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The Group of Rational Points

e The set of all rational points on a non-singular elliptic curve
forms a group.
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The Group of Rational Points

The set of all rational points on a non-singular elliptic curve
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For a singular curve C we define a set Cps = {P € C : P-is not
a singular point }. Cps forms a group and the set of rational
points Csn(Q) is also a group.
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The Group of Rational Points

The set of all rational points on a non-singular elliptic curve
forms a group.

The group is Abelian.

We will show that the group of rational points on a non-singular
elliptic curve is finitely generated:

Py Py

For a singular curve C we define a set Cps = {P € C : P-is not
a singular point }. Cps forms a group and the set of rational
points Csn(Q) is also a group.

It is not difficult to show that the group Cs,(Q) is:not finitely
generated.
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Height

We begin by defining the height of a rational number.

Definition
Let x = %’ be a rational number written in lowest terms. Then we
define the height

H(x) = H (%7) — max{|m|, |n|}.

40f18



-
Height

We begin by defining the height of a rational number.

Definition
Let x = %’ be a rational number written in lowest terms. Then we
define the height

H(x) = H (%7) — max{|m|, |n|}.

Definition
Let P = (x, y) be a rational point on a elliptic curve C. Then we
define the height of P
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Basic facts about Height

e The set of all rational numbers whose height is less than some
fixed number is finite.
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Basic facts about Height

e The set of all rational numbers whose height is less than some
fixed number is finite.

* The Height has some multiplicative behaviour.
* We have rather something that behaves additively so we define

h(P) = log H(P).
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Basic facts about Height

The set of all rational numbers whose height is less than some
fixed number is finite.

The Height has some multiplicative behaviour.
We have rather something that behaves additively so we define

h(P) = log H(P).

Let O be a point at infinity. We define H(O) = 1, h(O) = 0.
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Supporting Lemmas

Let y? = x3 + ax? + bx + ¢ be a non-singular curve C with
a,b,cel.

Lemma (1)
For every real number M, the set

{P e C(Q): h(P) <M}

is finite.

60f 18



Supporting Lemmas

Let y? = x3 + ax? + bx + ¢ be a non-singular curve C with
a,b,cel.

Lemma (1)
For every real number M, the set
{P € C(Q) : h(P) <M}
is finite.
Lemma (2)

Let Py be a fixed rational point on C. There is a constant xg,
depending on Py and on a, b, ¢, so that

h(P + Py) < 2h(P) + o forall P € C(Q).
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Supporting Lemmas

Lemma (3)
There is a constant k, depending on a, b, ¢, so that

h(2P) > 4h(P) — x for all P € C(Q).

7 of 18



Supporting Lemmas

Lemma (3)
There is a constant k, depending on a, b, ¢, so that

h(2P) > 4h(P) — x for all P € C(Q).

Lemma (4)
The index (C(Q) : 2C(Q)) is finite.
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Mordell-Weil Theorem

Theorem (Mordell-Weil Theorem)
Let C be a non-singular cubic curve given by an equation

C:y?=x3+ax® + bx,

where a, b € Z. Then the group of rational points I = C(Q) is a
finitely generated abelian group.
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ldea of Proof

e Lemma 4 gives us something finite.
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e Lemma 4 gives us something finite.
* So we start with this lemma.

e |f we will be able to express every point from I' as a sum of the
representatives for the cosets of 2I' and some others points
about which we know that they have some limited height.
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ldea of Proof

Lemma 4 gives us something finite.
So we start with this lemma.

If we will be able to express every point from I as a sum of the
representatives for the cosets of 2I' and some others points
about which we know that they have some limited height.

Then according to Lemma 1 we are finished.
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Proof of Mordell-Weil Theorem

e From Lemma 4 we know that there are only finitely many
cosetsof 2rinT.
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Proof of Mordell-Weil Theorem

e From Lemma 4 we know that there are only finitely many
cosetsof 2I'inT.

e Let Qq,..., Q, be representatives for the cosets, where n € N.
e So take P € T'. Then there is an index iy such that

P— Q,'1 e 2l.
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Proof of Mordell-Weil Theorem

e From Lemma 4 we know that there are only finitely many
cosetsof 2I'inT.

Let Qq, ..., Qn be representatives for the cosets, where n € N.
So take P € TI'. Then there is an index i; such that

P— Q,'1 e 2l.

In other words there exists Py € I' such that

P—Q =2P;.

We can do the same thing with Py, P>, etc...
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Proof of Mordell-Weil Theorem

* We get:

P—-—Q, = 2P
P1—Q,'2 = 2P

Pm—1_C)im = 2Pp
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Proof of Mordell-Weil Theorem

e We get:
P—-—Q, = 2P
Py — Q,'2 = 2P
Pm—1 - Qim = 2Pm
e So we can express P as

P=Q, +2Q, +4Q, +... + 2m—1 Qi , + 2MP..

110f 18
EEEEE————————————————————————



Proof of Mordell-Weil Theorem

* We get:

P—-—Q, = 2P
P1—Q,'2 = 2P

Pm—1_oim = 2Pm
 So we can express P as
P=Q, +2Q, +4Q, +... + 2m—1 Qi , + 2MP..

* Now we want to show that for m large enough, the height of Pn,
is less than a certain fixed bound.
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Proof of Mordell-Weil Theorem

 If we fix @;, we get a constant «; from Lemma 2 such that

h(P — @) <2h(P)+k; forall PeT.

120f 18
EEEEE————————————————————————



Proof of Mordell-Weil Theorem

 If we fix @;, we get a constant «; from Lemma 2 such that
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* So let ' be the largest of {x;; 1 <i < n}.
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Proof of Mordell-Weil Theorem

 If we fix @;, we get a constant «; from Lemma 2 such that
h(P — @) <2h(P)+ k; forall PeT.

* So let ' be the largest of {x;; 1 <i < n}.
e |f we use Lemma 3, we get

4h(P;) < h(2P) + & = h(Pj_1 — Q) + k < 2h(Pj_1) + & + .
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Proof of Mordell-Weil Theorem

If we fix Q;, we get a constant «; from Lemma 2 such that

h(P — @) <2h(P)+ k; forall PeT.

So let v’ be the largest of {k;; 1 < i < n}.
If we use Lemma 3, we get

4h(P;) < h(2P) + & = h(Pj_1 — Q) + k < 2h(Pj_1) + & + .

We rewrite this as

MR < gh(R)+ I =
= 3p) - e - (e
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Proof of Mordell-Weil Theorem

e We have a sequence of points P, Py, Ps, ...
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Proof of Mordell-Weil Theorem

e We have a sequence of points P, Py, Ps, ...
e If h(Pi_1) > K+ +/, then

MR < Jh(P).
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Proof of Mordell-Weil Theorem

e We have a sequence of points P, Py, Ps, ...
e If h(Pi_1) > K+ +/, then

MR < Jh(P).

e Because (%)k N\ 0 for kK — oo, there is an index m such that
h(Pm) < K+ .
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Proof of Mordell-Weil Theorem

We have a sequence of points P, P, P, ...
If h(P;_1) > x + #/, then

h(Py) < (P

Because (%)k N\ 0 for kK — oo, there is an index m such that
h(Pm) < K+ .

We have shown that every point P € I can be written in the
form

P=aQ +al+als+...+aQn,+2™R,

where a; € Z and h(R) < k + K.
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Proof of Mordell-Weil Theorem

So the set

{Q1,Qz,Q3,...,Qn}U{R€r:h(R)SI{—i—K,/}

generates I'. From Lemma 1 and Lemma 4, this set is finite.
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Rank

Definition
Let
Fr=272¢.. @ZOZ 6 ®... BZ &
N——r Py Py

rx

be the group of rational points on the elliptic curve, then integer r
is called the rank of T.
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Torsion subgroup

The group T is finite if and only if r = 0.
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Torsion subgroup

The group T is finite if and only if r = 0.

Theorem (Mazur)

The torsion subgroup of T is isomorphic to exactly one of the
following groups:

Zn 1<n<10 or n=12,

Zo®Zon 1 <n<4,
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Torsion subgroup

The group T is finite if and only if r = 0.

Theorem (Mazur)

The torsion subgroup of T is isomorphic to exactly one of the
following groups:

Zn 1<n<10 or n=12,
Zio @ Zop 1 < n<4.

So we know exactly how the torsion subgroup looks like.
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Possible values of Rank

e There isn’t any algorithm that could compute a rank of arbitrary
curve.
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Possible values of Rank

There isn’t any algorithm that could compute a rank of arbitrary
curve.

We suppose that there do not exist any limit for a rank.
Elkies (2009) found a curve with the rank 19 (exactly).
Elkies (2006) found a curve with the rank at least 28.
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Q&A
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Q&A

Thank you for your attention.
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