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What is Homomorphic Encryption?

RSA homomorphic encryption

I plaintexts πi

I ciphertexts ψi = (πi )
e mod N

I RSA is multiplicatively homomorphic

Πiψi = (Πi (πi ))e mod N

I we can compute arbitrary circuits consisting of MUL gates on
ciphertexts
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What is Homomorphic Encryption?

Fully Homomorphic Encryption

Our goal

I compute arbitrary circuits on encrypted data, i.e. circuits of
ADD, MUL, XOR, etc. gates, or universal NAND or NOR
gates.

I Indeed NAND is a universal gate
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What is Homomorphic Encryption?

Fully Homomorphic Encryption

We are looking for encryption scheme E that consists of

I KeyGenE key-generation algorithm

I EncryptE encryption algorithm

I DecryptE decryption algorithm

I EvaluateE evaluation algorithm
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What is Homomorphic Encryption?

Fully Homomorphic Encryption

Algorithm EvaluateE is efficient and

I for any public key pk, and

I for any circuit C , and

I for any ciphertexts ψi = EncryptE (pk , πi )

outputs
ψ ← EvaluateE (pk,C , ψ1, . . . , ψt)

a valid ciphertext of C (π1, . . . , πt)
(i.e. C (π1, . . . , πt) = DecryptE (sk, ψ))
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What is Homomorphic Encryption?

Of course, we want to avoid trivial “do-it-yourself” solutions such
as

EvaluateE (pk,C , ψ1, . . . , ψt) = (C , ψ1, . . . , ψt)

thus, we require the output of EvaluateE to be bounded

or even to
look like a “normal” ciphertext
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What is Homomorphic Encryption?

Definition of CE

Definition (Homomorphic encryption)

Scheme E is homomorphic for circuits in CE if E is correct for CE
and DecryptE can be expressed as a circuit DE of size poly(λ)
where λ is the security parameter.

Definition (Fully Homomorphic encryption)

Scheme E is fully homomorphic if it is homomorphic for all circuits.

Definition (Leveled Fully Homomorphic encryption)

A family of schemes E(d) is leveled fully homomorphic if they use
same decryption circuit and E(d) is fully homomorphic for all
circuits up to depth d .
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What is Homomorphic Encryption?

3-step Construction

I “Bootstraping” encryption scheme

I Ideal Lattices

I Shortening decryption circuit
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Martin Hlaváč Fully Homomorphic Encryption



Outline
Introduction

Bootstrapable Schemes E
Ideal Lattices

What is Homomorphic Encryption?

3-step Construction

I “Bootstraping” encryption scheme

I Ideal Lattices

I Shortening decryption circuit
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Motivation
Definition
Arbitrary Circuits

Bootstrapable Scheme is the one that can evaluate its own
decryption circuit with a “little” add-on.
Evaluating the decryption circuit means finding different
ciphertexts for the same plaintext without knowing the plaintext
and hoping the new plaintext is “better”.
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Motivation
Definition
Arbitrary Circuits

If E is bootstrapable with plaintext space P = {0, 1} and

I ψ1 = EncryptE(pk1, π) is old noisy ciphertext

I sk1j = EncryptE(pk2, sk1)
I sk1 is the secrect key corresponding to public key pk1

I sk1j is sk1 encrypted under public key pk2

then we can consider algorithm

RecryptE(pk ,DE ,
〈
sk1j

〉
, ψ1)

1. Set ψ1j
R←− EncryptE(pk2, ψ1j)

2. Output ψ2 ← EvaluateE(pk2,DE ,
〈〈

sk1j

〉
,
〈
ψ1j

〉〉
)

We “refreshed” ciphertext old ψ1 to (hopefully) fresh
ψ2 = EncryptE(sk1, π)

Martin Hlaváč Fully Homomorphic Encryption



Outline
Introduction

Bootstrapable Schemes E
Ideal Lattices

Motivation
Definition
Arbitrary Circuits

If E is bootstrapable with plaintext space P = {0, 1} and

I ψ1 = EncryptE(pk1, π) is old noisy ciphertext

I sk1j = EncryptE(pk2, sk1)
I sk1 is the secrect key corresponding to public key pk1

I sk1j is sk1 encrypted under public key pk2

then we can consider algorithm

RecryptE(pk ,DE ,
〈
sk1j

〉
, ψ1)

1. Set ψ1j
R←− EncryptE(pk2, ψ1j)

2. Output ψ2 ← EvaluateE(pk2,DE ,
〈〈

sk1j

〉
,
〈
ψ1j

〉〉
)

We “refreshed” ciphertext old ψ1 to (hopefully) fresh
ψ2 = EncryptE(sk1, π)
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Motivation
Definition
Arbitrary Circuits

If E is bootstrapable, we can evaluate circuits of arbitrary length
since we can

I do a little work - NAND gate

I when necessary, refresh ciphertext, i.e. lower error
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Motivation
Definition
Arbitrary Circuits

Definition
Augmented Decryption Circuit Let Γ be a set of gates. For a gate
g ∈ Γ, the g -augmented decryption circuit consist of g -gate
connecting multiple copies of DE on input. We denote the set of
g -augmented decryption circuits with g ∈ Γ by DE(Γ).

Definition
Bootstrapable Encryption Let CE be a set of circuits with respect
to which E is homomorphic. We say that E is bootstrapable with
respect to Γ if

DE(Γ) ⊆ CE

Martin Hlaváč Fully Homomorphic Encryption
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Motivation
Definition
Arbitrary Circuits

Circuicts of arbitrary length

I Suppose scheme E is bootstrapable, i.e. evaluates its own
decryption circuit augmented by gates in Γ

I Then there exists Eδ that evaluates arbitrary circuits with
gates in Γ with depth at most δ

I Ciphertexts same size in Eδ as in E
I Public key:

I δ + 1 E public keys pk0, . . . , pkδ

I δ encrypted secret keys Encrypt(pki , ski−1)
I length linear in δ
I if E KDM1-secure, constant length public key is

pk,Encrypt(pk, sk)

1Key Dependent Message, specifically circular-secure, we can encrypt
private key with its public key

Martin Hlaváč Fully Homomorphic Encryption
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Motivation
Definition
Arbitrary Circuits

So what’s the lesson learned from bootstrapability?

If we want to create a fully homomorphic encryption, we have to
find one that

I can evaluate its (augmented) decryption circuit

I thus, it has “shallow” (short) decryption circuit

I thus RSA is out of the question (exponentiation is expensive
and long, “unparallelizable”)

I lattice based cryptosystems’ decryption is often a simple inner
product (shallow circuit)

Martin Hlaváč Fully Homomorphic Encryption
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Ideal Lattices
Tweaks

What is a lattice?

2-dimensional lattice L is a set of {c1u1 + c2u2} where c1, c2 ∈ Z
and u1,u1 are linearly independent
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(Watch the blackboard for the example of a simple lattice
encryption scheme :-) )
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Ideal Lattices
Tweaks

What is an ideal lattice?

I Lattice: L =
{∑

1≤i≤n αiui , αi ∈ Z
}

, ui linearly independent

I Ideal I in ring R satisfies I ⊆ R and ri ∈ I for any i ∈ I , r ∈ R

I for f (x) monic and R = Z[x ]/f (x) ideal lattice is two objects
at once

I ideal (a(x)) in R, deg a = n, (i.e. multiples of a(x) modulo
f (x)), multiplication structure

I lattice in Z generated by coefficient vectors of
(x ia(x) mod f (x)), for 1 ≤ i ≤ n − 1, addition structure

Martin Hlaváč Fully Homomorphic Encryption
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Initial construction

I KeyGenE(R,BI )
I (Bsk

J ,B
pk
J )← IdealGen(R,BI )

I public key pk includes R,BI ,B
pk
J , sampling algorithm Samp

from R mod I to R
I secrect key sk includes Bsk

J

I EncryptE(pk, π)

I ψ′
R←− π + I (using Samp(π,BI ,R,B

pk
J ) algorithm)

I ψ ← ψ′ mod Bpk
J

I DecryptE(sk , ψ)
I π ← (ψ mod Bsk

J ) mod BI

I EvaluateE(pk,C ,Ψ)
I circuit C on input is “ mod BI ” circuit on plaintexts
I to create generalized circuit g(C ) replace AddBI

and MulBI
by

standard ring operations, i.e. drop “ mod BI ”
I output the result of g(C ) with Ψ on input

Martin Hlaváč Fully Homomorphic Encryption
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Necessary notation

I XENC - image of Samp

I XDEC - representatives of mod Bsk
J classes, i.e. R mod Bsk

J

I permitted circuit - any circuit satisfying g(C )(XENC ) ⊆ XDEC

I CE - set of all permitted circuits

I valid ciphertext - output of EvaluateE with any valid input

Martin Hlaváč Fully Homomorphic Encryption
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Theorem (Correctness of E)

For any permitted circuit E is correct, i.e. Decrypt correctly
decrypts all valid ciphertexts.

Proof.
Ψ = {ψ1, . . . , ψt}, where ψk = πk + ik + jk and πk + ik ∈ XENC

EvaluateE(pk,C ,Ψ) = g(C )(Ψ) mod Bpk
J ∈ g(C )(π1+i1, . . . , πt+it)+J

Since C is permitted circuit g(C )(Ψ) ∈ XDEC .

Decrypt(sk ,EvaluateE(pk,C ,Ψ)) = g(C )(π1 + i1, . . . , πt + it) mod BI

= g(C )(π1, . . . , πt) mod BI = C (π1, . . . , πt)

Martin Hlaváč Fully Homomorphic Encryption
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Addition and Multiplication

Geometrically, we see circuit is permitted if it “doesn’t expand too
much”. Specifically

I addition is cheap: ‖u1 + u2‖ ≤ ‖u1‖+ ‖u2‖
I multiplication is worse. We can show for each ring

R = Z[x ]/f (x) there exists γMULT(R) such that for any two
vectors u1, u2

‖u1 ×R u2‖ ≤ γMULT(R)‖u1‖‖u2‖

in lattice associated with R

I Moreover, if f (x) = xn − g(x) with deg g ≤ n− n−1
k , k ≥ 2 it

holds γMULT(R) ≤
√

2n(1 + 2n + (
√

(k − 1)n‖f ‖)k).

I Note: There’s “some” evidence f (x) = xn − 1 is not be best
choice so we’ll avoid it.

Martin Hlaváč Fully Homomorphic Encryption
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Scheme not bootstrapable, yet (cannot evaluate own decryption
circuit). Some tweaks are needed

I Instead of XDEC resp. B(rDEC ) use B(rDEC/2). Motivation:

simplify ψ mod Bsk
J = ψ − Bsk

J b
(
Bsk

J

)−1
ψe. After tweak

accented expression is at most 1/4 off an integer.

I Compute vsk
J ∈ J−1 ⊆ Q[x ]/f (x) such that decryption

simplifies to ψ − bvsk
J × ψe mod BI (after radius rDEC

adjustment)

I Decreasing the complexity of decryption circuit ... next time.

Finally, the scheme is bootstrapable, i.e. fully homomorphic.
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Thank you for your attention!
Martin Hlaváč (based on Craig Gentry’s PhD thesis)
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