gt(x
′
g)

−1 = xgt
′tt′−1x−1

g = xgtx
−1
g

◮ “action”:

g ∗ (h ∗ t) = xg(xhtx
−1
h )x−1

g = xghtx
−1
gh = (gh) ∗ t
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Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0  x′g = xgt
′, t′ ∈ T

t ∈ T . . . x′gt(x
′
g)

−1 = xgt
′tt′−1x−1

g = xgtx
−1
g

◮ “action”:

g ∗ (h ∗ t) = xg(xhtx
−1
h )x−1

g = xghtx
−1
gh = (gh) ∗ t

But π(xgxh) = π(xg)π(xh) = gh, hence xgxh is correct
choice of preimage of gh.
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Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0  x′g = xgt
′, t′ ∈ T

t ∈ T . . . x′gt(x
′
g)

−1 = xgt
′tt′−1x−1

g = xgtx
−1
g

◮ “action”:

g ∗ (h ∗ t) = xg(xhtx
−1
h )x−1

g = xghtx
−1
gh = (gh) ∗ t

But π(xgxh) = π(xg)π(xh) = gh, hence xgxh is correct
choice of preimage of gh.

◮ “compatibility”:

Group cohomology and wallpaper groups - Part II MFF UK



Introduction Group extensions Homological algebra basics Group cohomology Computation attempt

Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0  x′g = xgt
′, t′ ∈ T

t ∈ T . . . x′gt(x
′
g)

−1 = xgt
′tt′−1x−1

g = xgtx
−1
g

◮ “action”:

g ∗ (h ∗ t) = xg(xhtx
−1
h )x−1

g = xghtx
−1
gh = (gh) ∗ t

But π(xgxh) = π(xg)π(xh) = gh, hence xgxh is correct
choice of preimage of gh.

◮ “compatibility”: ((g ∗ −) is automorphism of T for every g)
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Proof

◮ “uniquely defined”:

π(xg) = π(x′g) = g ∈ G0  x′g = xgt
′, t′ ∈ T

t ∈ T . . . x′gt(x
′
g)

−1 = xgt
′tt′−1x−1

g = xgtx
−1
g

◮ “action”:

g ∗ (h ∗ t) = xg(xhtx
−1
h )x−1

g = xghtx
−1
gh = (gh) ∗ t

But π(xgxh) = π(xg)π(xh) = gh, hence xgxh is correct
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g )(xgt
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Remarks

1. Assume T is the lattice of wallpaper group G with point
group G0.
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Remarks

1. Assume T is the lattice of wallpaper group G with point
group G0.  We get an extension:

1 T G G0 1

(A, v) A

(A, v)(Id, w)(A, v)−1 = (Id, Aw)
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1. Assume T is the lattice of wallpaper group G with point
group G0.  We get an extension:

1 T G G0 1

(A, v) A

(A, v)(Id, w)(A, v)−1 = (Id, Aw)

Then the given action of G0 on T corresponds to the one
induced by the extension.
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Remarks

1. Assume T is the lattice of wallpaper group G with point
group G0.  We get an extension:

1 T G G0 1

(A, v) A

(A, v)(Id, w)(A, v)−1 = (Id, Aw)

Then the given action of G0 on T corresponds to the one
induced by the extension.
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Remarks

2. In the extension

1 T G G0 1

is G of the form G = T ⋊G0
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Remarks

2. In the extension

1 T G G0 1

is G of the form G = T ⋊G0 if and only if the map g 7→ xg
can be chosen as homomorphism.
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Remarks

2. In the extension

1 T G G0 1

is G of the form G = T ⋊G0 if and only if the map g 7→ xg
can be chosen as homomorphism.
(Then G = T ⋊ϕ G0, where ϕ : g 7→ (g ∗ −).)
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Remarks

2. In the extension

1 T G G0 1

is G of the form G = T ⋊G0 if and only if the map g 7→ xg
can be chosen as homomorphism.
(Then G = T ⋊ϕ G0, where ϕ : g 7→ (g ∗ −).)
In particular, this “trivial” extension always exists.
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Definition

◮ A sequence of Abelian groups

(A) · · · An−1 An An+1 · · ·dn−2 dn−1 dn dn+1

is called a chain complex if for every n ∈ Z,
Im dn ⊆ Ker dn+1, or, equivalently, dn+1 ◦ dn = 0.
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Definition

◮ A sequence of Abelian groups

(A) · · · An−1 An An+1 · · ·dn−2 dn−1 dn dn+1

is called a chain complex if for every n ∈ Z,
Im dn ⊆ Ker dn+1, or, equivalently, dn+1 ◦ dn = 0.

◮ For a chain complex (A) and n ∈ Z, we define the n-th
cohomology group of (A) by

H
n(A) = Ker dn/Im dn−1.
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(picture)
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Proposition (± Snake lemma)

Let 0 → A → B → C → 0 be a short exact sequence of chain

complexes - that is, a commutative diagram

0 0 0 0

· · · An−2 An−1 An An+1 · · · (A)

· · · Bn−2 Bn−1 Bn Bn+1 · · · (B)

· · · Cn−2 Cn−1 Cn Cn+1 · · · (C)

0 0 0 0

such that the rows are complexes A,B, C and the columns are

exact. Then there is an exact sequence of the following form:

· · · −→ H
n−1(C) −→ H

n(A) −→ H
n(B) −→ H

n(C) −→ H
n+1(A) −→ · · ·
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Idea of proof

0 0 0 0

· · · An−1 An An+1 An+2 · · ·

· · · Bn−1 Bn Bn+1 Bn+2 · · ·

· · · Cn−1 Cn Cn+1 Cn+2 · · ·

0 0 0

· · · H
n(A) H

n(B) H
n(C) H

n+1(A) · · ·

αn

βn
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Idea of proof

0 0 0 0

· · · An−1 An An+1 An+2 · · ·

· · · Bn−1 Bn Bn+1 Bn+2 · · ·

· · · Cn−1 Cn Cn+1 Cn+2 · · ·

0 0 0

· · · H
n(A) H

n(B) H
n(C) H

n+1(A) · · ·

αn

βn
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Idea of proof

0 0 0 0

· · · An−1 An An+1 An+2 · · ·

· · · Bn−1 Bn Bn+1 Bn+2 · · ·

· · · Cn−1 Cn Cn+1 Cn+2 · · ·

0 0 0

· · · H
n(A) H

n(B) H
n(C) H

n+1(A) · · ·

αn

βn

a
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Idea of proof

0 0 0 0

· · · An−1 An An+1 An+2 · · ·

· · · Bn−1 Bn Bn+1 Bn+2 · · ·

· · · Cn−1 Cn Cn+1 Cn+2 · · ·

0 0 0

· · · H
n(A) H

n(B) H
n(C) H

n+1(A) · · ·

αn

a

βn

a
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Idea of proof

0 0 0 0

· · · An−1 An An+1 An+2 · · ·

· · · Bn−1 Bn Bn+1 Bn+2 · · ·

· · · Cn−1 Cn Cn+1 Cn+2 · · ·

0 0 0

· · · H
n(A) H

n(B) H
n(C) H

n+1(A) · · ·

αn

a

αn(a)
βn

a
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Idea of proof

0 0 0 0

· · · An−1 An An+1 An+2 · · ·

· · · Bn−1 Bn Bn+1 Bn+2 · · ·

· · · Cn−1 Cn Cn+1 Cn+2 · · ·

0 0 0

· · · H
n(A) H

n(B) H
n(C) H

n+1(A) · · ·

αn

a

αn(a)
βn

a αn(a)
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Idea of proof

0 0 0 0

· · · An−1 An An+1 An+2 · · ·

· · · Bn−1 Bn Bn+1 Bn+2 · · ·

· · · Cn−1 Cn Cn+1 Cn+2 · · ·

0 0 0

· · · H
n(A) H

n(B) H
n(C) H

n+1(A) · · ·

αn

βn
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Idea of proof

0 0 0 0

· · · An−1 An An+1 An+2 · · ·

· · · Bn−1 Bn Bn+1 Bn+2 · · ·

· · · Cn−1 Cn Cn+1 Cn+2 · · ·

0 0 0

· · · H
n(A) H
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Definition
Let T be an Abelian group and G0 a group with action on T .
For a positive integer n, denote Cn(G0, T ) the group of all maps
f : (G0)

n → T , and define group homomorphisms
dn : Cn(G0, T ) → Cn+1(G0, T ) by

[dn(f)](g1, . . . , gn+1) =g1 ∗ f(g2, . . . , gn+1)

+
n
∑

i=1

(−1)if(g1, g2, . . . , (gigi+1), . . . , gn+1)

+ (−1)n+1f(g1, g2, . . . , gn).

Further set C0(G0, T ) = T and
d0(g) : t 7→ g ∗ t− t, g ∈ G0, t ∈ T .
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Proposition

For every n, dn+1 ◦ dn = 0. That is, Cn(G0, T ) together with
dn, n ∈ N0, form a chain complex.
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Proposition

For every n, dn+1 ◦ dn = 0. That is, Cn(G0, T ) together with
dn, n ∈ N0, form a chain complex.

(Proof is omitted.)
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Proposition

For every n, dn+1 ◦ dn = 0. That is, Cn(G0, T ) together with
dn, n ∈ N0, form a chain complex.

(Proof is omitted.)

Definition
Given a non-negative integer n, we define

Hn(G0, T ) = H
n(C•(G0, T )).

We call Hn(G0, T ) the n-th cohomology group of G0 with

coefficients in T .
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Warning: For the next few slides, T is written multiplicatively!
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Warning: For the next few slides, T is written multiplicatively!
In particular, the group H2(G0, T ) consists of so-called
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Warning: For the next few slides, T is written multiplicatively!
In particular, the group H2(G0, T ) consists of so-called

2-cocycles: Maps c : G0 ×G0 → T satisfying

c(g, h) · c(gh, k) = (g ∗ c(h, k)) · c(g, hk), g, h, k ∈ G0
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Warning: For the next few slides, T is written multiplicatively!
In particular, the group H2(G0, T ) consists of so-called

2-cocycles: Maps c : G0 ×G0 → T satisfying

c(g, h) · c(gh, k) = (g ∗ c(h, k)) · c(g, hk), g, h, k ∈ G0

modulo

2-coboundaries: Maps b : G0 ×G0 → T satisfying

b(g, h) = (g ∗ f(h)) · (f(gh))−1 · f(g)

for some map f : G0 → T .
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Theorem
There is a 1-1 correspondence between
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Theorem
There is a 1-1 correspondence between

◮ equivalence classes of extensions of T by G0 with the given

action, and
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Theorem
There is a 1-1 correspondence between

◮ equivalence classes of extensions of T by G0 with the given

action, and

◮ the elements of H2(G0, T ).
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Proof (extensions of T by G0 ! H2(G0, T ))

1. Going forward:
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Proof (extensions of T by G0 ! H2(G0, T ))

1. Going forward: Consider an extension
1 → T → G

π
→ G0 → 1, fix representatives xg ∈ π−1(g).
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Proof (extensions of T by G0 ! H2(G0, T ))

1. Going forward: Consider an extension
1 → T → G

π
→ G0 → 1, fix representatives xg ∈ π−1(g).

Then
c(g, h) := xgxhx

−1
gh

is a 2-cocycle:
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Proof (extensions of T by G0 ! H2(G0, T ))

1. Going forward: Consider an extension
1 → T → G

π
→ G0 → 1, fix representatives xg ∈ π−1(g).

Then
c(g, h) := xgxhx

−1
gh

is a 2-cocycle:

(g ∗ c(h, k)) · c(g, hk)
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Proof (extensions of T by G0 ! H2(G0, T ))

1. Going forward: Consider an extension
1 → T → G

π
→ G0 → 1, fix representatives xg ∈ π−1(g).

Then
c(g, h) := xgxhx

−1
gh

is a 2-cocycle:

(g ∗ c(h, k)) · c(g, hk) = xg(xhxkx
−1
hk )x

−1
g · (xgxhkx

−1
ghk)
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Proof (extensions of T by G0 ! H2(G0, T ))

1. Going forward: Consider an extension
1 → T → G

π
→ G0 → 1, fix representatives xg ∈ π−1(g).

Then
c(g, h) := xgxhx

−1
gh

is a 2-cocycle:

(g ∗ c(h, k)) · c(g, hk) = xg(xhxkx
−1
hk )x

−1
g · (xgxhkx

−1
ghk)

= xgxhxkx
−1
ghk
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Proof (extensions of T by G0 ! H2(G0, T ))

1. Going forward: Consider an extension
1 → T → G

π
→ G0 → 1, fix representatives xg ∈ π−1(g).

Then
c(g, h) := xgxhx

−1
gh

is a 2-cocycle:

(g ∗ c(h, k)) · c(g, hk) = xg(xhxkx
−1
hk )x

−1
g · (xgxhkx

−1
ghk)

= xgxhxkx
−1
ghk = xgxh(x

−1
gh xgh)xkx

−1
ghk
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Proof (extensions of T by G0 ! H2(G0, T ))

1. Going forward: Consider an extension
1 → T → G

π
→ G0 → 1, fix representatives xg ∈ π−1(g).

Then
c(g, h) := xgxhx

−1
gh

is a 2-cocycle:

(g ∗ c(h, k)) · c(g, hk) = xg(xhxkx
−1
hk )x

−1
g · (xgxhkx

−1
ghk)

= xgxhxkx
−1
ghk = xgxh(x

−1
gh xgh)xkx

−1
ghk

= (xgxhx
−1
gh )(xghxkx

−1
ghk)
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Proof (extensions of T by G0 ! H2(G0, T ))

1. Going forward: Consider an extension
1 → T → G

π
→ G0 → 1, fix representatives xg ∈ π−1(g).

Then
c(g, h) := xgxhx

−1
gh

is a 2-cocycle:

(g ∗ c(h, k)) · c(g, hk) = xg(xhxkx
−1
hk )x

−1
g · (xgxhkx

−1
ghk)

= xgxhxkx
−1
ghk = xgxh(x

−1
gh xgh)xkx

−1
ghk

= (xgxhx
−1
gh )(xghxkx

−1
ghk) = c(g, h) · c(gh, k)
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Proof (extensions of T by G0 ! H2(G0, T ))

2. Going back:
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Proof (extensions of T by G0 ! H2(G0, T ))

2. Going back: Consider a 2-cocycle c(g, h).
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Proof (extensions of T by G0 ! H2(G0, T ))

2. Going back: Consider a 2-cocycle c(g, h).
On G := T ×G0, define group operation by

(t, g) · (s, h) := (t · (g ∗ s) · c(g, h), gh).
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Proof (extensions of T by G0 ! H2(G0, T ))

2. Going back: Consider a 2-cocycle c(g, h).
On G := T ×G0, define group operation by

(t, g) · (s, h) := (t · (g ∗ s) · c(g, h), gh).

Then it can be verified that
◮ (G, ·) is a group,
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Proof (extensions of T by G0 ! H2(G0, T ))

2. Going back: Consider a 2-cocycle c(g, h).
On G := T ×G0, define group operation by

(t, g) · (s, h) := (t · (g ∗ s) · c(g, h), gh).

Then it can be verified that
◮ (G, ·) is a group,
◮ T ≃ T × {1} E G,
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Proof (extensions of T by G0 ! H2(G0, T ))

2. Going back: Consider a 2-cocycle c(g, h).
On G := T ×G0, define group operation by

(t, g) · (s, h) := (t · (g ∗ s) · c(g, h), gh).

Then it can be verified that
◮ (G, ·) is a group,
◮ T ≃ T × {1} E G,
◮ G/T ≃ G0.
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Proof (extensions of T by G0 ! H2(G0, T ))

What about 2-coboundaries?
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Proof (extensions of T by G0 ! H2(G0, T ))

What about 2-coboundaries?

Choose representatives {x′g}g∈G0
instead of {x′g}g∈G0

to obtain a
2-cocycle c′(g, h).
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Proof (extensions of T by G0 ! H2(G0, T ))

What about 2-coboundaries?

Choose representatives {x′g}g∈G0
instead of {x′g}g∈G0

to obtain a
2-cocycle c′(g, h).
Then x′g = tgxg for every g ∈ G0 and some tg ∈ T .
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Proof (extensions of T by G0 ! H2(G0, T ))

What about 2-coboundaries?

Choose representatives {x′g}g∈G0
instead of {x′g}g∈G0

to obtain a
2-cocycle c′(g, h).
Then x′g = tgxg for every g ∈ G0 and some tg ∈ T . It follows that

c′(g, h) = x′gx
′
h(x

′
gh)

−1
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Proof (extensions of T by G0 ! H2(G0, T ))

What about 2-coboundaries?

Choose representatives {x′g}g∈G0
instead of {x′g}g∈G0

to obtain a
2-cocycle c′(g, h).
Then x′g = tgxg for every g ∈ G0 and some tg ∈ T . It follows that

c′(g, h) = x′gx
′
h(x

′
gh)

−1 = (tgxg)(thxh)(tghxgh)
−1
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Proof (extensions of T by G0 ! H2(G0, T ))

What about 2-coboundaries?

Choose representatives {x′g}g∈G0
instead of {x′g}g∈G0

to obtain a
2-cocycle c′(g, h).
Then x′g = tgxg for every g ∈ G0 and some tg ∈ T . It follows that

c′(g, h) = x′gx
′
h(x

′
gh)

−1 = (tgxg)(thxh)(tghxgh)
−1

= tgxgth(x
−1
g xg)xhx

−1
gh t

−1
gh
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Proof (extensions of T by G0 ! H2(G0, T ))

What about 2-coboundaries?

Choose representatives {x′g}g∈G0
instead of {x′g}g∈G0

to obtain a
2-cocycle c′(g, h).
Then x′g = tgxg for every g ∈ G0 and some tg ∈ T . It follows that

c′(g, h) = x′gx
′
h(x

′
gh)

−1 = (tgxg)(thxh)(tghxgh)
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Proof (extensions of T by G0 ! H2(G0, T ))

What about 2-coboundaries?

Choose representatives {x′g}g∈G0
instead of {x′g}g∈G0

to obtain a
2-cocycle c′(g, h).
Then x′g = tgxg for every g ∈ G0 and some tg ∈ T . It follows that

c′(g, h) = x′gx
′
h(x

′
gh)

−1 = (tgxg)(thxh)(tghxgh)
−1

= tgxgth(x
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g xg)xhx
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gh t

−1
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g )xgxhx

−1
gh t

−1
gh

= tg(g ∗ th)c(g, h)t
−1
gh
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Proof (extensions of T by G0 ! H2(G0, T ))

What about 2-coboundaries?

Choose representatives {x′g}g∈G0
instead of {x′g}g∈G0

to obtain a
2-cocycle c′(g, h).
Then x′g = tgxg for every g ∈ G0 and some tg ∈ T . It follows that

c′(g, h) = x′gx
′
h(x

′
gh)

−1 = (tgxg)(thxh)(tghxgh)
−1

= tgxgth(x
−1
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−1
gh t

−1
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Proof (extensions of T by G0 ! H2(G0, T ))

What about 2-coboundaries?

Choose representatives {x′g}g∈G0
instead of {x′g}g∈G0

to obtain a
2-cocycle c′(g, h).
Then x′g = tgxg for every g ∈ G0 and some tg ∈ T . It follows that

c′(g, h) = x′gx
′
h(x

′
gh)

−1 = (tgxg)(thxh)(tghxgh)
−1

= tgxgth(x
−1
g xg)xhx

−1
gh t

−1
gh = tg(xgthx

−1
g )xgxhx

−1
gh t

−1
gh

= tg(g ∗ th)c(g, h)t
−1
gh = ((g ∗ th)t

−1
gh tg)c(g, h)

= b(g, h)c(g, h),

where b(g, h) = [d1(f)](g, h) is a 2-coboundary obtained from the
map f(g) = tg.
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Proof (extensions of T by G0 ! H2(G0, T ))

What about 2-coboundaries?

Choose representatives {x′g}g∈G0
instead of {x′g}g∈G0

to obtain a
2-cocycle c′(g, h).
Then x′g = tgxg for every g ∈ G0 and some tg ∈ T . It follows that

c′(g, h) = x′gx
′
h(x

′
gh)

−1 = (tgxg)(thxh)(tghxgh)
−1

= tgxgth(x
−1
g xg)xhx

−1
gh t

−1
gh = tg(xgthx

−1
g )xgxhx

−1
gh t

−1
gh

= tg(g ∗ th)c(g, h)t
−1
gh = ((g ∗ th)t

−1
gh tg)c(g, h)

= b(g, h)c(g, h),

where b(g, h) = [d1(f)](g, h) is a 2-coboundary obtained from the
map f(g) = tg.
Thus, the 2-cocycle obtained is unique modulo 2-coboundaries.

Group cohomology and wallpaper groups - Part II MFF UK



Introduction Group extensions Homological algebra basics Group cohomology Computation attempt

Example

Consider the point group G0 = D1,p =

〈(

1 0
0 −1

)〉

acting

naturally on T = Z
2. Then

H2(G0, T ) ≃ Z2.

That is, there are two non-equivalent group extension of T by G0

inducing the given action.
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Proposition (± Snake lemma)

Let 0 → A → B → C → 0 be a short exact sequence of chain

complexes - that is, a commutative diagram

0 0 0 0

· · · An−2 An−1 An An+1 · · · (A)

· · · Bn−2 Bn−1 Bn Bn+1 · · · (B)

· · · Cn−2 Cn−1 Cn Cn+1 · · · (C)

0 0 0 0

such that the rows are complexes A,B, C and the columns are

exact. Then there is an exact sequence of the following form:

· · · −→ H
n−1(C) −→ H

n(A) −→ H
n(B) −→ H

n(C) −→ H
n+1(A) −→ · · ·
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Fact: There is a short exact sequence of chain complexes
0 0 0 0 0

0 Z Z
2

Z
2

Z
2

Z
2 · · · (A)

0 Z C0(G0, T ) C1(G0, T ) C2(G0, T ) C3(G0, T ) · · · (B)

0 0 C0 C1 C2 C3 · · · (C)

0 0 0 0 0

(

0 0

0 −2

) (

2 0

0 0

) (

0 0

0 −2

) (

2 0

0 0

)

where the sequence (C) is also exact.
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Thus, we obtain a long exact sequence
0 H

1(A) H1(G0, T ) 0 H
2(A) H2(G0, T ) 0

H
0(C) H

1(A) H
1(B) H

1(C) H
2(A) H

2(C) H
3(C)
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Thus, we obtain a long exact sequence
0 H

1(A) H1(G0, T ) 0 H
2(A) H2(G0, T ) 0

H
0(C) H

1(A) H
1(B) H

1(C) H
2(A) H

2(C) H
3(C)

In particular, H2(G0, T ) ≃ H
2(A).
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Thus, we obtain a long exact sequence
0 H

1(A) H1(G0, T ) 0 H
2(A) H2(G0, T ) 0

H
0(C) H

1(A) H
1(B) H

1(C) H
2(A) H

2(C) H
3(C)

In particular, H2(G0, T ) ≃ H
2(A).

Thus,

H2(G0, T ) ≃
{

(

0
z

)

| z ∈ Z

}

/
{

(

0
−2z

)

| z ∈ Z

}

≃ Z2.
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We conlude this part by listing the second cohomology groups of
all possible choices of the point group and the lattice:

G0 H2(G0, T ) No. of extensions

C1 0 1
C2 0 1
C3 0 1
C4 0 1
C6 0 1
D1,p Z2 2
D1,c 0 1
D2,p Z2 × Z2 4
D2,c 0 1
D3,l 0 1
D3,s 0 1
D4 Z2 2
D6 0 1
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Thank you for your attention!
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