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o First part: introduction, basic definitions, properties etc.
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o First part: introduction, basic definitions, properties etc.

@ Second part (Adéla): piecewise testable languages
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o First part: introduction, basic definitions, properties etc.
@ Second part (Adéla): piecewise testable languages

e Third part (Milo§): Simon’s theorem and its consequences
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o First part: Useless
e Second part (Adéla): Useless
e Third part (Milos): Cancelled
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o First part: Not completely useless
@ Second part (Adéla): Not completely useless
o Third part: Short summary
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Semigroups and monoids

A semigroup is a set with an associative binary operation.
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Semigroups and monoids

A semigroup is a set with an associative binary operation.
A monoid is a semigroup with a neutral element.
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Semigroups and monoids

A semigroup is a set with an associative binary operation.
A monoid is a semigroup with a neutral element.

Let S and T be semigroups. We say that T is a quotient of S if
there exists a surjective morphism ¢ : S — 7. The semigroup T
divides the semigroup S if T' is a quotient of a subsemigroup of S.
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Semigroups and monoids

A semigroup is a set with an associative binary operation.

A monoid is a semigroup with a neutral element.

Definition

Let S and T be semigroups. We say that T is a quotient of S if
there exists a surjective morphism ¢ : S — 7. The semigroup T
divides the semigroup S if T' is a quotient of a subsemigroup of S.

Definition
A congruence on a semigroup S is an equivalence relation ~ on S
satisfying for each a,b,c€ S: a~b= (a-c~b-c A c-a~c-b).

4
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Let A be (finite) a set. We will call it an alphabet. Elements of
this set are called letters or symbols.
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Let A be (finite) a set. We will call it an alphabet. Elements of
this set are called letters or symbols.

A word over the alphabet A is a finite sequence ajas - - - a,, of letters

from A.
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Words

Let A be (finite) a set. We will call it an alphabet. Elements of
this set are called letters or symbols.

A word over the alphabet A is a finite sequence ajas - - - a, of letters
from A.

Definition

| A

Denote by A* the set of all words over A (the empty sequence is
also a word). Then A* with the associative operation of
concatenation forms a free monoid on the set A. The neutral
element is the empty word .
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Let A be (finite) a set. We will call it an alphabet. Elements of
this set are called letters or symbols.

A word over the alphabet A is a finite sequence ajas - - - a, of letters
from A.

Definition

Denote by A* the set of all words over A (the empty sequence is
also a word). Then A* with the associative operation of
concatenation forms a free monoid on the set A. The neutral
element is the empty word .

| A

The set AT = A* \ {\} with the same operation of concatenation is
a free semigroup on the set A.
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Subwords, factors, etc.

Let w € A* be a word and let a € A be a letter. The number of
occurences of a in w is denoted |w/q.
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Subwords, factors, etc.

Let w € A* be a word and let a € A be a letter. The number of
occurences of a in w is denoted |w/q.

| A

Definition

A word u is a prefix (or left factor) of a word w if there exists a
word v such that w = uv. We define a suffiz of w in a similar way.

v
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Subwords, factors, etc.

Definition

Let w € A* be a word and let a € A be a letter. The number of
occurences of a in w is denoted |w/q.

Definition

| A

A word u is a prefix (or left factor) of a word w if there exists a
word v such that w = uv. We define a suffiz of w in a similar way.

Definition

A word u is a factor of a word w if there exist words v1, v9 such
that w = viuvs.

| A

N
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Subwords, factors, etc.

Definition

Let w € A* be a word and let a € A be a letter. The number of
occurences of a in w is denoted |w/q.

Definition

A word u is a prefix (or left factor) of a word w if there exists a
word v such that w = uv. We define a suffiz of w in a similar way.

Definition

A word u is a factor of a word w if there exist words v1, v9 such
that w = viuvs.

A word u=aj...a,, a; € Ais a subword of a word w if there exist
words vg, v1, . .., U, such that w = vgaqvy ... anv,.
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Examples

Take a word u = abacbach.

abacbacb
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Examples

Take a word u = abacbach. Then aba is a prefix of u,

abacbach
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Examples

Take a word u = abacbach. Then aba is a prefix of u, acb is a suffix
of u,

abacbacb

AUTOMATA, LANGUAGES AND MONOIDS I



Examples

Take a word u = abacbach. Then aba is a prefix of u, acb is a suffix
of u, bacb is a factor of u

abacbach
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Examples

Take a word u = abacbach. Then aba is a prefix of u, acb is a suffix
of u, bach is a factor of u and bebb is a subword of u.

abacbacb
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Languages

Let A be a finite alphabet. A language over the alphabet A is a
subset of A*.
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Languages

Let A be a finite alphabet. A language over the alphabet A is a
subset of A*.

L={d"|k>1} C{a,b}" is a language.

A\
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Automata

An automaton is a triplet & = (Q, A, -), where @ is a (finite) set of
states, A is a finite alphabet and - is a function from @ x A to Q.
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Automata II

We say that a language L is recognized by an automaton
o = (Q, A,-) if there exists a state ¢p € @ and a set of states F'
such that v € L iff go - u € F.
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Automata II

We say that a language L is recognized by an automaton
o = (Q, A,-) if there exists a state ¢p € @ and a set of states F'
such that v € L iff go - u € F.

~()——(=)
b
b




Regular languages

Definition

Let A be a finite alphabet. The set of regular languages (also
rational languages) over A is the smallest set of languages of A*
such that

© the empty language @ is regular,
@ for every word u € A*, the language {u} is regular,

@ if Ly and Lo are regular languages, then L U Ly, Ly - Lo and
L7 are also regular.

Jiri Sykora AUTOMATA, LANGUAGES AND MONOIDS I



Regular languages

Definition

Let A be a finite alphabet. The set of regular languages (also
rational languages) over A is the smallest set of languages of A*
such that

© the empty language @ is regular,
@ for every word u € A*, the language {u} is regular,

@ if Ly and Lo are regular languages, then L U Ly, Ly - Lo and
L7 are also regular.

Example

L={a"|k>1}={a}{a}* is a regular language.

N
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Transition monoid

Definition
Let o = (Q, A,-) be an automaton. We can extend the operation -
to a function from @ x A* to @) by the following rules: ¢- A = ¢ and
q-(wa) =(q-w)-awhere g € Q,w € A* and a € A. Each word
from A* thus defines a function from @ to ). The monoid
generated by all these functions (w varying over A*) is called the
transition monoid of the automaton 7. It is denoted M (7).
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Examples

a a,b
@O
b

go-a=¢q1 q1-a=¢qr @G2°-a=Qq2
G0-b=q¢ qg-b=q¢ @ b=q¢

Example
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Examples
a a,b
~@— L b
b

go-a=¢q1 q1-a=¢qr @G2°-a=Qq2
G0-b=q¢ qg-b=q¢ @ b=q¢

Example

So we have: f,(q0) = q1, fa(q1) = @1, fa(q2) = g2 and
fo(0) = @2, folar) = a2, fo(q2) = g
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Examples
a (l,b
~@— L b
b

go-a=¢q1 q1-a=¢qr @G2°-a=Qq2
G0-b=q¢ qg-b=q¢ @ b=q¢

Example

So we have: f,(q0) = q1, fa(q1) = q1, fa(q2) = q2 and
fo(@0) = a2, fo(ar) = a2, fo(q2) = g2. Moreover
faofa:fav faofb:fbofa:fbofb:fb~
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Examples
a a,b
~@— L b
b

go-a=¢q1 q1-a=¢qr @G2°-a=Qq2
G0-b=q¢ qg-b=q¢ @ b=q¢

Example

So we have: fu(qo0) = q1, fa(q1) = q1, fa(q2) = ¢2 and
fo(q0) = a2, fola1) = @2, fo(q2) = q2. Moreover

fao fo=fa, fao fo = foo fa = foo fo = fp. Therefore
M("Q{) = {1d7 faafb}'
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Recognizable languages

Definition
A language L is called recognizable if it is recognized by a finite

monoid, i.e. there exists a finite monoid M and a morphism
a: A* — M such that L = a~(P) for some P C M.
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Recognizable languages

Definition

A language L is called recognizable if it is recognized by a finite
monoid, i.e. there exists a finite monoid M and a morphism
a: A* — M such that L = a~(P) for some P C M.

Proposition

| A\

If L C A* is recognized by an automaton, it is recognized by the
transition monoid of this automaton. Moreover, L is recognized by
a finite automaton if and only if L is recognizable.

N
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Recognizable languages

Definition

A language L is called recognizable if it is recognized by a finite
monoid, i.e. there exists a finite monoid M and a morphism
a: A* — M such that L = a~(P) for some P C M.

| A\

Proposition
If L C A* is recognized by an automaton, it is recognized by the

transition monoid of this automaton. Moreover, L is recognized by
a finite automaton if and only if L is recognizable.

N

Theorem

A language L C A* is reqular iff it is recognizable.
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Examples

Regular < recognizable < recognized by a finite automaton.
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Regular < recognizable < recognized by a finite automaton.

The language {a’b’ | i > 0} is not regular.
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Examples

Regular < recognizable < recognized by a finite automaton.
The language {a’b’ | i > 0} is not regular.

Suppose there exists a finite automaton which recognizes the
language. This automaton has n states. Take a word a"b™. Then,
when reading a’s, there must be some loop. We can repeat this
path once again, i.e. the automaton would accept the word a+b"
for some ¢ > 1. However, this word does not belong to the
language. Ol
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Properties of regular languages

Let Ly and Lo be regular languages. Then also
Q@ L1 ULy,

are reqular languages.
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Properties of regular languages

Let Ly and Lo be regular languages. Then also
Q@ L1 ULy,
Q LiNLy,

are reqular languages.
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Properties of regular languages

Let Ly and Lo be regular languages. Then also
Q@ L1 ULy,
Q LiNLy,
Q L1\ Lo,

are reqular languages.
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Properties of regular languages

Let Ly and Lo be regular languages. Then also
Q@ LiULy,
Q LiNLy,
Q L1\ Lo,
QL

are reqular languages.
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Syntactic monoid

Let L C A* be a language. We define the syntactic congruence of L
(denoted ~,) on A* by u ~, v iff zuy € L < zvy € L for every
x,y € A*. The syntactic monoid of L is then defined as

M(L) = A*/~p.
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Syntactic monoid

Definition

Let L C A* be a language. We define the syntactic congruence of L
(denoted ~,) on A* by u ~, v iff zuy € L < zvy € L for every
x,y € A*. The syntactic monoid of L is then defined as

M(L) = A*/~p.

Example

|

Let L = {ak | k> 1}. Then there are three equivalence classes of
~r, namely [a]~, = {u € A" | u # A, |u|, = 0},
[Bloy = {u€ A" | [uly > 1} and [Al, = {\}.
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Syntactic monoid

Definition

Let L C A* be a language. We define the syntactic congruence of L
(denoted ~,) on A* by u ~, v iff zuy € L < zvy € L for every
x,y € A*. The syntactic monoid of L is then defined as

M(L) = A*/~p.

Example

Let L = {ak | k> 1}. Then there are three equivalence classes of
~r, namely [a]~, = {u € A" | u # A, |u|, = 0},

[b]~, ={u e A" | |u]p > 1} and [A]~, = {\}. The operation is
described by the following table:
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Syntactic monoid II

A monoid M recognizes a language L iff M (L) divides M.
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Syntactic monoid II

A monoid M recognizes a language L iff M (L) divides M.

Let L be a regular language. Then there exists a uniquely
determined (up to renaming of states) finite automaton recognizing
L that has a minimum number of states among the automata
recognizing L. It is called the minimal automaton of L.
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Syntactic monoid II

A monoid M recognizes a language L iff M (L) divides M.

Let L be a regular language. Then there exists a uniquely
determined (up to renaming of states) finite automaton recognizing
L that has a minimum number of states among the automata
recognizing L. It is called the minimal automaton of L.

a a,b
@O
b
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Syntactic monoid III

Let L be a reqular language. The transition monoid of the minimal
automaton of L is equal (isomorphic) to the syntactic monoid of L.

AUTOMATA, LANGUAGES AND MONOIDS I



Syntactic monoid III

Let L be a reqular language. The transition monoid of the minimal
automaton of L is equal (isomorphic) to the syntactic monoid of L.

Example

|
N

Take L = {a" | k > 1} and its minimal automaton <. We know
that M (<) = {id, fa, fo} and M (L) = {[X~,,[a]~,,[b]~,}. It is
obvious that ¢ defined by

(i) = Alnys 9(fa) = [l 9(fs) = B~ is & monoid
isomorphism.
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Varieties

A wariety of finite semigroups (or monoids) is a class of finite
semigroups (or monoids) closed under division and finite products.
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Varieties

A wariety of finite semigroups (or monoids) is a class of finite
semigroups (or monoids) closed under division and finite products.

Definition

| A

We say that a semigroup S satisfies the equation u = v, u,v € A"
if o(u) = ¢(v) for every morphism ¢ : AT — S.
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Varieties 11

We say that a variety V is defined (ultimately defined) by
equations u, = vy, n > 0 if S lies in V iff S satisfies the equations
Up = vy, for every n > 0 (for every n large enough).

AUTOMATA, LANGUAGES AND MONOIDS I



Varieties 11

Definition

We say that a variety V is defined (ultimately defined) by
equations u, = vy, n > 0 if S lies in V iff S satisfies the equations
Up = vy, for every n > 0 (for every n large enough).

Example

| \

The variety of finite commutative semigroups is defined by the
equation zy = yzx.

5\
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F -triviality

Definition

Let M be a monoid. We define on M an equivalence relation _# in
the following way: a_# b < MaM = MbM.
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F -triviality

Definition

Let M be a monoid. We define on M an equivalence relation _# in
the following way: a_# b < MaM = MbM.

a_Z b iff there exist u,v,x,y € M such that uav = b and xby = a.
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F -triviality

Definition

Let M be a monoid. We define on M an equivalence relation _# in
the following way: a_# b < MaM = MbM.

a_Z b iff there exist u,v,x,y € M such that uav = b and xby = a.
We say that M is #Z-trivial if a_#b=a = b.
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F -triviality

Definition

Let M be a monoid. We define on M an equivalence relation _# in
the following way: a_# b < MaM = MbM.

a_Z b iff there exist u,v,x,y € M such that uav = b and xby = a.
We say that M is #Z-trivial if a_#b=a = b.

Theorem

The variety J of finite Z -trivial monoids is ultimately defined by
the equations (zy)"x = (zy)" = y(zy)".
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Thank you for your attention!

AUTOMATA, LANGUAGES AND MONOIDS I



