
Secure multiparty computation
Second part
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Oblivious transfer

I It is a functionality for two parties - sender and receiver.

I Sender’s input is a pair of strings (z0,z1) and there is no
output.

I Receiver’s input is a bit b and output is zb.

How to compute this securely? (Sender does not learn anything
and receiver learns zb only.)
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Trapdoor permutation and enhanced trapdoor permutation

I A trapdoor permutation (TDP) is a 4-tuple of algorithms
(I ,D,F ,F−1), where

I I samples a function f and a trapdoor t in a family,
I D(f ) uniformly samples a value in a domain of f ,
I F (f ,x) computes f (x),
I F−1(f ,y ,t) computes f −1(y)

and it is hard to invert f given y but not t.

I An enhanced trapdoor permutation is a TDP for which it is
hard to compute f −1(y) even given the random coins used to
sample y (using D).
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TDP vs. ETDP example

I RSA trapdoor function
I I chooses random ((e,n),d), where n = p · q for some p,q

prime and e · d = 1( mod ϕ(n)),
I D chooses random value in Zn,
I F (f ,x) = xe mod n,
I F−1(f ,y ,t) = yd mod n.

I Rabin trapdoor function
I I chooses random (n,(p,q)), such that n = p · q,

p = q = 3 (mod 4), p,q prime,
I D chooses random value in Zn and squares it,
I F (f ,x) = x2 mod n,
I F−1(f ,y ,t) as in Rabin cryptosystem.
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Hard-core predicate

I A function B(x) is a hard-core predicate if B(x) is a bit and
probability of guessing B(x) given y = f (x) is only negligibly
larger than one half. (Given y = f (x), the bit B(x) is
pseudorandom.)

I Example: Let r be a string of the same length as f (x). Then
function

b(x ,r) =
⊕
j

rjxj

is a hard-core predicate.
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Construction of OT protocol for semi-honest adversary

Suppose that (I ,D,F ,F−1) is an enhanced TDP and B is a
hard-core predicate.
Sender’s input is a pair of bits (z0,z1),
Receiver’s input is a bit b.

I Sender chooses (f ,t) using sampling algorithm I and sends f
to the receiver.

I Receiver chooses xb and computes yb = f (xb). Receiver
chooses random y1−b using D and sends (y0,y1) to the sender.

I Sender inverts (y0,y1) getting (x0,x1). Sender computes
ai = zi ⊕ B(xi ) for i = 0,1 and sends (a0,a1) to the receiver.

I Receiver computes zb = ab ⊕ B(xb).

Dáša Krasnayová Secure multiparty computation



Construction is computationally secure

We will show that there is a simulator that generates a transcript
indistinguishable from a transcript of a real protocol execution.

I Sender corrupted: Simulator is given sender’s input (z0,z1)
and there is no output. Simulator chooses (f ,t) using I , y0,y1
using D(f ) and computes a0,a1. The transcript is exactly like
in a real protocol execution because choosing xb and
computing yb = f (xb) is identical to choosing yb using D(f ).

I Receiver corrupted: Simulator is given receiver’s input b and
the output zb. Simulator chooses (f ,t) using I , xb,y1−b using
D(f ) and computes yb = f (xb), ab = zb ⊕ B(xb). Simulator
finally chooses a1−b at random. Since B is a hard-core
predicate and f is enhanced, B(x1−b) is indistinguishable from
random. Therefore this simulator output is indistinguishable
from a real execution.
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Malicious adversary – Ideal / Real paradigm

I In ideal world a trusted authority computes output.

I All parties just send their inputs to the TA through secure
channels.
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Malicious adversary – Security definition

Protocol π securely computes a function f , if for every
non-uniform polynomial-time real-model adversary A, there exists
a non-uniform polynomial-time ideal-model simulator S, such that
for all input vectors and auxiliary inputs the joint outputs of A and
the honest parties in real execution of π is indistinguishable from
the joint outputs of S and the honest parties in an ideal execution
where the trusted party computes the f .
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Malicious adversary – Security definition

The following properties hold

I privacy - from adversary’s output

I correctness - TA computes the functionality

I independence of inputs - ideal execution

I fairness and guaranteed output delivery - ideal execution

Relaxing the definition

I Sometimes this definition is too strong
I For example fairness cannot be guaranteed without an honest

majority
I We sometimes change the instructions of the trusted party
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Secure computation of AND function

For parties A and B with input bits a and b we want to compute
a · b securely.

I Let A be the sender with input (0,a) and B be the receiver
with input b.

I Now we execute the OT protocol and finally B sends output
to A.

I Another option is to execute the protocol twice, exchanged
roles in the second execution.

Claim: If OT protocol is secure, this computation is secure as well.

I Simulation is easy.
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Feasibility of constructing OT

There is no OT protocol providing unconditional security for both
parties.

I We will prove this by proving there is no unconditionally
secure protocol computing AND function.

I I there was an OT protocol providing unconditional security
for both parties, we could construct AND protocol with
unconditional security.
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Feasibility of constructing OT (cont.)

Suppose there is an AND protocol with unconditional security.

I Let T be a transcript of a real execution.

I Parties use random inputs RA and RB , given these inputs
protocol is a deterministic function.

I Let A (sender) be the corrupted party and suppose that in a
certain execution A has input 0.

I If B’s input is 0, B must not learn A’s input. Hence there is an
R ′ such that if A has input a = 1 and R ′, the transcript of the
execution of the protocol would be T .

I If B’s input is 1, there is no R ′ such that if A has input a = 1
and R ′, the transcript of the execution of the protocol would
be T due to correctness.
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Feasibility of constructing OT (cont.)

I A can therefore compute b by determining whether there is an
R ′ such that the transcript of the execution of the protocol
would be T if A’s input was a = 1 and R ′.
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Sequential modular composition

I In a protocol, secure protocols are run sequentially as
subroutines, with arbitrary messages in between them.

I Formalization of the security - Hybrid model
I A trusted party computes a sub-functionality
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Sequential modular composition

I If subprotocols ρi securely computes functionalities fi and a
protocol π securely computes functionality g in a hybrid
model where a trusted party is used to compute every fi , than
a real protocol πρ that uses real calls to each ρi instead of a
trusted party, securely computes g .
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