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Boolean function

Definition (Boolean function)

A boolean function is a function from Fn
2 to F2 for some non-negative

integer n.
A function from Fn

2 to Fm
2 , where n ≥ m ≥ 1, n,m non-negative integers,

is called a vectorial boolean function.

Notice that Fn
2 and F2n are isomorphic as a vector spaces over F2.
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Dáša Krasnayová Almost Perfect Nonlinear Permutations Spring School, April 2017 4 / 28



Almost Perfect Nonlinear function I

Definition (Almost Perfect Nonlinear function)

A function F is called Almost Perfect Nonlinear (APN) if

F (x) + F (x + a) = b

has two or zero solutions x ∈ F for every a, b ∈ F, a 6= 0.
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Almost Prefect Nonlinear function II

Definition (Derivatives)

Derivatives of a function F are functions DaF (x) : F → F, a ∈ F∗,

DaF (x) = F (x) + F (x + a) + F (a) + F (0).

Definition (Equivalent definition of an APN function)

F is called an APN function if and only if
|DaF | = |{DaF (x) : x ∈ F}| = |F|

2 for every a ∈ F∗.
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Almost Prefect Nonlinear function - examples

Gold functions: x2k+1, where gcd(n, k) = 1,

Kasami functions: x2i + x i + 1, where gcd(n, k) = 1,

Inverse function: x2k + 1, where n = 2k + 1,

. . .

Unfortunately, none of these functions is a permutation in fields with n
even.

Dáša Krasnayová Almost Perfect Nonlinear Permutations Spring School, April 2017 7 / 28



Almost Prefect Nonlinear function - examples

Gold functions: x2k+1, where gcd(n, k) = 1,

Kasami functions: x2i + x i + 1, where gcd(n, k) = 1,

Inverse function: x2k + 1, where n = 2k + 1,

. . .

Unfortunately, none of these functions is a permutation in fields with n
even.
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APN permutations

Big APN problem

Does there exist an APN permutation on Fn
2 if n is even?

The first and the only example of an APN permutation in even dimension
so far was presented by Dillon et al. in 2009.

Kim function

The function is known as the Kim function or κ function and is defined as

κ(x) = x3 + x10 + ux24,

where u is a primitive element of F26 whose minimal polynomial over F2 is
x6 + x4 + x3 + x + 1.
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Dáša Krasnayová Almost Perfect Nonlinear Permutations Spring School, April 2017 8 / 28



APN permutations

Big APN problem

Does there exist an APN permutation on Fn
2 if n is even?

The first and the only example of an APN permutation in even dimension
so far was presented by Dillon et al. in 2009.

Kim function

The function is known as the Kim function or κ function and is defined as

κ(x) = x3 + x10 + ux24,

where u is a primitive element of F26 whose minimal polynomial over F2 is
x6 + x4 + x3 + x + 1.
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Equivalence of functions

Definition (Extended Affine Equivalence)

Vectorial boolean functions f , g : F2n → F2n are called Extended Affine
equivalent, i.e. f ≈EA g , if there exist linear functions L1, L2 and L3 such
that L1 ◦ f ◦ L2(x) + L3(x) = g(x), for every x ∈ F2n and L1 and L2 are
permutations.

EA equivalence preserves a lot of features, for example algebraic degree,
being a permutation and being an APN function.

Definition (CCZ equivalence)

Boolean functions f , g : F2n → F2n are called CCZ-equivalent if their
graphs Gf ,Gg are affine equivalent, that is, if there exists an affine
automorphism L = (L1, L2) of F2n × F2n such that y = f (x) if and only if
L2(x , y) = g(L2(x , y)) (or L(Gf ) = Gg ).

CCZ equivalence does not preserve many features of a function but it
preserves the APN property.
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Dáša Krasnayová Almost Perfect Nonlinear Permutations Spring School, April 2017 9 / 28



Equivalence of functions

Definition (Extended Affine Equivalence)

Vectorial boolean functions f , g : F2n → F2n are called Extended Affine
equivalent, i.e. f ≈EA g , if there exist linear functions L1, L2 and L3 such
that L1 ◦ f ◦ L2(x) + L3(x) = g(x), for every x ∈ F2n and L1 and L2 are
permutations.

EA equivalence preserves a lot of features, for example algebraic degree,
being a permutation and being an APN function.

Definition (CCZ equivalence)

Boolean functions f , g : F2n → F2n are called CCZ-equivalent if their
graphs Gf ,Gg are affine equivalent, that is, if there exists an affine
automorphism L = (L1, L2) of F2n × F2n such that y = f (x) if and only if
L2(x , y) = g(L2(x , y)) (or L(Gf ) = Gg ).

CCZ equivalence does not preserve many features of a function but it
preserves the APN property.
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Trace-0/Trace-1 decomposition I

We define

T1 =
{
g ∈ Fq2 : Trnm(g) = gq + g = 1

}
∪ {1}

a set of all Trace-1 elements and 1.

Moreover, we can notice that elements of the sub-field Fq are exactly
all Trace-0 elements of Fq2 , i.e. Fq = {X ∈ Fq2 : Trnm(X ) = 0}.
Every element of Fq2 can then be written using elements of T1 and Fq

in two ways presented in following propositions.
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Trace-0/Trace-1 decomposition II

First decomposition

Every X ∈ F∗q2 can be uniquely written as X = xg , where x ∈ F∗q and
g ∈ T1.

Second decomposition

For every g ∈ T1 \ {1}, any X ∈ Fq2 can be uniquely written as
X = xg + y , where x , y ∈ Fq.

Both have been proven in APN trinomials and hexanomials by Faruk
Göloğlu in 2015.
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Chosen family of functions

We studied a family of the functions which can be written in a form

F (x) = x3 + bx3q + cx2q+1 + dxq+2,

where q = 2m and b, c , d ∈ Fq.

Both Kim function and our family of functions satisfy so-called
subspace property for k = 1. We say that a function f : Fq2 → Fq2

satisfies the subspace property, if there is an integer k such that

f (λX ) = λ2k+1f (X )

for every λ ∈ Fq and X ∈ Fq2 .

Kim function is CCZ-equivalent to a member of this family.
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Technique I

According to the second definition of an APN function, F is APN if
and only if |DAF | = |F|

2 for every A ∈ F∗.

Since F is a quadratic function, DAF is a linear function and previous
point is equivalent to DAF = 0 has exactly 2 solutions in F for every
A ∈ F∗.
We are trying to find conditions for b, c , d under which DAF = 0 has
exactly two solutions.

Since DAF (0) = F (0) + F (0 + A) + F (0) + F (A) = 0, 0 is always a
solution and we are looking for b, c , d such that DAF has exactly one
solution in F∗.
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Technique II

According to the first decomposition, A can be uniquely written as
A = ah, where a ∈ F∗q and h ∈ TI

Notice that

DAF (aX ) = F (aX ) + F (aX + ah) + F (ah)

= a3 [F (X ) + F (X + h) + F (h)]

= a3DhF (X ).

Therefore number of solutions of DAF = 0 only depends on h.

We will consider two cases – h = 1 and h ∈ T1 \ {1}.
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Case h = 1

For h = 1 we have

D1F (X ) = F (X ) + F (X + 1) + F (0) + F (1)

= X 3 + bX 3q + cX 2q+1 + dX q+2

+ (X + 1)3 + b(X + 1)3q + c(X + 1)2q+1 + dX q+2 + F (1)

= X (1 + c) + X 2(1 + d) + X q(b + d) + X 2q(b + c) = 0.

We can write X ∈ F∗q2 as xg such that x ∈ F∗q and g ∈ T1.

We get two equations

x2g2(1 + b + c + d) + xg(1 + b + c + d) + x2(b + c) + x(b + d) = 0
(1)

for g ∈ T1 \ {1} and

(x2 + x)(1 + b + c + d) = 0 (2)

for g = 1.
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Case h = 1

From the equation (2) we get a condition ∆ = 1 + b + c + d 6= 0.

Equation (1),

x2g2∆ + xg∆ + x2(b + c) + x(b + d) = 0,

should not have any solution.

We will write g2 = g + Trnm(g3) + 1 and denote
Sg = Trnm(g3) = g2 + g + 1.

Equation (1) is now

g(x2 + x)∆ + x2(1 + d) + x(b + d) + x2Sg∆ = 0.

According to the first decomposition, this is true if and only if
(x2 + x)∆ = 0 and x2(1 + d) + x(b + d) + x2Sg∆ = 0.
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Case h = 1

First part, (x2 + x)∆, is 0 if x = 1. For x = 1 the second part looks
like this:

(1 + d) + (1 + b) + Sg∆ = 0

This means that if for some g

Sg =
b + d

∆
,

then A = g is a solution which should not exist.

We know that

Trm1 (Sg )

{
1, if m is even,

0, if m is odd.

This means that Sg = (b + d)/∆ happens if and only if their traces
are equal.
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Dáša Krasnayová Almost Perfect Nonlinear Permutations Spring School, April 2017 19 / 28



Conditions from the case h = 1

m odd m even

1 + b + c + d 6= 0

trm1

(
1+b

1+b+c+d

)
= 1 trm1

(
1+b

1+b+c+d

)
= 0
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Case h 6= 1

Equations are more complicated.

Conditions found by using Trace-0/Trace-1 decomposition repeatedly.

m odd m even

∆ = 1 + b + c + d 6= 0

Trm1 ( 1+b
1+b+c+d ) = 1 Trm1 ( 1+b

1+b+c+d ) = 0

1 + c + b2 + bd 6= 0 –

Trm1 ( ∆2

1+b2+c+bd
) = 1 –

if Trm1 (bd+c
∆2 ) = 1, then b2c2 + d2 6= ∆2(bd + c)

Trm1

(
∆(T∆+c+d)(T 2∆2+bd+c)

(T∆2+bc+d)2

)
= 1,

for every T such that Trm1 (T ) = 1, ∆T + 1 + b 6= 0,
T∆2 + bc + d 6= 0 and ∆2T 2 + bd + c 6= 0
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Petr’s simplification

The most complicated condition is the last one:

Trm1

(
∆(T∆ + c + d)(T 2∆2 + bd + c)

(T∆2 + bc + d)2

)
= 1,

for every T such that Trm1 (T ) = 1, ∆T + 1 + b 6= 0,
T∆2 + bc + d 6= 0 and ∆2T 2 + bd + c 6= 0.

Petr Lisoněk was able to find an equivalent condition, which is easier
to work with:

Trm1

(
(T∆ + c + d)(bd + c + c2 + d2)(bd + c + b2 + 1)

∆(T∆2 + bc + d)

)
= 0

for every T such that Trm1 (T ) = 1, ∆T + 1 + b 6= 0,
T∆2 + bc + d 6= 0 and ∆2T 2 + bd + c 6= 0.
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Petr’s simplification

If (bd + c + c2 + d2) = 0 or (bd + c + b2 + 1) = 0, then function F
is APN but it is affinely equivalent to a Gold function ( x3 or
x2m−1

+ 1 ).

It is known that Gold functions are not CCZ-equivalent to a
permutation for n even.
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Faruk’s contribution

If (bd + c + c2 + d2) 6= 0, (bd + c + b2 + 1) 6= 0 and n > 6, then

Trm1

(
(T∆ + c + d)(bd + c + c2 + d2)(bd + c + b2 + 1)

∆(T∆2 + bc + d)

)
= 0

cannot hold for so many T s.

Every element of Fq with trace 0 can be written as x2 + x for some
x ∈ Fq.

Every T can be written as y2 + y + k for some y ∈ Fq and some
fixed k ∈ Fq such that Trm1 (k) = 1.

Our condition can be rewritten as an equation in x and y .

Every T satisfying the condition corresponds to exactly two solutions
of the equation.
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Faruk’s contribution

Our equation corresponds to an absolutely irreducible algebraic curve,
solutions correspond to its points.

Hasse-Weil Bound

If we denote the number of points on the curve C of genus g over the
finite field Fq as #C (Fq), then

|#C (Fq)− (q + 1)| ≤ 2g
√
q.

This bound says that our condition does not hold for bigger fields.

Dáša Krasnayová Almost Perfect Nonlinear Permutations Spring School, April 2017 26 / 28



Faruk’s contribution

Our equation corresponds to an absolutely irreducible algebraic curve,
solutions correspond to its points.

Hasse-Weil Bound

If we denote the number of points on the curve C of genus g over the
finite field Fq as #C (Fq), then

|#C (Fq)− (q + 1)| ≤ 2g
√
q.

This bound says that our condition does not hold for bigger fields.
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Conslusion

There are no new APN permutations in the chosen family.
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Thank you for your attention.
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