
Diophantine Equation y2 + 2 = x3

Introduction

In the 1650’s French mathematician Pierre de Fermat wanted to show to the
English mathematical community that he is better than they are. Therefore
he declared that he knew the proof of assertion that the only integer solutions
of the equation y2 + 2 = x3 are (3,±5). Nobody of Fermat’s contemporaries
solved this problem and a correct proof was given 150 years later. The
program of this lecture will be an elementary proof of this assertion.

Suppose we are interested in solutions of this equation in rational num-
bers. It is interesting that there is so-called duplication formula (which can
be derived from adding point (x, y) with itself in a group which contains all
points of cubic (elliptic) curve y2 = x3 − 2): if (x, y) ∈ Q2 is a solution of
the equation y2 + 2 = x3, then another solution is also(

x4 + 16x
4y2

,
x6 − 40x3 − 32

8y3

)
.

So we obtain a sequence of solutions:

(3, 5),
(

129
102

,−383
103

)
,

(
2 340 922 881

7 6602
,
113 259 286 337 279

7 6603

)
, . . . .

Using Nagell-Lutz theorem we can prove that in this way we obtain infinite
number of distinct solutions of this equation. But in integers there are only
two solutions, so let’s prove this assertion.

First Step

Our equation is equivalent to(
y +
√
−2

) (
y −
√
−2

)
= x3,

which is an equation in the integral domain Z[
√
−2] = {a+ b

√
−2; a, b ∈ Z}.

Main part of the solution is proving the fact that if (y+
√
−2)(y−

√
−2) = x3

for x, y ∈ Z, then y+
√
−2 is a cube in Z[

√
−2], i.e. there exist a, b ∈ Z such

that y +
√
−2 = (a+ b

√
−2)3. Then

y +
√
−2 = (a3 − 6ab2) + (3a2b− 2b3)

√
−2.

Comparing the real and imaginary parts we obtain

y = a3 − 6ab2 = a · (a2 − 6b2),

1 = 3a2b− 2b2 = b · (3a2 − 2b2).

Hence b | 1 so b = ±1. It follows that a = ±1. Substituting these numbers
into the first equation, we find that y = ±5. Because x3 = (±5)2 + 2, then
x = 3, hence the only solutions of given equation are (x, y) = ±5.
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Possible Problems

Let’s turn our attention to the equality

k · l = x3.

If it is an equality in the integral domain (Z,+, ·), then, by the theorem
about unique factorization into primes, we may write x = ±pα1

1 · . . . ·pαs
s and

k · l = (±1)3p3α1
1 · . . . · p3αs

s ,

where the set of primes {p1, . . . , ps} and exponents α1, . . . , αs ∈ N are
unique. If also gcd(k, l) = 1 (i.e. k, l are relatively prime), then by unique-
ness of factorization we obtain

k = ±p3αi1
i1
· . . . · p3αic

ic
, l = ±p3αj1

j1
· . . . · p3αjd

jd

for suitable mutually distinct i1, . . . , ic, j1, . . . , jd ∈ {1, . . . , s}. Because 1
and −1 are cubes in Z, there exist k1, l1 ∈ Z such that

k = k3
1, l = l31.

If Z[
√
−2] is also unique factorization domain (UFD), it is a chance that

we’ll be able to finish the proof that y +
√
−2 is a cube in Z[

√
−2]. But for

integral domains Z[
√
D], where D ∈ Z \ {0, 1} is square-free, the situation

about equality k · l = x3 is relatively complicated.
For example in Z[

√
−23] (which isn’t UFD) we have(
2 +
√
−23

) (
2−
√
−23

)
= 33

(which is very similar to the equation (y +
√
−2)(y −

√
−2) = x3), but

2±
√
−23 and 3 are irreducibles (i.e. they have similar properties as primes

in Z), hence 2 +
√
−23 and 2−

√
−23 are relatively prime but there are no

k1, l1 ∈ Z[
√
−23] such that 2 +

√
−23 = k3

1 and 2−
√
−23 = l31.

Some problems may be also caused by units (invertible elements) in
Z[
√
D]. For example in Z[

√
2] (which is by the way UFD) it is true that all

units are ±(1 +
√

2)n for n ∈ Z. Surely (1 +
√

2)(1 +
√

2)2 = (1 +
√

2)3, but
1 +
√

2 isn’t a cube in Z[
√

2]: if

1 +
√

2 = (a+ b
√

2)3 = a3 + 3a2b
√

2 + 6ab2 + 2b3
√

2,

then
1 = a · (a2 + 6b2), 1 = b · (3a2 + 2b2),

hence a | 1 and b | 1, so a = ±1, b = ±1 and after substituting into the
first equation we obtain 1 = ±7 which is impossible. Further 1 +

√
2 and

(1+
√

2)2 are relatively prime because both numbers are invertible in Z[
√

2].
So we see that during analysis of the equation (y+

√
−2)(y−

√
−2) = x3,

we must be careful of units in Z[
√
−2] and it will be useful to prove that

Z[
√
−2] is UFD. For doing this, we need to define some terms. We have

already used informally some of these terms.
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Norm Map and Its Usefulness

Definition. Let R be an integral domain. If a, b ∈ R, we’ll say that a
divides b and write a | b if there exists some c ∈ R such that ac = b.
Any divisor of 1 is called unit.
We’ll say that a and b are associates and write a ∼ b if there exists a unit
u ∈ R such that a = bu.
We’ll say that π ∈ R \ {0} is irreducible if π is not a unit and for any
factorization π = bc, either b or c is a unit.
We’ll say that a, b ∈ R are relatively prime if

∀r ∈ R : r | a and r | b⇒ r is a unit.

Definition. Let R be an integral domain. If there is a map N : R\{0} → N
such that:

(i) ∀a, b ∈ R \ {0} : N(ab) = N(a)N(b),

(ii) N(a) = 1⇔ a is a unit,

this map is called a norm map.

Now using a norm we’ll prove the existence of the factorization into
primes in Z[

√
−2].

Proposition. Let R be an integral domain with a norm map N . Then
every nonunit element a ∈ R \ {0} can be written as a product of irreducible
elements.

Proof. Let S be the set of all nonunit elements of R \ {0} that cannot be
written as a product of irreducibles. If S 6= ∅, take a ∈ S with the least
norm. Since a isn’t irreducible, then there exist nonunits b, c ∈ R \ {0}
such that a = bc. Then N(a) = N(b)N(c) and N(b) > 1, N(c) > 1, hence
N(b) < N(a) and N(c) < N(a). Then b, c /∈ S and we can write b and c as
a product of irreducibles. Hence we can write also a = b · c as a product of
irreducibles, which is a contradiction because a ∈ S. Then S = ∅ and the
proposition is proved.

Corollary. Let D ∈ Z \ {0, 1} be square-free. Then every nonunit and
nonzero element of integral domain Z[

√
D] = {a + b

√
D; a, b ∈ Z} can be

written as a product of irreducible elements.

Proof. Define N : Z[
√
D]\{0} → N as follows: for any a+b

√
D ∈ Z[

√
D]\{0}

put
N(a+ b

√
D) = |a2 − b2D|.

We must verify that this map satisfies conditions (i) and (ii) for a norm map.
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(i) For a+ b
√
D, c+ d

√
D ∈ Z[

√
D] \ {0}:

N [(a+ b
√
D)(c+ d

√
D)] = N [(ac+ bdD) + (ad+ bc)

√
D] =

= |(ac+ bdD)2 − (ad+ bc)2D| =
= |(a2 − b2D)(c2 − d2D)| =

= N(a+ b
√
D)N(c+ d

√
D),

so the condition (i) is satisfied.

(ii) a+ b
√
D is a unit ⇒

∃c+ d
√
D : (a+ b

√
D)(c+ d

√
D) = 1⇒

∃c+ d
√
D : N(a+ b

√
D)N(c+ d

√
D) = N(1) = 1⇒

∃c+ d
√
D : N(a+ b

√
D) = 1 and N(c+ d

√
D) = 1⇒

N(a+ b
√
D) = 1.

Conversely, if N(a+ b
√
D) = 1, then a2 − b2D = ±1, hence

1
a2 − b2D

· (a− b
√
D) ∈ Z[

√
D] \ {0}.

Since [
1

a2 − b2D
· (a− b

√
D)

]
· (a+ b

√
D) =

a2 − b2D
a2 − b2D

= 1,

a+ b
√
D is a unit.

Since N is a norm map, by previous proposition every nonunit element
a ∈ Z[

√
D] \ {0} can be written as a product of irreducible elements.

Corollary. Every nonunit and nonzero element of Z[
√
−2] can be written

as a product of irreducible elements. The only units in Z[
√
−2] are ±1.

Proof. We have proved that

N : Z[
√
−2] \ {0} → N, N(a+ b

√
−2) = a2 + 2b2

is a norm map. Hence a + b
√
−2 is a unit ⇔ a2 + 2b2 = 1 ⇔ a2 = 1 and

b2 = 0⇔ a = ±1 and b = 0.

The existence of the factorization into primes in Z[
√
−2] is proved, we

want to prove also uniqueness.

Unique Factorization Domains, Euclidean Domains and Norm

Definition. Let R be an integral domain. We’ll say that R is a unique
factorization domain (UFD) if two conditions are fulfilled:

(i) every nonunit a ∈ R \ {0} can be written as a product of irreducibles,
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(ii) this factorization is unique in the sense that if a = π1 · . . . · πr =
τ1 · . . . · τs are two such decompositions, then r = s and after suitable
permutation, πi ∼ τi.

We have proved that condition (i) is fulfilled for all Z[
√
D] where D ∈

Z \ {0, 1} is square-free. But condition (ii) is fulfilled only sometimes:

• if D < 0 then (ii) holds true only for D ∈ {−1,−2} but if
D ∈ {−3,−7,−11,−19,−43,−67,−163} it can be repaired if we take
Z[1+

√
D

2 ] and these are all negative values when we obtain UFD in this
way (but the proof of this assertion is very hard);

• if D > 0, the situation is different: it is conjectured that we can obtain
UFD for infinitely many values of D but it is still an open problem.

Because the uniqueness of factorization in Z follows from the theorem on
the division with remainder, we will prove the uniqueness of factorization
in Z[

√
−2] in a similar way. First we must define a division with remainder

generally in integral domains.

Definition. An integral domain R is a Euclidean domain if there is a map
ϕ : R \ {0} → N such that

∀a ∈ R, b ∈ R \ {0} : ∃q, r ∈ R : a = bq + r where r = 0 or ϕ(r) < ϕ(b).

Proposition. Z[
√
−2] is a Euclidean domain.

Proof. We take the norm N as a map ϕ. For a ∈ Z[
√
−2], b ∈ Z[

√
−2] \ {0}

we consider a/b = ab̄/bb̄, where b̄ is complex conjugation of b. Notice that
ab̄ ∈ Z[

√
−2] and bb̄ = N(b) ∈ N, so

a

b
=
ab̄

bb̄
= c+ d

√
−2 ∈ Q[

√
−2].

We choose m,n ∈ Z as close as possible to c and d so |m − c| ≤ 1
2 and

|n− d| ≤ 1
2 . Let q = m+ n

√
−2, so we write a = bq + r and r = a− bq. If

r 6= 0, then

N(r) = N(a− bq) =

= N [b(c+ d
√
−2)− b(m+ n

√
−2)] =

= N [b((c−m) + (d− n)
√
−2)] =

= b[(c−m) + (d− n)
√
−2] · b[(c−m) + (d− n)

√
−2] =

= b[(c−m) + (d− n)
√
−2] · b̄[(c−m)− (d− n)

√
−2] =

= bb̄[(c−m)2 + 2(d− n)2] ≤ N(b)
(

1
4

+
1
2

)
<

< N(b),

hence Z[
√
−2] is a Euclidean domain.
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It is well-known fact that every Euclidean domain is UFD but it wasn’t
probably well-known for Fermat and his contemporaries so we will prove the
uniqueness of the factorization in Z[

√
−2] in another way.

Proposition. Let R be a Euclidean domain and a, b ∈ R are relatively
prime. Then there exist x, y ∈ R such that ax+ by = 1.

Proof. If a or b is a unit, we can take x = a−1, y = 0 or x = 0, y = b−1.
Otherwise N(a) > 1, N(b) > 1 and we’ll divide with remainder. We want
to obtain remainder with norm 1.
a = bq1 + r1, where N(r1) < N(b) (r1 6= 0 because otherwise b | a, which is
cotradiction with an assumption that a, b are relatively prime). If N(r1) = 1,
we are lucky, otherwise
b = r1q1 + r2, where N(r2) < N(r1) (r2 6= 0 because otherwise r1 | b, r1 | a
and r1 isn’t a unit - cotradiction).
Continuing in this procedure we obtain after finite steps rk ∈ R with
N(rk) = 1, hence rk is a unit. Working backwards we see that rk = ax1+by1

for some x1, y1 ∈ R, so
1 = ax1r

−1
k + by1r

−1
k

and the proposition is proved.

Proposition. Let R be a Euclidean domain, let π ∈ R be irreducible and
a, b ∈ R. If π | ab then π | a or π | b.

Proof. If π | a we are lucky, so suppose π | ab and π - a. If r | π and r | a
for r ∈ R, then exist c, d ∈ R such that rc = π, rd = a. If c is a unit, then
r = πc−1, so πc−1d = a, then π | a - contradiction. Because π is irreducible,
rc = π and c isn’t a unit, r must be a unit. We supposed that r | π, r | a
and we proved that then r is a unit. Hence π and a are relatively prime and
by previous proposition there exist x, y ∈ R such that πx+ ay = 1. Then

πbx+ aby = b.

Since π | ab, then π | (πbx+ aby) = b which we wanted to prove.

Theorem. Let R be a Euclidean domain with a norm map. Then R is
UFD.

Proof. We have already proved that in every integral domain with a norm
map every nonzero and nonunit element can be written as a product of
irreducible elements. Hence it suffice to prove the uniqueness. Suppose we
have a ∈ R that has two factorizations into irreducibles:

a = π1 · . . . · πr = τ1 · . . . · τs, where r ≥ s.
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Then τ1 | π1 · . . . ·πr and by previous proposition, τ1 | πi for some i and since
both are irreducible, they must be associate. Without loss of generality we
can let πi be π1, so there is a unit u1 ∈ R such that τ1 = π1u1. Then

π1π2 · . . . · πr = π1u1τ2 · . . . · τs ⇒ π1(π2 · . . . · πr − u1τ2 · . . . · τs) = 0⇒
π2 · . . . · πr − u1τ2 · . . . · τs = 0⇒ π2 · . . . · πr = u1τ2 · . . . · τs.

Following the same process we can pair up u1τ2 with its associate and we can
continue to do this until we have paired up each of the irreducible factors τi
with associate πj . If r > s, we obtain πs+1 · . . . · πr = 1 which is impossible
because πj aren’t units. So r = s and the theorem is proved.

Let us mention that even a stronger theorem is true: every Euclidean
domain is UFD, but proof isn’t so short and needs ideals which weren’t
discovered at the time of Fermat.

Corollary. Z[
√
−2] is UFD.

Finishing the Solution of y2 + 2 = x3

We can now continue to solve the equation y2 + 2 = x3 which is equivalent
to (y +

√
−2)(y −

√
−2) = x3. If y is even then x is also, but then x3 ≡ 0

(mod 4) whereas y2 + 2 ≡ 2 (mod 4). So y and x are both odd.
If r | y+

√
−2 and r | y−

√
−2 then r | [(y+

√
−2)− (y−

√
−2)] = 2

√
−2

so N(r) | N(2
√
−2) = 8. But N(r) | N(y +

√
−2) = y2 + 2 which is odd. It

is possible only if N(r) = 1, so r is a unit and then y +
√
−2 and y −

√
−2

are relatively prime.
Since there is factorization into irreducibles in Z[

√
−2] and x /∈ {0,±1},

then x = π1 · . . . · πr (π1, . . . , πr are irreducibles in Z[
√
−2]) and

x3 = π3
1 · . . . · π3

r = (y +
√
−2)(y −

√
−2).

Since Z[
√
−2] is UFD, then there exist mutually different i1, . . . , ic ∈ {1, . . . , s}

such that
y +
√
−2 = u · π3

i1 · . . . · π
3
ic ,

where u is a unit of Z[
√
−2], because otherwise y +

√
−2 and y −

√
−2

couldn’t be relatively prime. As the only units of Z[
√
−2] are ±1, which are

both cubes, then

y +
√
−2 = (±πi1 · . . . · πic)3 = (a+ b

√
−2)3

for some a, b ∈ Z. We proved at the beginning of this lecture that then we
have y = ±5 and x = 3. We have proved that the only solutions of the
equation y2 + 2 = x3 in integers are (3,±5).
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