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Recapitulation

What do we have so far:

Each wallpaper group G is an extension of Z2 by a point
group G0. That is, G has a normal subgroup T isomorphic to
Z2, such that G/T ' G0.
The point group G0 is finite and uniquely determined by G .
Moreover, G0 is always one of the following groups:

C1,C2,C3,C4,C6,D1,D2,D3,D4,D6.

With any extension of T by G0 comes naturally an action ϕ of
G0 on T defined as follows: ϕg (t) = xg tx−1

g , where xg is an
element of G which is sent to g in the projection G → G0.
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Recapitulation

Any extension
0→ T → G → G0 → 1

is up to equivalence uniquely determined by the following data:

1 Choice of the point group G0 ∈ {Ci ,Di | i = 1, 2, 3, 4, 6}.
2 Choice of the action ϕ of G0 on T .
3 Choice of an element of the second cohomology group

H2
ϕ(G0,T ).

E.g., the zero element of H2
ϕ(G0,T ) corresponds to the trivial

extension of T by G0 with action ϕ, that is, the semidirect product
T oϕ G0.
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Recapitulation

There are 13 distinct (non-conjugate) actions of point groups
on Z2.

That is, 13 inequivalent representations G0 → GL(Z 2), letting
G0 run over all possible point groups.
There is exactly one representation of each cyclip group Ci ,
and of dihedral groups D4 and D6.
There two representations of each of D1,D2,D3.
Let us distinguish the representations as
D1,p,D1,c ,D2,p,D2,c ,D3,l ,D3,s .
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Recapitulation
Together we have 18 equivalence classes of extensions:

G0 H2(G0,T ) No. of extensions
C1 0 1
C2 0 1
C3 0 1
C4 0 1
C6 0 1

D1,p Z2 2
D1,c 0 1
D2,p Z2 × Z2 4
D2,c 0 1
D3,l 0 1
D3,s 0 1
D4 Z2 2
D6 0 1

How do the extensions look? Are they all non-isomorphic?
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Lemma
Two extensions with different point groups and/or actions are
non-isomorphic.

Proof.
-

It follows that we have at least 13 non-isomorphic wallpaper
groups, namely the semidirect products T oϕ G0 for each point
group G0 and each action ϕ : G0 → GL(Z2).
Let us see what the corresponding patterns look like.
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p1 - Just translations

G0 C1
G Z2 o C1 = Z2
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pm - 1 reflection

G0 D1
G Z2 o D1,p
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cm - 1 reflection, 1 glide reflection

G0 D1
G Z2 o D1,c
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p2 - 180◦rotation

G0 C2
G Z2 o C2
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pmm - Two reflections and a 180◦rotation only in the axes
intersection

G0 D2
G Z2 o D2,p
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cmm - Two reflections and a 180◦rotation NOT in the axes
intersection

G0 D2
G Z2 o D2,c
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p3 - 120◦rotation

G0 C3
G Z2 o C3
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p3m1 - 120◦rotation around the intersection of 3 reflection
axes

G0 D3
G Z2 o D3,l
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p31m - 120◦rotation around a point, which is NOT an
intersection of axes

G0 D3
G Z2 o D3,s
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p4 - 90◦rotation

G0 C4
G Z2 o C4
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p4m - 90◦rotation and 4 reflection axes

G0 D4
G Z2 o D4

Michal Hrbek Group cohomology and wallpaper groups III



p6 - 60◦rotation

G0 C6
G Z2 o C6
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p6m - 60◦rotation and 6 reflection axes

G0 D6
G Z2 o D6
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Non-split extensions

Let our point group be D1,p.

I.e., G0 = D1 = C2 = {1, g} with
action given by the matrix (

1 0
0 −1

)
.

As H2(D1,p,T ) = Z2, we know that there is one non-split
extension. What is it?
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Fix basis {t1, t2} such that g(t1) = t1 and g(t2) = −t2.

Recall: As G is a subgroup of Iso(R2) = R2 o Aut(R2), each
element of G can be written as (g , tg ), where g ∈ G0, and
tg ∈ R2.
tg ∈ R2 be such that (g , tg ) ∈ G .
Compute the 2-cocycle c(g , g):

c(g , g) = (g , tg )(g , tg )(1, t1)−1 = (g2, tg + g(tg ))(1, t1)−1 =

= tg + g(tg )− t1.

Let tg = αt1 + βt2. As c(g , g), t1 ∈ T , we have that
tg + g(tg ) ∈ T .
Hence, (2t1, 0) ∈ T , and thus α is modulo T either 0 or 1

2 .
Value of β is irrelevant as t1 = 0 results in c(g , g) being a
2-boundary.
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Choice of α = 0 results in the split extension, that is, the
semidirect product we know.

Choice α = 1
2 :

G is then generated by t1, t2 and (g , 1
2 t1). We claim that G is not

isomorphic to T n D1.
T n D1 contains D1 as a subgroup.
For any t ∈ T , (g , 1

2 t1 + t)2 = (1, t1 + t + g(t)) is not zero.
Therefore, G does not contain any non-trivial element of finite
order.
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pg - 1 glide reflection

G0 D1
G Span(t1, t2, (g , 1

2 t1)) ⊆ Iso(R2)
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Further non-split extensions

Point group G0 = D4 with the unique (standard) action.

D4 is generated by rotation r and reflection f .
Basis t1, t2 of T such that r(t1) = t2, r(t2) = −t1 and
f (t1) = −t1, f (t2) = −t2.
Fact: H2(Ci ,T ) = 0. Therefore, (r , 0) ∈ G .
Let tf ∈ R2 be such that (f , tf ) ∈ G .
Compute (r , 0)(f , tf ) = (rf , r(tf ))
Compute the 2-cocycle: c(rf , r) = (rf , r(tf ))(r , 0)(f , tf ), as
rfr = f .
This equals to:
(rfr , r(tf ))(f , tf ) = (1, f (tf ) + r(tf )) = r(tf )− tf , an element
of T .
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Let tf = αt1 + βt2. We have
r(tf )− tf = (−α− β)t1 + (α− β)t2.

Modulo T , this yields two options: α = β = 0 and
α = β = 1

2 .
First option produces the semidirect product T o D4, the
second is a group generated by t1, t2, r , (f , 1

2(t1 + t2).
These two are non-isomorphic, as the non-split extension does
not contain a copy of D4.
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p4g - 90◦rotation and 2 reflection axes and 2 glide
reflections

G0 D4
G Span(t1, t2, r , (f , 1

2(t1 + t2)) ⊆ Iso(R2)
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Almost done

Point group D2,p, i.e. G0 = D2 with action given by matrices:(
−1 0
0 −1

)
,

(
1 0
0 −1

)
.

The first matrix corresponds to 180◦rotation r , the second to
reflection f .
As in the last case, we get
c(rf , f ) = (rf , r(tf ))(r , 0)(f , tf ) = r(tf )− tf ∈ T .
Let t1, t2 is a basis of T satisfying r(ti ) = −ti and
f (t1) = t1, f (t2) = −t2, and tf = αt1 + βt2.
We obtain r(tf )− tf = −2tf ∈ T . Modulo T , we have 4
options: tf = 0, tf = 1

2 t1, tf = 1
2 t2, tf = 1

2(t1 + t2).
Of the 4 obtained extensions, the two middle ones are
obviously isomorphic.
The three remaining extensions are pairwise non-isomorphic.
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pmg - 180◦rotation, one reflection, one glide reflection

G0 D2
G Span(t1, t2, r , (f , 1

2 t1)) ⊆ Iso(R2)
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pgg - 180◦rotation, no reflections, two glide reflections

G0 D2
G Span(t1, t2, r , (f , 1

2(t1 + t2)) ⊆ Iso(R2)
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Result: 17 wallpaper patterns!
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Thank you for bearing with me! :-)
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