
Secure multiparty computation
Second part

Dáša Krasnayová

Dáša Krasnayová Secure multiparty computation

Oblivious transfer

I It is a functionality for two parties - sender and receiver.

I Sender’s input is a pair of strings (z0,z1) and there is no
output.

I Receiver’s input is a bit b and output is zb.

How to compute this securely? (Sender does not learn anything
and receiver learns zb only.)

Dáša Krasnayová Secure multiparty computation

Oblivious transfer

I It is a functionality for two parties - sender and receiver.

I Sender’s input is a pair of strings (z0,z1) and there is no
output.

I Receiver’s input is a bit b and output is zb.

How to compute this securely? (Sender does not learn anything
and receiver learns zb only.)

Dáša Krasnayová Secure multiparty computation

Trapdoor permutation and enhanced trapdoor permutation

I A trapdoor permutation (TDP) is a 4-tuple of algorithms
(I ,D,F ,F−1), where

I I samples a function f and a trapdoor t in a family,
I D(f) uniformly samples a value in a domain of f ,
I F (f ,x) computes f (x),
I F−1(f ,y ,t) computes f −1(y)

and it is hard to invert f given y but not t.

I An enhanced trapdoor permutation is a TDP for which it is
hard to compute f −1(y) even given the random coins used to
sample y (using D).

Dáša Krasnayová Secure multiparty computation

TDP vs. ETDP example

I RSA trapdoor function
I I chooses random ((e,n),d), where n = p · q for some p,q

prime and e · d = 1(mod ϕ(n)),
I D chooses random value in Zn,
I F (f ,x) = xe mod n,
I F−1(f ,y ,t) = yd mod n.

I Rabin trapdoor function
I I chooses random (n,(p,q)), such that n = p · q,

p = q = 3 (mod 4), p,q prime,
I D chooses random value in Zn and squares it,
I F (f ,x) = x2 mod n,
I F−1(f ,y ,t) as in Rabin cryptosystem.

Dáša Krasnayová Secure multiparty computation

Hard-core predicate

I A function B(x) is a hard-core predicate if B(x) is a bit and
probability of guessing B(x) given y = f (x) is only negligibly
larger than one half. (Given y = f (x), the bit B(x) is
pseudorandom.)

I Example: Let r be a string of the same length as f (x). Then
function

b(x ,r) =
⊕
j

rjxj

is a hard-core predicate.

Dáša Krasnayová Secure multiparty computation

Construction of OT protocol for semi-honest adversary

Suppose that (I ,D,F ,F−1) is an enhanced TDP and B is a
hard-core predicate.
Sender’s input is a pair of bits (z0,z1),
Receiver’s input is a bit b.

I Sender chooses (f ,t) using sampling algorithm I and sends f
to the receiver.

I Receiver chooses xb and computes yb = f (xb). Receiver
chooses random y1−b using D and sends (y0,y1) to the sender.

I Sender inverts (y0,y1) getting (x0,x1). Sender computes
ai = zi ⊕ B(xi) for i = 0,1 and sends (a0,a1) to the receiver.

I Receiver computes zb = ab ⊕ B(xb).

Dáša Krasnayová Secure multiparty computation

Construction is computationally secure

We will show that there is a simulator that generates a transcript
indistinguishable from a transcript of a real protocol execution.

I Sender corrupted: Simulator is given sender’s input (z0,z1)
and there is no output. Simulator chooses (f ,t) using I , y0,y1
using D(f) and computes a0,a1. The transcript is exactly like
in a real protocol execution because choosing xb and
computing yb = f (xb) is identical to choosing yb using D(f).

I Receiver corrupted: Simulator is given receiver’s input b and
the output zb. Simulator chooses (f ,t) using I , xb,y1−b using
D(f) and computes yb = f (xb), ab = zb ⊕ B(xb). Simulator
finally chooses a1−b at random. Since B is a hard-core
predicate and f is enhanced, B(x1−b) is indistinguishable from
random. Therefore this simulator output is indistinguishable
from a real execution.

Dáša Krasnayová Secure multiparty computation

Malicious adversary – Ideal / Real paradigm

I In ideal world a trusted authority computes output.

I All parties just send their inputs to the TA through secure
channels.

Dáša Krasnayová Secure multiparty computation

Malicious adversary – Security definition

Protocol π securely computes a function f , if for every
non-uniform polynomial-time real-model adversary A, there exists
a non-uniform polynomial-time ideal-model simulator S, such that
for all input vectors and auxiliary inputs the joint outputs of A and
the honest parties in real execution of π is indistinguishable from
the joint outputs of S and the honest parties in an ideal execution
where the trusted party computes the f .

Dáša Krasnayová Secure multiparty computation

Malicious adversary – Security definition

The following properties hold

I privacy - from adversary’s output

I correctness - TA computes the functionality

I independence of inputs - ideal execution

I fairness and guaranteed output delivery - ideal execution

Relaxing the definition

I Sometimes this definition is too strong
I For example fairness cannot be guaranteed without an honest

majority
I We sometimes change the instructions of the trusted party

Dáša Krasnayová Secure multiparty computation

Secure computation of AND function

For parties A and B with input bits a and b we want to compute
a · b securely.

I Let A be the sender with input (0,a) and B be the receiver
with input b.

I Now we execute the OT protocol and finally B sends output
to A.

I Another option is to execute the protocol twice, exchanged
roles in the second execution.

Claim: If OT protocol is secure, this computation is secure as well.

I Simulation is easy.

Dáša Krasnayová Secure multiparty computation

Feasibility of constructing OT

There is no OT protocol providing unconditional security for both
parties.

I We will prove this by proving there is no unconditionally
secure protocol computing AND function.

I I there was an OT protocol providing unconditional security
for both parties, we could construct AND protocol with
unconditional security.

Dáša Krasnayová Secure multiparty computation

Feasibility of constructing OT (cont.)

Suppose there is an AND protocol with unconditional security.

I Let T be a transcript of a real execution.

I Parties use random inputs RA and RB , given these inputs
protocol is a deterministic function.

I Let A (sender) be the corrupted party and suppose that in a
certain execution A has input 0.

I If B’s input is 0, B must not learn A’s input. Hence there is an
R ′ such that if A has input a = 1 and R ′, the transcript of the
execution of the protocol would be T .

I If B’s input is 1, there is no R ′ such that if A has input a = 1
and R ′, the transcript of the execution of the protocol would
be T due to correctness.

Dáša Krasnayová Secure multiparty computation

Feasibility of constructing OT (cont.)

I A can therefore compute b by determining whether there is an
R ′ such that the transcript of the execution of the protocol
would be T if A’s input was a = 1 and R ′.

Dáša Krasnayová Secure multiparty computation

Sequential modular composition

I In a protocol, secure protocols are run sequentially as
subroutines, with arbitrary messages in between them.

I Formalization of the security - Hybrid model
I A trusted party computes a sub-functionality

Dáša Krasnayová Secure multiparty computation

Sequential modular composition

I If subprotocols ρi securely computes functionalities fi and a
protocol π securely computes functionality g in a hybrid
model where a trusted party is used to compute every fi , than
a real protocol πρ that uses real calls to each ρi instead of a
trusted party, securely computes g .

Dáša Krasnayová Secure multiparty computation

