
A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

A Course in Logic and Complexity
Descriptive Complexity Theory

Tomáš Jirotka

March 27, 2010

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

1 Second-Order Logic

2 Complexity Theory

3 Putting Them Together

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

Second-Order Logic

Second-order allows quantification of relations.

Formally, second-order formula can be built up from
atomic formulae using the following rules:

If ϕ is a formula then so is ¬ϕ.
If ϕ and ψ are formulae then so is ϕ ∧ ψ.
If ϕ is a formula then so is ∃xϕ for any variable x .
If ϕ is a formula then so is ∃Rnϕ for any n and n-ary
relation R.

Example: Any first-order formula is a formula of
second-order logic too.

Example: ∃P∀x∀y(P(x , y)↔ P(y , x)).

We may naturally define ∀Rnϕ as ¬∃Rn¬ϕ.

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

Existential and Universal SO Sentences

Let V be a finite vocabulary.

We let ∃SO denote the set of second-order sentences of
the form

∃1Rn1
1 ∃2Rn2

2 . . . ∃kRnk
k ψ

where ψ is a first-order V-sentence.

Analogically, by ∀SO we mean the set of second-order
sentences of the form

∀1Rn1
1 ∀2Rn2

2 . . . ∀kRnk
k ψ

where ψ is a first-order V-sentence.

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

Complexity Class P

A decision problem is a question which has answer “yes”
or “no”. Usually we have a language L ⊆ {0, 1}∗ and ask
whether a word x falls into L.

An algorithm is polynomial-time if there exists k ≥ 1 such
that, given any input of length n, the algorithm halts in
fewer than nk steps.

A decision problem is polynomial-time if it can be decided
by a polynomial-time algorithm. The set of all such
problems is denoted P.

Example: Given an integer n decide whether it is a prime.
This problem is known to be in P.

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

Complexity Class NP

An algorithm is called nondeterministic if it has more than
one possible choice at each step.

Class NP contains all nondeterministic polynomial-time
decision problems.

Alternative definition of NP: language L is in NP iff there
exits a polynomial q, and a polynomial-time deterministic
algorithm M, such that for all x ∈ L there is a witness y of
length at most q(|x |) such that M(x , y) = 1, and for all
x 6∈ L the algorithm returns 0 for any witness y .

Example: Given an integer n decide whether its factor lies
between 4

√
n and

√
n. This problem is obviously is NP,

but we do not know if it is in P.

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

Some More Classes

In a similar way as we have defined P we define the class
EXPTIME. It is a set of languages decidable in
exponential time with respect to the length of input, i.e.

EXPTIME =
⋃
k

Time
(

2nk
)
.

Example: Decide if a deterministic Turing machine halts in
fewer than k steps.

Analogically, NEXPTIME is a class of languages
decidable in nondeterministic exponential time.

Obviously, P ⊆ NP ⊆ EXPTIME ⊆ NEXPTIME.

It is also known that P ⊂ EXPTIME and
NP ⊂ NEXPTIME.

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

Complements

Consider a language L ⊆ {0, 1}∗. The set {0, 1}∗ \ L is
called the complement of L.

The set of complements to the languages which are in NP
forms the class coNP.

Example: Given a propositional formula ϕ decide whether
it is unsatisfiable. The set of all unsatisfiable formulae lies
in coNP.

It holds: P ⊆ NP ∩ coNP.

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

NP-completeness

For A ⊆ {0, 1}m and B ⊆ {0, 1}n, we say that A is
polynomial-time reducible to B, if there exists
a polynomial-time algorithm that computes a function
f : A→ B such that x ∈ A iff f (x) ∈ B.

Let us have a language L. We say that L is NP-complete
if (i) it is in NP, and (ii) any other language Λ ∈ NP is
polynomial-time reducible to L.

Example: The language SAT containing all satisfiable
first-order formulae is NP-complete.

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

Finite Spectrum

A finite structure is a non-empty set, along with certain
given functions and relations on that set.

If σ is a sentence of first-order logic, then the spectrum of
σ is the set of cardinalities of finite structures (i.e. subset
of natural numbers) in which σ is true.

Example: Let f be a unary function symbol and

σ ≡ ∀x (f (x) 6= x) ∧ ∀x∀y (f (x) = y ↔ f (y) = x) .

Then the spectrum of σ is the set of all even numbers.

f

f

?

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

Spectrum Problem

In 1952 Scholz posed the problem of characterising the
class of spectra.

Later, in 1956 Asser asked whether the complement of
each spectrum is also a spectrum. This problem still
remains open.

Theorem (Neil Jones, Alan Selman, 1974)

A set S ⊆ {0, 1}∗ is a spectrum iff S ∈ NEXPTIME.

Hence, spectra are closed under complementation if and
only if NEXPTIME = coNEXPTIME.

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

Generalised Spectrum

Note that the spectrum of a first-order sentence ψ of
relational vocabulary {R1, . . . ,Rm} can be viewed as the
set of finite models of the ∃SO sentence ∃R1 . . . ∃Rmψ.

There is a one-to-one correspondence between the spectra
of first-order sentences and the classes of finite models of
∃SO sentences over the empty vocabulary.

A generalised spectrum is the class of finite models of
a sentence in existential second-order logic.

Example: The class of bipartite graphs is a generalised
spectrum. It is defined by the sentence

∃R∀x∀y(E (x , y)→ (R(x)↔ ¬R(y))) .

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

Fagin’s Theorem

Theorem (Ronald Fagin, 1974)

The set of all properties expressible in existential second-order
logic over some finite non-empty vocabulary equals precisely
the complexity class NP.

Proof of ∃SO ⊆ NP.

Having the formula ∃S1 . . . ∃Stφ we want to find an
NP-machine M deciding whether this formula is satisfied.

An accepting computation exists iff an interpretation of
relations exists iff the sentence is satisfiable.

M “guesses” the interpretations of relations Si .

Then, in polynomial-time, it decides if the formula holds.

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

Cook’s Theorem

Corollary (Stephen Cook, 1971)

SAT is NP-complete.

Proof.

SAT ∈ NP is trivial.

Consider L ∈ NP. It is equivalent to some formula φ of the form
∃R1 . . .∃Rk∀x1 . . .∀xnψ(x1, . . . , xn) where ψ is quantifier-free
first-order formula in CNF.

We are given a structure M and we ask if M � φ.

Rewrite φ to the form
V

ā∈M ψ(a1, . . . , an).

For each literal check whether it holds for ā in M. If so, delete each
clause containing that literal. Otherwise, delete only that literal from
the sentence ψ(ā).

Introducing new variables for each quantified relation and its
elements we obtain a formula ψ′ and determine if it satisfiable.

A Course in
Logic and

Complexity

Tomáš Jirotka

Second-Order
Logic

Complexity
Theory

Putting Them
Together

Example

Suppose we have a formula ∃R∀x∀y(R(x , y) ∨ P(x)), and
M is given by M = {a, b, c}, P(a) = P(b) = 1, P(c) = 0.

The FO part we translate into formula
(R(a, a) ∨ P(a)) ∧ (R(a, b) ∨ P(a)) ∧ (R(a, c) ∨ P(a)) ∧
(R(b, a) ∨ P(b)) ∧ (R(b, b) ∨ P(b)) ∧ (R(b, c) ∨ P(b)) ∧
(R(c , a) ∨ P(c)) ∧ (R(c , b) ∨ P(c)) ∧ (R(c, c) ∨ P(c)).

Since the relation R was quantified (and hence we do not
know its thuth table) we introduce new variables raa, rab,
rac , rba, rbb, rbc , rca, rcb, rcc , while we substitute the
values of P.

Now we are able to write a propositional formula
rca ∧ rcb ∧ rcc which is an input for SAT .

	Second-Order Logic
	Complexity Theory
	Putting Them Together

