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The world of ultrafilters

Why did they introduce filters and ultrafilters?

@ They were useful to generalize the notion of convergence in a
topological space.

Classic convergence «~ Filter convergence
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The world of ultrafilters

Why did they introduce filters and ultrafilters?

@ They were useful to generalize the notion of convergence in a
topological space.

Classic convergence «~ Filter convergence

Where are they used?

@ Topology (we will see how compactness is linked to the
convergence via a filter)

@ Model theory (to build ultraproducts, that help us in the
construction of non-standard models)

@ Geometric group theory (to build asymptotic cones)
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The world of ultrafilters

Why did they introduce filters and ultrafilters?
@ They were useful to generalize the notion of convergence in a
topological space.

Classic convergence «~ Filter convergence

Where are they used?

@ Topology (we will see how compactness is linked to the
convergence via a filter)

@ Model theory (to build ultraproducts, that help us in the
construction of non-standard models)

@ Geometric group theory (to build asymptotic cones)

@ Bonus: In Gddel’s ontological proof of God’s existence, the
positive properties that a God should have, form an ultrafilter!
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Filters and Ultrafilters

Let I be asetand F C P(I).

1.IeF
2. X e FANYeF — XNnYeF Fisafilter
3.XeFANXCY = YeF
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Filters and Ultrafilters

Let I be asetand F C P(I).

1.ITeF

2. X e FANYeF — XNnYeF Fisafilter
3.XeFANXCY = YeF

We say that the filter F' is an ultrafilter if we also have:

4.XCI = XeFVI\XEF
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Filters and Ultrafilters

Let I be asetand F C P(I).

1.IeF
2. X e FANYeF — XNnYeF Fisafilter
3.XeFANXCY = YeF

We say that the filter F' is an ultrafilter if we also have:
4. XCI = X€FVI\XEF

(...and F' becomes suddenly D, because that’s the common letter for
ultrafilters!)
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Filters and Ultrafilters

Let I be asetand F C P(I).

1.IeF
2. X e FANYeF — XNnYeF Fisafilter
3.XeFANXCY = YeF

We say that the filter F' is an ultrafilter if we also have:
4. XCI = XeFVI\XE€EF

(...and F' becomes suddenly D, because that’s the common letter for
ultrafilters!)

An element of a filter is, in a certain sense, a "big set".
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Filters and Ultrafilters

Let I be a set and let

F:={X CI:I\X isafinite set}

F is called "the cofinite filter" (or "Fréchet filter") on the set I.
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Filters and Ultrafilters

Let I be a set and let
F:={X CI:I\X isafinite set}

F is called "the cofinite filter" (or "Fréchet filter") on the set I.

Let I be a set, ¢ € I and let

DGE)={XCIl:ie X}

D(3) is called "the principal ultrafilter generated by " on the set I.
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Filters and Ultrafilters

Notation: If a filter contains (), then obviously the filter is P(7) and it is
called improper filter. If the filter doesn’t contain (), then it is said to be
proper.
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Filters and Ultrafilters

Notation: If a filter contains (), then obviously the filter is P(7) and it is
called improper filter. If the filter doesn’t contain (), then it is said to be

proper.

Some facts:
@ Every proper filter on I contains the cofinite filter on 1.
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Filters and Ultrafilters

Notation: If a filter contains (), then obviously the filter is P(7) and it is
called improper filter. If the filter doesn’t contain (), then it is said to be

proper.
Some facts:
@ Every proper filter on I contains the cofinite filter on 1.
@ Every proper filter is contained in an ultrafilter.
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Filters and Ultrafilters

Notation: If a filter contains (), then obviously the filter is P(7) and it is
called improper filter. If the filter doesn’t contain (), then it is said to be

proper.
Some facts:
@ Every proper filter on I contains the cofinite filter on 1.
@ Every proper filter is contained in an ultrafilter.

@ Let D be an ultrafilterona set I and X4,...,X,, C I.
If X7 U...UX, is abig set for D, then one of the X; is big for D.
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Just some topology...

What are open sets?

In R? In an abstract space X

R
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Just some topology...

Definition

If X isasetand 7 C P(X), then T is a topology on X if
00, XeT;
@ Ay,..., ApeT = L AET,
@ {Ai}ier CT = Ujcs Ai €T.
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Just some topology...

Definition

If X isasetand 7 C P(X), then T is a topology on X if
00, XeT;
@ Ay,..., ApeT = L AET,
@ {Ai}ier CT = Ujcs Ai €T.

Some notations and definitions:
@ The element of T are called open sets.
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Just some topology...

Definition

If X isasetand 7 C P(X), then T is a topology on X if
00, XeT;
@ Ay,..., ApeT = L AET,
@ {Ai}ier CT = Ujcs Ai €T.

Some notations and definitions:
@ The element of T are called open sets.

@ An open cover of X is a family {U;},c; of open sets such that
X C Uie[ Us.
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Just some topology...

Definition

If X isasetand 7 C P(X), then T is a topology on X if
00, XeT;
@ Ay,..., ApeT = L AET,
@ {Ai}ier CT = Ujcs Ai €T.

Some notations and definitions:
@ The element of T are called open sets.
@ An open cover of X is a family {U;},c; of open sets such that
X C Uie[ Ui.
@ A space X is compact if every open cover of X has a finite
subcover (e.g. the set [0, 1] C R is compact).
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Let’s take C[0,1] := {f : [0,1] — R | f is a continuous function}.
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Let’s take C[0,1] := {f : [0,1] — R | f is a continuous function}.

© |[flloo = supgeo,) £ ()]
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Let’s take C[0,1] := {f : [0,1] — R | f is a continuous function}.

@ [|flloo := supgepo |f(2)]
® d(f,9) == I|f — 9l
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Let’s take C[0,1] := {f : [0,1] — R | f is a continuous function}.

® | flloo == sup,epoq If ()]
® d(f,9) == I|f — 9l
@ B.(f):={g€C[0,1] |d(f,g) <r}
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Example

Let’s take C[0,1] := {f : [0,1] — R | f is a continuous function}.
® || flloo := supsepo, |.f(2)]
® d(f,9) == IIf — gl
® B.(f) :={g € C[0,1] | d(f,9) <7}

Remark: spaces of functions are really interesting when you want to
study compactness!
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What is the cartesian product?
@ The product of two sets X and Y is just the set of the ordered
pairs (z,y) such that z € X and y € Y, which we denote with
X xY.
@ The cartesian product of an arbitrary family of sets { X };c is the
set [ [, X, containing all the sequences (z;);e, such that
T € Xj.
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What is the cartesian product?

@ The product of two sets X and Y is just the set of the ordered
pairs (z,y) such that z € X and y € Y, which we denote with
X xY.
@ The cartesian product of an arbitrary family of sets { X };c is the
set [ [, X, containing all the sequences (z;);e, such that
T € Xj.
Can we give a topology to this product?
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What is the cartesian product?

@ The product of two sets X and Y is just the set of the ordered
pairs (z,y) such that z € X and y € Y, which we denote with
X xY.

@ The cartesian product of an arbitrary family of sets { X };c is the
set [ [, X, containing all the sequences (z;);e, such that
T € Xj.
Can we give a topology to this product?
@ Obviously, otherwise this talk had to finish here! I'm sorry!
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What is the cartesian product?

@ The product of two sets X and Y is just the set of the ordered
pairs (z,y) such that z € X and y € Y, which we denote with
X xY.

@ The cartesian product of an arbitrary family of sets { X };c is the
set [ [, X, containing all the sequences (z;);e, such that
T € Xj.
Can we give a topology to this product?
@ Obviously, otherwise this talk had to finish here! I'm sorry!
@ We can consider the following open sets
[Tjes4; st Ajis anopensetof X; VjeJ
and A; = X; for almost every j € J.
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D-convergence

By sequence of elements of X we mean (z;);cr S.t. z; € X

@ If I =N, that’s a classical sequence.

Definition

Let X be a TS, D be afilteron a set I, (z;);c; € X, x € X. We say
that (z;);er D-converges to z if there is a big number of elements of
the sequence around z (i.e. for every U open set containing z, the set

{iel:z; €U} eD).
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D-convergence

@ If I =N and D is the cofinite filter, then a sequence D-converges
to some z € X iff it converges to z in the classical way.
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D-convergence

@ If I =N and D is the cofinite filter, then a sequence D-converges
to some z € X iff it converges to z in the classical way.

Definition

Let X be a TS, D an ultrafilter on I. X is D-compact if every sequence
(x;)icr € X is D-convergent to some element of X.
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D-convergence

@ If I =N and D is the cofinite filter, then a sequence D-converges
to some z € X iff it converges to z in the classical way.

Definition

Let X be a TS, D an ultrafilter on I. X is D-compact if every sequence
(x;)icr € X is D-convergent to some element of X.

We will use this notion to characterize the classical compactness.
Using this characterization, we will prove the following theorem:

Theorem (Tychonoff)
The product of compact spaces is still compact.
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D-compactness

We will use the following two theorems:

Let X bea TS.
X Is compact iff X is D-compact for every ultrafilter D.
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D-compactness

We will use the following two theorems:

Let X bea TS.
X Is compact iff X is D-compact for every ultrafilter D.

Let D be an ultrafilter.
The product of D-compact spaces is still D-compact.

From this two results we have Tychonoff’s theorem as a simple
corollary!
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Theorem (1)

Let X beaTS.
X is compact iff X is D-compact for every ultrafilter D.

Sketch of the proof.

@ By contradiction, there is a sequence (z;);c; which doesn’t
D-converge in X (i.e. for every element x of X we find an open
set U, containing = such that there is a small number of elements
of the sequence in it).
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Theorem (1)

Let X beaTS.
X is compact iff X is D-compact for every ultrafilter D.

Sketch of the proof.

@ By contradiction, there is a sequence (z;);c; which doesn’t
D-converge in X (i.e. for every element x of X we find an open
set U, containing = such that there is a small number of elements
of the sequence in it).

@ Consider the open cover {U, }.cx and extract the finite subcover
Uy, ..., Us, since X is compact.
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Theorem (1)

Sketch of the proof.

All the elements of the sequence lie in the union of these n sets,
because they cover X. Thus, the indices of the elements which are in
this union form a big set (it's exactly I).

Hence, one of these sets has to be a big set! Contradiction! Ol

Diego Battistelli Ultrafilters and Compactness of Topological Spaces April 2019 14/20

v




Theorem (2)

Theorem (2)

Let D be an ultrafilter on a set I.
The product of D-compact spaces is still D-compact.

Sketch of the proof.

| A\

@ Let {X;},cs be afamily of D-compact spaces. A sequence in the

product [ [, ; X is (z;)ier s.t. every z; is a sequence (z;(j))jeJ-
I

] xl()

i) eX

@ Fix j € J. Thus, (z;(j))icr D-converges in X; to some z(j) since
every X; is D-compact.

Diego Battistelli
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Theorem (2)

Sketch of the proof.

@ Consider the sequence z = (Z(j)) e, i.€.

PG x
Fleex@)e o =xG)

Let’s show that (x;);c; D-converges to z.

@ Open set containing z in [[,c; X; is [];c; A; (4; are open sets
and almost all are X).

o 7 €][;c; A = i(j) € A;. So A; is an open set containing this
element in X;, which is D-compact! Hence there is a big number
of elements of (z;(j))icr in A; for every j.
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Theorem (2)

Sketch of the proof.

@ For almost every j € J we have A; = X, hence this set of indices
is exactly I (which is big).

@ For the other j € J, which are in finite number, the set of indices is
big, so the intersection is still big.

@ Then, the intersection of all the indices is big, i.e.

(i€l ai(j) € A} ={i €T:zi(j) € A;Vj € J}
JjeJ
={iel:z e ][] A;}is big
jed
Which means that a big number of elements of our initial
sequence is around .

O

v
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Back to Tychonoff

Proof (Tychonoff).

? .
{X;}jes are compact spaces = [[;c; X, is a compact space
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Back to Tychonoff

Proof (Tychonoff).

? .
{X;}jes are compact spaces = [[;c; X, is a compact space

(1) (1)1
{X;};es are D-compact L [1;c; X, is a D-compact
spaces for every UF D space for every UF D

O]

v
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Applications

Some applications of Tychonoff’s theorem:

@ In fuctional analysis: to prove many results such as
Banach-Alaoglu’s theorem or Ascoli-Arzela’s theorem.
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Applications

Some applications of Tychonoff’s theorem:

@ In fuctional analysis: to prove many results such as
Banach-Alaoglu’s theorem or Ascoli-Arzela’s theorem.

@ Inlogic: to prove the compactness of the first-order logic.
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Applications

Some applications of Tychonoff’s theorem:

@ In fuctional analysis: to prove many results such as
Banach-Alaoglu’s theorem or Ascoli-Arzela’s theorem.

@ Inlogic: to prove the compactness of the first-order logic.

@ Bonus: Tychonoff’s theorem is equivalent to the Axiom of Choice!
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Thanks for your attention!
Grazie!
Dékuiji!
Merci!
Danke!
K6sz6noém!
Hvala!

...and so on...
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