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Complex numbers

I C = {z |z = x + iy , x , y ∈ R, i2 = −1}

I Euclidean norm |z | = |x + iy | =
√

x2 + y 2

I |z1z2| = |z1||z2|
I multiplying z by z0 multiply the norm |z | by

√
|z0|

I when |z0| = 1 (z0 is a complex unit) the multiplication by z0 is
isometry
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Rotation

I congruence which can be obtained by a continuous motion
from the identity

I standard formula

x ′ = x cos θ − y sin θ

y ′ = x sin θ + y cos θ

I follows from multiplication of complex numbers

(cos θ + i sin θ)(x + iy) = x cos θ− y sin θ + i(x sin θ + y cos θ)
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Reflection

I standard formula

x ′ = x

y ′ = −y

I corresponds to conjugation x + iy = x − iy

Theorem
If u is a complex unit then the map z → zu is a rotation, while
z → zu is a reflection.
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GO2 - General orthogonal group
SO2 - Special orthogonal group

GO2

I the set of 2× 2 matrices A satisfying AAT = ATA = I

I the set of all isometries of Euclidean plane fixing the origin

I the determinant of every matrix from GO2 is ±1

SO2

I the set of 2× 2 matrices A satisfying AAT = ATA = I with
determinant 1

I the set of all isometries of Euclidean plane fixing the origin
preserving handness
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GO2

Theorem
Every element from GO2 is a rotation or the reflection.

Proof.

Let

(
a11 a12

a21 a22

)
be the orthogonal matrix.

First orthogonality condition (a2
11 + a2

12 = 1) tells that a11 = cos θ
and a12 = sin θ for some θ.
Second orthogonality condition (a11a21 + a12a22 = 0) is equivalent
to a21 = −a22 tan θ and
from the third condition (a2

21 + a2
22 = 1) follows that a22 = ± cos θ

and a21 = ∓ sin θ.
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GO2, SO2

rotation reflection(
cos θ sin θ
− sin θ cos θ

) (
cos θ sin θ
sin θ − cos θ

)
determinant +1 determinant −1

SO2 GO2\SO2

z → zu z → zu
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History

I 1748 Euler 4-squares identity

I 1840 Rodrigues parametrization of general rotation by four
parameters

I 1835 Hamilton construction of quaternions as an algebra
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William Rowan Hamilton 1805 - 1865

I 1835 - representation of complex numbers as pair of
real numbers, relation between C and 2D geometry

I tried to invent bigger algebra with the similar role in
3D geometry

“Every morning on my coming down to breakfast, your little brother

William Edwin, and yourself, used to ask me: ’Well, Papa, can you

multiply triplets?’ Whereto I was always obliged to reply, with a sad

shake of the head: ’No, I can only add and subtract them.’“

I 16 October 1843 invention of quaternions

I carved equation into the stone of the Brougham Bridge

I rest of life with quaternions and their application to geometry
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Quaternions - definition

H = {q|q = a+bi+cj+dk, a, b, c , d ∈ R, i2 = j2 = k2 = ijk = −1}

I notation: H 3 q = a + bi + cj + dk = [a, v], where s ∈ R,
v = (b, c , d) ∈ R3

I multiplication:
[a, v][a′, v′] = qq′ = [aa′ − v · v′, v × v′ + av′ + a′v]

I the cross product is not commutative, so the multiplication of
quaternions is not

I the multiplication of quaternions is
I associative
I distributive with respect to addition

I multiplication by a scalar is commutative

i

j k
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Norm of quaternions

I conjugation of [a, v] is [a,−v]

I conjugation has some natural properties
I q = q
I pq = qp
I p + q = p + q
I qq = qq

I norm of quaternion ‖q‖ =
√

qq
I ‖qq′‖ = ‖q‖‖q′‖
I q−1 =

q

‖q‖2
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The map v → q1vq
−1
2

I we already know ‖q1vq−1
2 ‖ = ‖q1‖‖v‖‖q−1

2 ‖

I so the map v → q1vq−1
2 is a similarity of 4D space, which

multiply every length by
√
‖q1‖‖q2‖

I in the case ‖q1‖‖q2‖ = 1 it is an isometry

I if v = 1 is fixed, also the space (perpendicular to v) of
elements bi + cj + dk is

I equivalently v = 1 is fixed iff q1q2 = 1, i. e. q1 = q−1
2
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The properties of the map v → qvq−1

I the map v → qvq−1 is isometry of 3D space

I for q and rq (r ∈ R) is the map same

I we can restrict to unit quaternions, which satisfies ‖q‖ = 1

I for q unit quaternion the map preserves the norm of the
complex part

I the map commute with multiplication of the complex part by
a scalar
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Rotation in 3D

We would like to find a formula for rotation of vector r ∈ R3 about
vector n throughout the angle θ.

I r = r1 + r2

I r1 projection to n, r1 = (r · n)n
I r2 perpendicular to n, r2 = r − r1

I v perpendicular to n, r2, v = n× r2 = n× r

I (r′)2 = r2 cos θ + v sin θ

I (r′)1 = r1

I r′ = (1− cos θ)(r · n)n + r cos θ + (n× r) sin θ

v r2
(r′)2

θ

r1 = (r′)1

n

r′r
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I (r′)2 = r2 cos θ + v sin θ

I (r′)1 = r1

I r′ = (1− cos θ)(r · n)n + r cos θ + (n× r) sin θ

v r2
(r′)2

θ

r1 = (r′)1

n

r′r
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Rotation in 3D

Now, we find a formula for the map v → qvq−1.

I every unit quaternion is in the form q = [cos θ,n sin θ], where
|n| = 1

I we will use v1 × (v2 × v3) = (v1 · v3)v2 − (v1 · v2)v3

I to expand
[s, v][0, r][s, v]−1 = [0, (s2 − v · v + 2(v · r)v + 2s(v × r)]

I substituting s = cos θ and v = n sin θ

I we have [s, v][0, r][s, v]−1 =
[0, (1− cos 2θ)(r · n)n + r cos 2θ + (n× r) sin 2θ]
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Quaternions and 3D geometry

Theorem (Euler)

The product of two rotation is another rotation.

Proof.
q2(q1pq−1

1 )q−1
2 = (q2q1)p(q2q1)−1

Theorem
The map that take q to map v → qvq−1 is a 2-to-1
homomorphism from the group of unit quaternions to SO3.

Proof.
It is 2-to-1 because q and −q yields the same rotation.

I unit quaternions is a double cover of SO3
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Higher dimensions

I John Thomas Graves:”If with your alchemy you can make
three pounds of gold, why should you stop there?”

I 26 December 1843 octaves

I January 1844 general theory of 2m-ions, not successful

I In the correspondence of Hamilton and Graves first time the
notion of associativity

I Arthur Cayley : relation between the quaternions and hyper
elliptic functions

I March 1845 paper, one part about octonions - Cayley numbers
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Survey

Were quaternions

I discovered?

I invented?

Thank you for your attention!
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