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Minimal Polynomial

Every LFSR sequence has characteristic polynomial but it is not
unique, e.g. (L2 + L+ 1)a and also (L3 — 1)a.
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Minimal Polynomial

Every LFSR sequence has characteristic polynomial but it is not
unique, e.g. (L2 + L+ 1)a and also (L3 — 1)a.

So we define, for a given sequence a,
A(a) = {f € F[x] | f(L)a = 0}.

A(a) consits of all characteristic polynomials of a.
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Minimal Polynomial

Proposition 1

The set A(a) has following properties:
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Minimal Polynomial

The set A(a) has following properties:

@ Zero polynomial belongs to A(a).
Q Iff, g € A(a), then f £ g € A(a).
@ Iff € A(a) and h € F[x], then hf € A(a).
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Minimal Polynomial

The set A(a) has following properties:

@ Zero polynomial belongs to A(a).
Q Iff, g € A(a), then f £ g € A(a).
@ Iff € A(a) and h € F[x], then hf € A(a).

Q@ 0a=0=0¢c A(a).
Q If f,g € A(a) then f(L)a = g(L)a =0, therefore
(f(L)+g(L))a= f(L)a=*g(L)a. So eventually f + g € A(a).

Ol
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Minimal Polynomial
The set A(a) has following properties

@ Zero polynomial belongs to A(a).
Q Iff, g € A(a), then f £ g € A(a).
@ Iff € A(a) and h € F[x], then hf € A(a)

Q@ 0a=0=0¢c A(a).

Q If f,g € A(a) then f(L)a = g(L)a =0, therefore
(f(L) £ g(L))a = f(L)a+ g(L)a.

@ f(L)a=0= (h(L)f(L))a

So eventually f + g € A(a)

= h(L)(F(L)a) = A(L)0 = 0.

Ol
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Minimal Polynomial

A(a) is an ideal of the ring F[x], which is PID. Let A(a) = mIF[x],
where Ic(m) = 1. Then m is called the minimal polynomial of a.

David Kubetka LFSR



Minimal Polynomial

A(a) is an ideal of the ring F[x], which is PID. Let A(a) = mIF[x],
where Ic(m) = 1. Then m is called the minimal polynomial of a.

Properties of the minimal polynomial:
@ Minimal polynomial for zero sequence 00... is 1.
@ Minimal polynomial for non-zero constant sequence is x — 1.
o f(L)a=0<« m|f
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Minimal Polynomial

A(a) is an ideal of the ring F[x], which is PID. Let A(a) = mIF[x],
where Ic(m) = 1. Then m is called the minimal polynomial of a.

Properties of the minimal polynomial:
@ Minimal polynomial for zero sequence 00... is 1.

@ Minimal polynomial for non-zero constant sequence is x — 1.
o f(L)a=0<« m|f

Minimal polynomial need not to be irreducible.

If a € G(f), f need not to be minimal polynomial of a. But m|f.
If f is irreducible, then every 0 # a € G(f) has f as its minimal
polynomial.
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Minimal Polynomial

Example 1

Let F =T, and f(x) = x3 + 1. Then |G(f)| =23 = 8 and
f(x) = (x> + x + 1)(x + 1).
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Minimal Polynomial

Example 1

Let F = F, and f(x) = x>+ 1. Then |G(f)| =23 = 8 and
f(x) = (x> + x + 1)(x + 1).
@ Minimal polynomial of the sequence 001001001 ... is indeed f.

@ Minimal polynomial of the sequence 011011011 ... is
x>+ x+1.
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Minimal Polynomial

Example 1
Let F = F, and f(x) = x>+ 1. Then |G(f)| =23 = 8 and
f(x) = (x> + x + 1)(x + 1).
@ Minimal polynomial of the sequence 001001001 ... is indeed f.

@ Minimal polynomial of the sequence 011011011 ... is
x>+ x+1.

The degree of the minimal polynomial of a sequence a is called
linear span (or linear complexity) of a. According to the definition,
linear span of a sequence is equal to the shortest LFSR generating
it. It is an important security parameter measuring
pseudo-randomness of a given sequence.
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For every periodic sequence a there exists LFSR generating it.

David Kubetka LFSR



For every periodic sequence a there exists LFSR generating it.

Proof.
Let r be the period of a. So

di+r = aj, i:0,1,2,....

If f(x) =x"—1, then f(L)a=0, i.e. f is a characteristic
polynomial of LFSR generating a. OJ
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Let 0 # f € F[x] and f(0) # 0. Order (or period) of f is the
smallest d > 1 such that f|x? — 1. We write per(f) = d.
We denote by per(a) the period of a.
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Let 0 # f € F[x] and f(0) # 0. Order (or period) of f is the
smallest d > 1 such that f|x? — 1. We write per(f) = d.
We denote by per(a) the period of a.

Let m be the minimal polynomial of LFSR sequence a. If m(0) # 0
than a is periodic and

per(a) = per(m).
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Let F =F,. Assume that m € Fq[x] of degree n is irreducible
(over Fy). Let a be a root of m in Fgn. Than

per(m) = ord(«).
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Let F =F,. Assume that m € Fq[x] of degree n is irreducible
(over Fy). Let a be a root of m in Fgn. Than

per(m) = ord(«).

If a is LFSR sequence generated by irreducible polynomial m we
have

per(a) = per(m) = ord(«).
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Structure of G(f)

Let a,b € V(F). a,b are said to be (cyclically) shift-equivalent if
there exists an integer k such that

a,-:b,-+k, l':(),1,2,...7

and it this case we write a ~ b. Otherwise they are called
(cyclically) shift-distinct.
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Structure of G(f)

Let a,b € V(F). a,b are said to be (cyclically) shift-equivalent if
there exists an integer k such that

ai:bi+k7 i:071727"‘7

and it this case we write a ~ b. Otherwise they are called
(cyclically) shift-distinct.
Relation ~ is equivalence on V/(F).
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Structure of G(f)

Let f € F[x] be irreducible polynomial of degree n. Then the
number of shift-equivalent classes in G(f)\{0} is

q"—1

per(f)’
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Structure of G(f)

Let f € F[x] be irreducible polynomial of degree n. Then the
number of shift-equivalent classes in G(f)\{0} is
q" -1

per(f)

Let 0 # a € G(f). Then f is minimal polynomial of a and

per(a) = per(f) = r.

Periodicity means that L"a = La and sequences a, La, ..., L 1a
are pairwise distinct.

Therefore each equivalence class has precisely r = per(f) elements
and

_ 9" -1
[(G(A\{0})/ ~| = o)’
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Structure of G(f)

Previous theorem says that the state diagram of LFSR generated
by irreducible polynomial will consist of (" — 1)/per(f) cycles of
length per(f) and one cycle of length one (zero sequence).
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Structure of G(f)

Previous theorem says that the state diagram of LFSR generated
by irreducible polynomial will consist of (" — 1)/per(f) cycles of
length per(f) and one cycle of length one (zero sequence).

Polynomial f(x) = x* + x3 + x? + x + 1 is irreducible over F = ;.
It has period 5 and the corresponding state diagram will consist of
(2* — 1) /5 = 3 cycles of length 5.
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Structure of G(f)

Let F =Fg, f € F[x] be irreducible of degree n and o € Fgn be a
root of f. If « is a primitive root of g, we say that f is primitive
polynomial.
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Let F =Fg, f € F[x] be irreducible of degree n and o € Fgn be a
root of f. If « is a primitive root of g, we say that f is primitive
polynomial.

If f is primitive of degree n than every sequence in G(f) has period
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Structure of G(f)

Let F =Fg, f € F[x] be irreducible of degree n and o € Fgn be a
root of f. If « is a primitive root of g, we say that f is primitive
polynomial.

If f is primitive of degree n than every sequence in G(f) has period
q" — 1 and

G(f)={l'a]i=0,1,...,q" =2} U{0}.

A g-ary sequence generated by n-stage LFSR with period ¢" — 1 is
called m-sequence or maximal length sequence or pseudo-noise
sequence. It is known that m-sequences have particularly good
statistical properties concerning pseudo-randomness.
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Structure of G(f)

If we want to get m-sequence with period g" — 1 we only need to
pick some primitive polynomial of degree n. In the case g = 2
there would be particularly suitable form for hardware
implementation, namely

f(x)=x"+x+1, k=1,2,....,n—1

This form is called trinomial.
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Structure of G(f)

If we want to get m-sequence with period g" — 1 we only need to
pick some primitive polynomial of degree n. In the case g = 2
there would be particularly suitable form for hardware
implementation, namely

f(x)=x"+x+1, k=1,2,....,n—1

This form is called trinomial.
It is not known whether there exists infinitely many primitive
trinomials, but we have one nice criterion for deciding primitivness:

Theorem 6

Let 2" — 1 be prime. Then the trinomial of degree r is primitive if
and only if it is irreducible.
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Decomposition of G(f)

Assume that f is a product of distinct irreducible polynomials.
What can be said about the structure of G(f)?
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For every monic polynomial f there exists a € G(f) such that f is
the minimal polynomial for a.
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Decomposition of G(f)

Assume that f is a product of distinct irreducible polynomials.
What can be said about the structure of G(f)?

For every monic polynomial f there exists a € G(f) such that f is
the minimal polynomial for a.

Let deg(f) = n. Suppose first that f(0) # 0 and consider sequence
a generated by f from initial state 00...001. Then first n states
will be linearly independent. Let g be some other polynomial of
degree m < n. According to the definition of feedback function in
LFSR, every state generated by g is linear combination of first m
states. Therefore g cannot generate a.

Secondly, let f(x) = x*g(x), where g(0) # 0. It suffices to
prepend k 'anything’ to a. Ol
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Decomposition of G(f)

Lemma 8

For every non-zero monic polynomials f, g € F[x],
Q G(f) C G(g) < flg,
Q@ G(f)N G(g) = G(d) where d = GCD(f, g),
@ G(f)V G(g) = G(h) where h = lcm(f, g).
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Decomposition of G(f)

For every non-zero monic polynomials f, g € F[x],
O G(f)C G(g) = flg
Q@ G(f)N G(g) = G(d) where d = GCD(f, g),
@ G(f)V G(g) = G(h) where h = lcm(f, g).

Let f = fifr-- - f5 where f; are pairwise distinct irreducible
polynomials. Than

G(f)=G(h) D G(h)D® - @ G(f)
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Decomposition of G(f)

For every non-zero monic polynomials f, g € F[x],
O G(f)C G(g) = flg
Q@ G(f)N G(g) = G(d) where d = GCD(f, g),
@ G(f)V G(g) = G(h) where h = lcm(f, g).

Let f = fifr-- - f5 where f; are pairwise distinct irreducible
polynomials. Than

G(f)=G(h) D G(h)D® - @ G(f)

Induction on s. [
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Trace Representation

Let U=F4,V =Fg and v € V. Then

n—1

2
Trvu() =7+ 497 +--+97
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Trace Representation

Let U=F4,V =Fg and v € V. Then

n—1

2
Trvu() =7+ 497 +--+97

Theorem 10

Let f € Fq[x] be primitive polynomial of degree n and o € Fgn.
Then a € G(f) < there exists 3 € Fgn such that

a; = Tr(Ba'), i=0,1,2,....
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