
Dichotomies in Constraint Satisfaction:
Canonical Functions and Numeric CSPs

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doctor rerum naturalium
(Dr. rer. nat.)

vorgelegt

dem Bereich Mathematik und Naturwissenschaften
der Technischen Universität Dresden

von

MSc Antoine Mottet

geboren am 20. Oktober 1992 in Cherbourg

Eingereicht am 31. Mai 2018
Verteidigt am 14. August 2018

Die Dissertation wurde in der Zeit von September 2015 bis Mai 2018
im Institut für Algebra angefertigt.





Contents

1 Introduction 1

2 Preliminaries 7

2.1 Constraint Satisfaction Problems . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Primitive Positive Constructions . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Logic and Model Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Countable categoricity . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Universal Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Model-completeness, Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 The Infinite-Domain Tractability Conjecture . . . . . . . . . . . . . . . . . . 21

I Lifting Techniques 23

3 Equations and Tractability Conditions 25

3.1 The Type Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Canonical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 New Abstract Tractability Conditions . . . . . . . . . . . . . . . . . . . . . 33

4 Mashups 37

4.1 Mashups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Disjoint Unions of Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Reducts of Unary Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 The case of tame endomorphisms . . . . . . . . . . . . . . . . . . . . 44

4.3.2 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 MMSNP: Proof of the Algebraic Dichotomy Conjecture 53

5.1 MMSNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Connected MMSNP . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.2 Templates for connected MMSNP sentences . . . . . . . . . . . . . . 56

5.1.3 Statement of the main result . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



iv CONTENTS

5.2.1 The normal form for MMSNP . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Templates for sentences in normal form . . . . . . . . . . . . . . . . 61
5.2.3 The strong normal form . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Precoloured MMSNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.1 Basic properties of precoloured MMSNP . . . . . . . . . . . . . . . . 70
5.3.2 Adding inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.3 The standard precolouration . . . . . . . . . . . . . . . . . . . . . . 73
5.3.4 Proof of the precolouring theorem . . . . . . . . . . . . . . . . . . . 73

5.4 An Algebraic Dichotomy for MMSNP . . . . . . . . . . . . . . . . . . . . . . 77
5.4.1 The tractable case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.2 The hard case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.3 The dichotomy: conclusion . . . . . . . . . . . . . . . . . . . . . . . 87

II Numeric CSPs 91

6 The Complexity of Discrete Temporal CSPs 93
6.1 Discrete Temporal Constraint Satisfaction Problems . . . . . . . . . . . . . 94
6.2 Model-Theoretic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 Detailed Statement of the Results . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4 Definability of Successor and Order . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.1 Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4.2 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4.3 Finite-range Endomorphisms . . . . . . . . . . . . . . . . . . . . . . 104
6.4.4 Petrus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.5 Boundedness and rank . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.6 Defining succ and < . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Tractable Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5.1 The Horn case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.5.2 Modular minimum and modular maximum . . . . . . . . . . . . . . 122

6.6 The Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.6.1 First-order expansions of (Z; succ, <) . . . . . . . . . . . . . . . . . . 123
6.6.2 Endomorphisms of and Definability in positive reducts . . . . . . . . 123
6.6.3 The non-positive case . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.6.4 The positive case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.6.5 Concluding the classification . . . . . . . . . . . . . . . . . . . . . . 132

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Disjunctive Linear Diophantine Constraints 135
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3.1 The fully modular case . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.3.2 The unary case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.3.3 Arbitrary arities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4 Tractability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



Bibliography 149

Index 155

List of Figures 155





Ever tried. Ever failed. No matter.
Try again. Fail again. Fail better.

Samuel Beckett





Acknowledgements

My experience as a PhD student has been greatly influenced by the people surrounding
me and the present dissertation is the result of many interactions. I would like to give my
warmest thanks:

To Max, Pavlos, and Karin. Our friendship has meant a lot to me in the past couple
years and each of you has allowed me in some way to finish this project.

To Jakub, for the many interesting discussions that we had at the office, at the bar,
or while climbing.

To my collaborators and co-authors, Manuel Bodirsky, Florent Madelaine, Barnaby
Martin, Marcello Mamino, and Karin Quaas. It has been a pleasure to talk and work with
you and I benefited a lot from our collaboration.

To my advisor, Manuel Bodirsky, for nurturing me during the past five years and for
giving me his trust and the freedom to work even on the most ludicrous ideas that I had.

To QuantLA, for financing me for the past three years and for providing an environment
where different scientific communities can interact. I underestimated how beneficial being
part of such a program can be.

Finally, this project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 681988, “CSP-Infinity”).





Chapter 1

Introduction

Constraint satisfaction problems (CSPs) form a large class of decision problems that con-
tains numerous classical problems like the satisfiability problem for propositional formulas
and the graph colourability problem. Feder and Vardi [52] gave the following logical for-
malization of the class of CSPs: every finite relational structure A, the template, gives
rise to the decision problem of determining whether there exists a homomorphism from
a finite input structure B to A. In their seminal paper, Feder and Vardi recognised that
CSPs had a particular status in the landscape of computational complexity: despite the
generality of these problems, it seemed impossible to construct NP-intermediate problems
à la Ladner [72] within this class. The authors thus conjectured that the class of CSPs
satisfies a complexity dichotomy , i.e., that every CSP is solvable in polynomial time or is
NP-complete. The Feder-Vardi dichotomy conjecture was the motivation of an intensive
line of research over the last two decades. Some of the landmarks of this research are the
confirmation of the conjecture for special classes of templates, e.g., for the class of undi-
rected graphs [55], for the class of smooth digraphs [5], and for templates with at most
three elements [43, 84]. Finally, after being open for 25 years, Bulatov [44] and Zhuk [87]
independently proved that the conjecture of Feder and Vardi indeed holds.

The success of the research program on the Feder-Vardi conjecture is based on the con-
nection between constraint satisfaction problems and universal algebra. In their seminal
paper, Feder and Vardi described polynomial-time algorithms for CSPs whose template
satisfies some closure properties. These closure properties are properties of the polymor-
phism clone of the template and similar properties were later used to provide tractability
or hardness criteria [61, 62]. Shortly thereafter, Bulatov, Jeavons, and Krokhin [46] proved
that the complexity of the CSP depends only on the equational properties of the poly-
morphism clone of the template. They proved that trivial equational properties imply
hardness of the CSP, and conjectured that the CSP is solvable in polynomial time if the
polymorphism clone of the template satisfies some nontrivial equation. It is this conjecture
that Bulatov and Zhuk finally proved, relying on recent developments in universal algebra.
As a by-product of the fact that the delineation between polynomial-time tractability and
NP-hardness can be stated algebraically, we also obtain that the meta-problem for finite-
domain CSPs is decidable. That is, there exists an algorithm that, given a finite relational
structure A as input, decides the complexity of the CSP of A.



From Finite to Infinite

Since the template of a CSP is not part of the input of the problem, it is natural to also
consider the case that the relational structure A is infinite. The class of problems that we
obtain this way, the infinite-domain CSPs (∞CSP), strictly contains the class of finite-
domain CSPs. Several problems from combinatorial optimisation or verification can be
expressed as infinite-domain CSPs: feasibility of linear programs over Z,Q, and R, and the
model-checking problem for Kozen’s modal µ-calculus [69] are examples of such problems
that cannot be expressed as finite-domain CSPs. This increase in expressive power comes
at a cost.

First, infinite-domain CSPs are not necessarily in NP. Indeed, some infinite-domain
CSPs are even undecidable: the celebrated result of Matiyasevich, Robinson, Davis,
and Putnam [79] states that the satisfiability problem of arbitrary polynomial equations
over the integers is undecidable. In fact, every computational problem is equivalent to
an infinite-domain CSP, in the sense that every decision problem is equivalent under
polynomial-time Turing reductions to a CSP [16].

Secondly, the universal-algebraic approach to constraint satisfaction, so powerful in
the finite setting, no longer works for arbitrary infinite-domain CSPs. More precisely,
the polymorphism clone of an infinite template is no longer an invariant of the compu-
tational complexity of the associated CSP. In other words, two templates can have the
same polymorphism clone while the corresponding CSPs have different complexity. De-
spite this negative result, Bodirsky and Nešetřil [32] showed that the universal-algebraic
approach can still be used in the case that the template satisfies a well-known model theo-
retic property called ω-categoricity. Many problems from qualitative reasoning, a subfield
of artificial intelligence, can be modeled with ω-categorical templates. Examples of such
problems are reasoning in Allen’s Interval Algebra or reasoning in the region calculi RCC-
5 [13] and RCC-8 [39]. A somewhat more advanced way to recover the universal-algebraic
approach is to use the model-theoretical notion of saturation. In a recent work, Bodirsky,
Hils, and Martin [17] described a complexity invariant in terms of the polymorphism clone
of a highly saturated extension of the template.

In the past decade, several classes of infinite-domain CSPs have been studied with
the goal of developing a general theory of infinite-domain constraint satisfaction. On the
negative side, it was shown that there exist CSPs with an ω-categorical template that
are in coNP but neither in P nor coNP-hard [16] (under the assumption that P 6= NP).
Actually, the same phenomenon is already observed for countable homogeneous structures
in a finite relational language, which form a subclass of the class of ω-categorical structures.
On the positive side, much is now known about the CSPs of finitely bounded homogeneous
structures, which are homogeneous structures whose class of finite substructures has a
finite universal first-order axiomatisation. In a growing body of work [20, 21, 22, 29,
34, 40, 68], special cases have been investigated and the authors proved that the classes
under study admit a complexity dichotomy. Moreover, they showed that the delineation
between polynomial-time solvability and NP-hardness can be described using algebraic and
topological methods. This led Bodirsky and Pinsker to conjecture a possible generalisation
of the finite-domain complexity dichotomy for the class of all CSPs that can be formulated
with a template that is a first-order reduct of a finitely bounded homogeneous structure.
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Chapter 1. Introduction

Contributions

The focus of this dissertation is to develop methods to study the complexity of infinite-
domain CSPs and to employ these methods to show that some restricted subclasses of
infinite-domain CSPs exhibit a complexity dichotomy. In the first part (Chapters 3, 4,
and 5), I focus on ω-categorical templates, and more precisely on templates that fall into
the class of first-order reducts of finitely bounded homogeneous structures. Bodirsky and
Pinsker conjectured that this class of templates does have a P/NP-complete complexity
dichotomy. In Chapter 3 , I present a complexity-theoretic reduction from a large class of
infinite-domain CSPs to finite-domain CSPs. This reduction preserves important algebraic
properties of the templates and is used to lift algebraic conditions that are known for finite-
domain CSPs. In particular, we are able to lift the algebraic conditions for membership
in P and membership in the class Datalog. This reduction is quite general and provides a
unified algorithm for many problems that were studied in the literature. For example, the
tractable Graph Satisfiability problems [34], the tractable fragments of RCC-5 [63], and
the tractable equivalence CSPs [40] can all be solved using the algorithm given in Chapter
3 in combination with any algorithm for finite-domain CSPs.

Finite-domain CSPs

∞CSP

ω-categorical CSPs

CSPs of fo-reducts of finitely
bounded homogeneous

structures

Numeric CSPs

Discrete Temporal
CSPs

MMSNP

Disjunctive Linear
Diophantine
Constraints

CSPs of fo-reducts
of unary structures

Figure 1.1: Overview of the different classes of problems involved in this work, partially or-
dered by inclusion. In colour are the classes for which we establish a complexity dichotomy
and describe the border between polynomial-time tractability and NP-completeness using
algebraic methods.

In Chapter 4 , we develop another technique that we use, informally, to lift NP-
hardness from the finite. This technique is based on the notion of mashups that was
first defined to study first-order reducts of equality with finitely many constants [30]. The
combination of Chapter 3 and Chapter 4 gives a powerful tool to approach the tractabil-
ity conjecture by Bodirsky and Pinsker by exploiting the dichotomy from finite-domain
CSPs. In particular, we apply these techniques to study the structures that are first-
order reducts of any structure with a unary signature. This class contains all the CSPs
with finite domain as well as all the equality CSPs, which were studied by Bodirsky and

3



Kára [21].
Chapter 5 is about CSPs that can be described in the fragment of second-order logic

called MMSNP (Monotone Monadic Strict NP). This fragment was studied by Feder and
Vardi [52], whose goal was to find large fragments of existential second-order logic that
do not have the ability to encode NP-intermediate problems. Feder and Vardi showed
that MMSNP and finite-domain CSPs are equivalent under randomised polynomial-time
reductions, and this reduction was later derandomised by Kun [71]. Combining this result
with the complexity dichotomy for finite-domain CSPs [44, 87], this implies that the
logic MMSNP indeed has a dichotomy. A result of Bodirsky and Dalmau [14] implies
that the problems in MMSNP can be seen as CSPs of infinite-domain structures that
fall into the class of Bodirsky and Pinsker. In this chapter, we prove that the Bodirsky-
Pinsker conjecture holds for CSPs that can be described in MMSNP. The polynomial-time
tractable fragments of MMSNP are obtained with the reduction from Chapter 3, while the
hardness proof uses recent Ramsey-theoretic results [58]. As a corollary, we obtain a new
proof of the complexity dichotomy for MMSNP.

In the second part of this dissertation, I focus on so-called numeric CSPs [25]. These
are CSPs whose template is a structure over Z,Q,R, or C, and whose relations are definable
using first-order logic and arithmetic. Such templates are typically not ω-categorical. In
Chapter 6 , the structures under consideration are first-order reducts of the linear order
(Z;<). The CSPs of these structures include all the CSPs of first-order reducts of (Q;<),
which were studied by Bodirsky and Kára [23], and this class also includes the Max-
Atom problem where the numeric inputs are given in unary [8]. This class is also a large
generalisation of locally finite distance CSPs [15]. For this work, we use the aforementioned
approach by Bodirsky, Hils, and Martin, and study the countably saturated extensions of
such reducts. With this analysis, we are able to derive a P/NP-complete dichotomy for the
CSPs of these structures. Finally, in Chapter 7 , we study CSPs with disjunctive linear
Diophantine constraints. A disjunctive linear Diophantine constraint is a relation that can
be defined in first-order logic over the structure (Z; +, 1); such a constraint can be seen
as a disjunction of systems of linear and modular equations over Z, whence the name. In
this final chapter, we consider the CSPs of templates containing + in their signature and
whose relations are definable by disjunctive linear Diophantine constraints. We show that
each such CSP is in P or NP-complete.

Figure 1.1 contains a schematic description of the results in this dissertation as well as a
general context in which these results naturally fit. Most of the results in this dissertation
have appeared in the following articles:

[24] Manuel Bodirsky, Florent Madelaine, and Antoine Mottet. “A universal-algebraic
proof of the dichotomy for Monotone Monadic SNP”. In: Proceedings of the Annual
Symposium on Logic in Computer Science (LICS). 2018, pp. 105–114. doi: 10.1145/
3209108.3209156.

[26] Manuel Bodirsky, Barnaby Martin, Marcello Mamino, and Antoine Mottet. “The
complexity of disjunctive linear Diophantine constraints”. In: Proceedings of the In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS).
2018.
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[27] Manuel Bodirsky, Barnaby Martin, and Antoine Mottet. “Constraint Satisfaction
Problems over the Integers with Successor”. In: Proceedings of the International
Colloquium on Automata, Languages and Programming (ICALP). 2015, pp. 256–
267. doi: 10.1007/978-3-662-47672-7_21.

[28] Manuel Bodirsky, Barnaby Martin, and Antoine Mottet. “Discrete Temporal Con-
straint Satisfaction Problems”. In: Journal of the ACM 65.2 (2018), 9:1–9:41. doi:
10.1145/3154832.

[30] Manuel Bodirsky and Antoine Mottet. “Reducts of finitely bounded homogeneous
structures, and lifting tractability from finite-domain constraint satisfaction”. In:
Proceedings of the Annual Symposium on Logic in Computer Science (LICS). 2016,
pp. 623–632. doi: 10.1145/2933575.2934515.

[31] Manuel Bodirsky and Antoine Mottet. “A Dichotomy for First-Order Reducts of
Unary Structures”. In: Logical Methods in Computer Science 14.2 (2018). doi: 10.
23638/LMCS-14(2:13)2018.
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Chapter 2

Preliminaries

We present in this chapter the mathematical background that is necessary for an under-
standing of the results in the following chapters. We try to keep the presentation succinct
and goal-oriented; the interested reader is invited to consult the classical textbooks [47,
56, 77, 86] as well as [6, 11] for the more recent material.

2.1 Constraint Satisfaction Problems

A signature τ is a set of function symbols and relation symbols, where with every symbol
comes a positive natural number, called the arity of the symbol. Unless specified otherwise,
all signatures are assumed to be finite. In the following, the Greek letters τ, σ, and ρ denote
a signature unless mentioned otherwise. A τ -structure is a tuple A = (A; (ZA)Z∈τ ) where
A is a set, called the domain of A and:

• if Z ∈ τ is a function symbol of arity k ∈ N, then ZA is an operation Ak → A,

• if Z ∈ τ is a relation symbol of arity k ∈ N, then ZA is a subset of Ak.

Structures will be denoted by calligraphic letters A, and their domain by the corre-
sponding Roman letter A. When a signature only contains relation symbols, we call it
relational. A relational structure is a structure whose signature is relational. A functional
signature is a signature that only contains function symbols. An algebra A is a structure
whose signature σ is functional, and functions of the form fA for f ∈ σ are called the
fundamental operations of A.

Let A,B be two structures with the same signature τ . A homomorphism h : A → B is
a function A→ B such that for every relation symbol R ∈ τ of arity k, we have

∀(a1, . . . , ak) ∈ Ak,
(
(a1, . . . , ak) ∈ RA =⇒ (h(a1), . . . , h(ak)) ∈ RB

)
, (2.1)

and such that for every function symbol f ∈ τ of arity k we have h(fA(a1, . . . , ak)) =
fB(h(a1), . . . , h(ak)). We also write h(a) for the tuple (h(a1), . . . , h(ak)). The notation
A → B will be used to denote that there exists a homomorphism h : A → B.

Definition 2.1. Let A be a relational structure with signature τ . The constraint satis-
faction problem of A, denoted by CSP(A), is the following computational problem:

Input: a finite structure B with signature τ ,
Output: does there exist a homomorphism B → A?



2.1. Constraint Satisfaction Problems

The structure A is also called the constraint language of CSP(A). Note that for the
problem to be well-defined the signature of A needs to be finite, otherwise different encod-
ings of the input structure B can give computational problems with different complexities.

Another way to define the CSP of a structure is as follows. A primitive positive τ -
formula (pp-formula, for short) is a first-order formula that is built only with existential
quantifications and conjunctions of positive atoms from τ (that is, universal quantifica-
tions, disjunctions, and negations are not allowed). A sentence is a formula without free
variables.

Definition 2.2. Let A be a relational structure with signature τ . Let CSP′(A) be the
following computational problem:

Input: a primitive positive τ -sentence φ,
Output: is φ true in A?

It is a folklore result that the problems CSP′(A) and CSP(A) are equivalent up to
logspace reductions. We give the proof here as it underlines the connection between pp-
formulas and finite structures via the notions of canonical databases and canonical queries.

Proposition 2.1. Let A be a relational structure. The problems CSP(A) and CSP′(A)
are equivalent up to logspace reductions.

Proof. Let B be an input of CSP(A). Let φB(b1, . . . , bk) be the canonical query of B. That
is, φB is a conjunction of the atomic formulas R(c1, . . . , cr) where R ∈ τ and c1, . . . , cr ∈
{b1, . . . , bk} are such that (c1, . . . , cr) ∈ RB. Thus, the variables of φB are the elements
of B. We prove that B → A if, and only if, A |= ∃b1, . . . , bk.φB(b1, . . . , bk). Let h be a
homomorphism from B to A. Then it is clear that φB(h(b1), . . . , h(bk)) holds in A, so
that A |= ∃b1, . . . , bk.φB(b1, . . . , bk) is true. Conversely, let c1, . . . , ck ∈ A be such that
A |= φB(a1, . . . , ak). It is clear that the map h : bi 7→ ci is a homomorphism from B to A.

Conversely, given an input ∃x1, . . . , xk.φ(x1, . . . , xk) of CSP′(A), one builds a structure
B with domain {x1, . . . , xk} and whose relations are built from φ in the obvious manner.
This structure is called the canonical database of φ.

The structure A is called the template of CSP(A). When a decision problem P is said
to be a CSP, we mean that there exists a structure A such that P and CSP(A) are the
same problems, i.e., they have exactly the same set of “yes” instances. We note that if A
has a finite domain, then CSP(A) belongs to NP.

Example 1. Let τGraph be the signature of graphs, i.e., τGraph = {E} where E is a binary
relation symbol. Let Kr be the complete graph on r vertices. Given a finite graph G, a
function h : G → Kr is simply a labeling of the vertices of G with r colours. The function h
is a homomorphism if, and only if, whenever (a, b) ∈ EG , we have (h(a), h(b)) ∈ EKr , i.e.,
h(a) 6= h(b). Thus, CSP(Kr) is r-Colourability, the problem of deciding whether the
vertices of a given input graph can be coloured with r colours in a way that two adjacent
vertices do not have the same colour. This problem is NP-complete for r ≥ 3 and solvable
in logarithmic space if r ≤ 2.

Example 2. Consider the τGraph-structure Q = (Q;EQ) where (a, b) ∈ EQ if, and only
if, a < b. A directed graph B has a homomorphism to Q if, and only if, B does not
contain any directed cycle. Thus, CSP(Q) is the Digraph-Acyclicity problem and is
NL-complete.

8
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Note that in the previous example, one could have chosen N or Z as a base set without
changing the associated decision problem. Thus, it is possible for two different structures
to have the same CSP.

Example 3. Let τArith = {+,×, 1} be the relational signature where + and × are ternary
relation symbols and 1 is a unary relation symbol. Let Z = (Z; +Z ,×Z , 1Z) be the
following τArith-structure:

• (a, b, c) ∈ +Z if, and only if, a+ b = c,

• (a, b, c) ∈ ×Z if, and only if, a× b = c,

• a ∈ 1Z if, and only if, a = 1.

The problem CSP′(Z) is then easily seen to be equivalent to the problem of deciding
whether a given system of polynomial equations has an integer solution. This problem is
known as Hilbert’s tenth problem and is undecidable [79].

2.2 Primitive Positive Constructions

The computational complexity of CSP(A) is a function of A. In the following, we present
tools that are used to investigate this function. There are several approaches for this inves-
tigation, namely the approach via primitive positive interpretations [46] and the approach
via primitive positive constructions [6]. We present here the latter, for the reasons that it
makes some statements simpler and that it is in general more powerful than the former.

The central notion of this section is the notion of definability of a relation.

Definition 2.3. Let A be a structure and let R ⊆ Ak be a k-ary relation on A. We say
that R is first-order definable (fo-definable) over A if there exists a first-order formula
φ(x1, . . . , xk) such that the equivalence

(a1, . . . , ak) ∈ R⇐⇒ A |= φ(a1, . . . , ak)

holds for all a1, . . . , ak ∈ A. The formula φ is said to be a definition of R over A.

We say thatR is primitively positively definable (pp-definable) overA if in the definition
above one can take φ to be a pp-formula.

For an arbitrary relation R ⊆ Ak over the same domain as the τ -structure A, we write
(A, R) for the expansion of A by R, that is, the structure with signature τ ∪ {?}, where
? is a fresh k-ary relation symbol, and such that ?(A,R) = R and S(A,R) = SA for every
symbol S ∈ τ . For ease of notation, we often assume that R itself is the fresh relation
symbol denoting R.

Lemma 2.2 ([46]). Let A be a relational structure and let R ⊆ Ak be a relation that
has a pp-definition over A. Then CSP(A, R) reduces in logarithmic space to CSP(A). In
particular, if B is a relational structure over the same domain as A and such that every
relation of B has a pp-definition over A, then there is a logspace reduction from CSP(B)
to CSP(A).

We now give an example of how to use Lemma 2.2 to prove hardness of a CSP.

9
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Example 4. Let C5 be the undirected 5-cycle, seen as a τGraph-structure. Let φ(x, y) be
the formula

∃z1, z2 (E(x, z1) ∧ E(z1, z2) ∧ E(z2, y))

and let R be the binary relation defined by φ in C5. First, note that E ⊆ R, since if
(a, b) ∈ E then E(a, b) ∧ E(b, a) ∧ E(a, b) holds, so that by taking z1 := b and z2 := a we
obtain that φ(a, b) holds. Moreover, if a, b are at distance 2 in C5, it is clear that φ(a, b)
holds. Finally, φ(a, a) does not hold for any a ∈ C5. It follows that R is the full irreflexive
relation on C5. In other words, the structure (C5, R) is the complete graph K5 on five
vertices. We saw in Example 1 that CSP(K5) is NP-complete, so that by Lemma 2.2 also
CSP(C5) is NP-complete.

A primitive positive power (pp-power) of A is a structure B with domain Ad, for d ∈ N,
whose k-ary relations are pp-definable when viewed as dk-ary relations over A. Formally,
for every relation RB of B of arity k, there exists a pp-formula φ(x1

1, . . . , x
1
d, . . . , x

k
1, . . . , x

k
d)

in the signature of A such that the equivalence

(a1, . . . , ak) ∈ RB ⇔ A |= φ(a1
1, . . . , a

1
d, . . . , a

k
1, . . . , a

k
d)

holds for all a1, . . . , ak ∈ Ad. Lemma 2.2 trivially generalises to the case that B is a
pp-power of A and gives a reduction from CSP(B) to CSP(A).

Another way to transfer complexity results is with the notion of homomorphic equiva-
lence. Two structures A and B with the same signature are homomorphically equivalent
if there is a homomorphism from A to B and vice versa. It is clear from the definition of
the CSP that if A and B are homomorphically equivalent, then CSP(A) and CSP(B) are
the same computational problem.

A structure B is said to have a primitive positive construction (pp-construction) over
A if it is homomorphically equivalent to a pp-power of A, that is, if there exists a pp-power
C of A such that C and B are homomorphically equivalent. It follows from the previous
remarks that if B has a pp-construction over A, then there is a logspace reduction from
CSP(B) to CSP(A).

Lemma 2.3 ([6]). Let A be a relational structure and let B have a pp-construction over
A. Then there is a logspace reduction from CSP(B) to CSP(A).

Let 1-in-3-Sat be the structure with domain {0, 1} and with one ternary relation
R = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The problem CSP(1-in-3-Sat) is known to be NP-
complete [84], so that we have the following sufficient condition for NP-hardness.

Corollary 2.4. Let A be a relational structure. If 1-in-3-Sat has a pp-construction over
A, then CSP(A) is NP-hard.

Bulatov, Jeavons, and Krokhin [46] noticed that on every example of a finite structure
A such that CSP(A) is NP-complete, the hardness of CSP(A) could be explained by
Corollary 2.4. They conjectured that if A is finite and cannot pp-construct 1-in-3-Sat,
then CSP(A) must be decidable in polynomial time. This conjecture was finally proven
recently and independently by Bulatov [44] and Zhuk [87].

Theorem 2.5 (Finite-domain tractability theorem). Let A be a relational structure with
a finite domain. Then exactly one of the following items holds:

10
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• 1-in-3-Sat has no pp-construction over A and CSP(A) is in P,

• 1-in-3-Sat has a pp-construction over A and CSP(A) is NP-complete.

We stress out the fact that Lemma 2.3 holds for arbitrary relational structures with
finite signature. Therefore, understanding the complexity of CSP(A) for an arbitrary
relational structure A amounts to understanding the complexity of CSP(B), for every B
that has a pp-construction over A. Indeed, for any complexity class C that is closed under
logspace reductions, we obtain that CSP(A) is in C if, and only if, CSP(B) is in C for every
B with a pp-construction over A. This observation is the keystone that holds the edifice
of constraint satisfaction and is the motivation of the model-theoretic, universal-algebraic,
and topological approaches to constraint satisfaction that we present in the next sections1.

2.3 Logic and Model Theory

An embedding h : A ↪→ B is an injective homomorphism A ↪→ B such that the statement
in (2.1) is an equivalence. An isomorphism h : A ∼−→ B is a surjective embedding. An
endomorphism is a homomorphism A → A, a self-embedding is an embedding A ↪→ A,
and an automorphism is an isomorphism A ∼−→ A. We write End(A) and Aut(A) for the
sets of endomorphisms and automorphisms of a relational structure A. Note that when
equipped with composition, End(A) forms a monoid and Aut(A) forms a group.

A τ -structure B is a substructure of the τ -structure A (written B ⊆ A) if:

• B ⊆ A,

• for every relation symbol R ∈ τ of arity k and b1, . . . , bk ∈ B, we have

(b1, . . . , bk) ∈ RB ⇔ (b1, . . . , bk) ∈ RA

• for every function symbol f ∈ τ of arity k and b1, . . . , bk, we have

fB(b1, . . . , bk) = fA(b1, . . . , bk).

If S ⊆ A, we writeA[S] for the structure generated by S in A, i.e., the smallest substructure
B of A and whose domain contains S. If A is a relational structure, then the domain of B
is exactly S and we call A[S] the structure induced by S.

2.3.1 Countable categoricity

A countable structure A is ω-categorical if for every countable structure B satisfying the
same first-order sentences, the structures A and B are isomorphic (i.e., there exists an
isomorphism A ∼−→ B). An algebraic characterization of ω-categorical structures was given
by Ryll-Nardzewski, Engeler, and Svenonius. Let Γ be a subgroup of the full symmetric
group on A. The orbit of a tuple (a1, . . . , an) ∈ An under Γ is the set containing the tuples

1We are guilty of a slight anachronism here, as pp-constructions were discovered rather recently and
after the mentioned approaches. The true motivations rely on related concepts that are not introduced here
and that were subsumed by pp-constructions. We justify this anachronism on the grounds of storytelling.

11
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(α(a1), . . . , α(an)) for α ∈ Γ. For every n ≥ 1, we obtain an equivalence relation on n-
tuples from A: (a1, . . . , an) ∼Γ (b1, . . . , bn) if, and only if, the orbit of (a1, . . . , an) under Γ
is equal to the orbit of (b1, . . . , bn) under Γ. We say that Γ is an oligomorphic permutation
group if for every n ≥ 1 this equivalence relation has only finitely many equivalence classes.

Theorem 2.6 (Ryll-Nardzewski, Engeler, Svenonius, see Theorem 6.3.1 in [56]). Let A
be a countable relational structure with a countable signature. Then the following are
equivalent:

1. A is ω-categorical,

2. Aut(A) is oligomorphic.

Example 5. Let Q = (Q;<) and let Γ = Aut(Q). By definition, Γ contains exactly the
bijective maps α : Q → Q that are increasing. There is only one orbit of elements (i.e.,
1-tuples) under Γ: for arbitrary a, b ∈ Q, the map x 7→ x + (b − a) is an increasing
bijection that maps a to b and therefore a ∼Γ b; we say that Γ is transitive. There are
three orbits of pairs under Γ, namely the sets {(a, b) ∈ Q2 | a < b}, {(a, b) ∈ Q2 | a = b},
and {(a, b) ∈ Q2 | a > b}. Generalizing further, it can be seen that the orbit of an
n-tuple (a1, . . . , an) is completely determined by the weak linear order induced by the
elements a1, . . . , an in Q. In particular, the number of orbits of n-tuples under Γ is finite
and is called the nth Fubini number. As a consequence, Theorem 2.6 implies that Q is
ω-categorical.

Example 6. Let S = (Z; succ), where succ = {(a, b) ∈ Z2 | b = a + 1}. As above, Aut(S)
is transitive, but there are infinitely many orbits of pairs under Aut(S). Indeed, one sees
that (a′, b′) is in the orbit of (a, b) under Aut(S) if and only if b− a = b′ − a′. Therefore,
S is not ω-categorical.

In the light of Theorem 2.6, the class of ω-categorical structures is a natural extension
of the class of finite structures (as Aut(A) is trivially oligomorphic when A is finite). This
pseudo-finiteness allows us to use some forms of “local-to-global” arguments when working
with ω-categorical structures. We give here one example of such arguments.

Proposition 2.7. Let A,B be relational structures with a countable signature and suppose
that A is ω-categorical. There exists a homomorphism B → A if, and only if, there exists
a homomorphism C → A for every finite substructure C of B.

Proof. The left-to-right direction is trivial.
For the converse direction, we build an infinite finitely branching forest T as follows.

Given a finite subset C of B and two maps h, h′ : C → A, define h ∼ h′ if there exists
α ∈ Aut(A) such that h = α ◦ h′. Fix an enumeration (bi)i∈N of B. By assumption, for
every i, there exists a homomorphism B[b0, . . . , bi] → A. Let T be the set of equivalence
classes [h] of homomorphisms h : B[b0, . . . , bi] → A where i ∈ N. Declare that the set
{[h], [g]} is an edge in T if h : B[b0, . . . , bi] → A, g : B[b0, . . . , bi+1] → A, and there exists
α ∈ Aut(A) such that g|{b0,...,bi} = α ◦h. Note that this definition does not depend on the
choice of the representatives of [h] and [g]. Moreover, every class [h] belongs to finitely
many edges in T , by Theorem 2.6 and the assumption that A is ω-categorical. It follows
from König’s tree lemma that T contains an infinite branch that we write ([hi])i∈N. Now,
we define a map g from B to A such that for all i ∈ N, we have g|{b0,...,bi} ∼ hi. We

12
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proceed by induction on i as follows. For i = 0, define g(b0) := h0(b0). It is clear that
g|{b0} ∼ h0. Suppose now that g(bj) has been defined for all j ≤ i and that g|{b1,...,bi} ∼ hi.
Since [hi] is adjacent to [hi+1], there exists α ∈ Aut(A) such that hi+1|{b0,...,bi} = α ◦ hi.
Moreover, since hi is equivalent to g, there exists β ∈ Aut(A) such that hi = β ◦g|{b0,...,bi}.
We obtain that (αβ)−1 ◦ hi+1|{b0,...,bi} = g|{b0,...,bi}. Define g(bi+1) := (αβ)−1 ◦ hi+1(bi+1).
By definition, we have that g|{b0,...,bi+1} ∼ hi+1.

It remains to argue that the map defined above is a homomorphism B → A. Let R
be a relation symbol of arity k from the signature of A and let (c1, . . . , ck) ∈ RB. There
exists an i ∈ N such that c1, . . . , ck ∈ {b0, . . . , bi}. The map hi is a homomorphism, so
that (hi(c1), . . . , hi(ck)) ∈ RA. Since g|{b0,...,bi} ∼ hi, there exists α ∈ Aut(A) such that
g|{b0,...,bi} = α ◦ hi. Since α is an automorphism of A, we obtain that (g(c1), . . . , g(ck)) ∈
RA.

The structure of the previous proof will appear numerous times in this dissertation.
For this to work, the necessary properties of the object that we want to construct are:

• locality (e.g., being a homomorphism is a local property),

• invariance under automorphisms (e.g., if h : B → A is a homomorphism and α ∈
Aut(A), then α ◦ h : B → A is a homomorphism).

Since the condition of being an embedding is also local and invariant under automor-
phisms, one gets that Proposition 2.7 also holds with homomorphisms being replaced by
embeddings.

Orbits are related to the model-theoretic notion of types. The first-order type of a
tuple (a1, . . . , an) ∈ An in A is the set tpA(a) := {φ(x1, . . . , xn) | A |= φ(a1, . . . , an)} of
all first-order formulas that are satisfied by (a1, . . . , an). Note that the type of a tuple
is necessarily an infinite set of formulas, as it contains every tautological formula such as
x1 = x1, x1 = x1 ∨ x1 = x1, . . . as well as every first-order sentence that is true in A.
Moreover, if two tuples are in the same orbit under Aut(A), then they have the same type
in A (this follows from the fact that automorphisms preserve first-order formulas, as we
will see in Section 2.3.3). The converse is true in some structures and in particular it is
true in ω-categorical structures, as we see below.

We say that tpA(a) is isolated by a formula φ if A |= φ(a) holds and every b ∈ An such
that A |= φ(b) satisfies tpA(a) = tpA(b).

Theorem 2.8 (Theorem 6.3.1 and Corollary 6.3.3 in [56]). Let A be an ω-categorical
structure. Let a, b ∈ An. Then a and b are in the same orbit under Aut(A) if, and only
if, they have the same type in A. Moreover, every type is isolated by a first-order formula.

2.3.2 Homogeneity

In Example 5, we saw that not only the orbits of pairs in Q are definable (which also
follows from Theorem 2.8), but they are even definable by quantifier-free first-order for-
mulas. This comes from the fact that for every first-order formula φ(x1, . . . , xn), there
exists a quantifier-free formula ψ(x1, . . . , xn) such that Q |= ∀x1, . . . , xn(φ(x1, . . . , xn) ⇔
ψ(x1, . . . , xn)). We say that Q admits quantifier elimination. We describe in this section
an important class of ω-categorical structures that admit quantifier elimination, and a
generic way of constructing structures in this class.
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Definition 2.4. Let A be a structure in a relational language. We say that A is homo-
geneous if for all finite isomorphic substructures B, C of A (i.e., substructures for which
there exists f : B ∼−→ C), there exists an automorphism α ∈ Aut(A) that extends f .

Proposition 2.9. Let A be a relational structure. Then A is ω-categorical and admits
quantifier elimination if, and only if, A is homogeneous.

The age of a structure A is the class Age(A) of all finite structures B that embed into
A, i.e., for which there exists an embedding B ↪→ A. If A is homogeneous, one sees that
Age(A) is closed under isomorphisms and has the following properties:

Hereditary Property For every B in Age(A) and every substructure C of B, one has
C ∈ Age(A).

Amalgamation Property For all B1,B2 ∈ Age(A) and all ei : C ↪→ Bi (i ∈ {1, 2})
embeddings, there exist a structure D ∈ Age(A) and embeddings fi : Bi ↪→ D such
that f1 ◦ e1 = f2 ◦ e2.

A class C of finite structures is called an amalgamation class if it is closed under
isomorphisms and satisfies the two properties above.

Theorem 2.10 (Fräıssé [53], see also Theorem 6.1.2 in [56]). Let C be a class of finite
structures. Then C is an amalgamation class if, and only if, there exists a countable
homogeneous structure A such that C = Age(A). Moreover, A is unique up to isomorphism
among the class of countable homogeneous structures.

The structure A in the statement above is called the Fräıssé limit of C.

Example 7. Let LO be the class of all finite linear orders. One sees that LO is an amal-
gamation class, which means that LO has a Fräıssé limit. It is clear that LO = Age(Q)
and Q is a countable homogeneous structure, thus Q is the Fräıssé limit of LO. Note that
Age(Z;<) is also LO, and that (Z;<) and (Q;<) are not isomorphic.

2.3.3 Preservation

Let f : An → A be an operation on A and let R ⊆ Ak be a relation. We say that f
preserves R, or that R is invariant under f , if for every t

1
, . . . , t

n ∈ R the k-tuple

f(t
1
, . . . , t

n
) := (f(t11, . . . , t

n
1 ), . . . , f(t1k, . . . , t

n
k))

obtained by applying f to t
1
, . . . , t

n
componentwise is in R. Given a set F of functions on

A, we write Inv(F ) for the set of relations on A that are invariant under every function
in F .

Definition 2.5. Let A be a relational structure and let f be an operation on A. We say
that f is a polymorphism of A if f preserves every relation of A. We write Pol(A) for the
set of all polymorphisms of A.

Note that the unary polymorphisms of a structure are exactly its endomorphisms.
Define the existential positive (ep) fragment of first-order logic to be the set of first-

order formulas that are built using conjunctions, disjunctions, and existential quantifica-
tions. A relation is said to be existentially positively definable (ep-definable) in A if it is
defined by an existential positive formula.
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Lemma 2.11. Let A be a relational structure and let R ⊆ Ak be a relation on the domain
of A.

1. If R is first-order definable over A, then R is invariant under all automorphisms of
A, i.e., R ∈ Inv(Aut(A));

2. If R is existentially positively definable over A, then R is invariant under all endo-
morphisms of A;

3. If R is primitively positively definable over A, then R is invariant under all poly-
morphisms of A.

For an arbitrary structure A, it is not true that if R is preserved by all automorphisms
of A (resp. endomorphisms, polymorphisms), then R is fo-definable (resp. ep-, pp-) over
A. However, this implication holds for the class of ω-categorical structures. We write
〈A〉fo for the set of relations that are fo-definable over A and define similarly 〈A〉ep and
〈A〉pp.

Theorem 2.12 (Bodirsky, Nešetřil [32]). Let A be an ω-categorical structure and let
R ⊆ Ak be a relation on the domain of A. Then R is first-order definable over A if,
and only if, R is invariant under all automorphisms of A, i.e., 〈A〉fo = Inv(Aut(A)).
Similarly, the equalities 〈A〉ep = Inv(End(A)) and 〈A〉pp = Inv(Pol(A)) hold.

A consequence of the third equality in Theorem 2.12 is that if Pol(A) ⊆ Pol(B) and
A is ω-categorical, then all the relations of B are pp-definable over A. The converse is
true (even for arbitrary structures A), thus giving an algebraic characterization of when
Lemma 2.2 can be applied.

Corollary 2.13. Let A and B be relational structures, and assume that A is ω-categorical.
Then Pol(A) ⊆ Pol(B) if, and only if, all the relations of B are pp-definable over A. In
particular, if Pol(A) ⊆ Pol(B) then CSP(B) reduces to CSP(A).

A similar characterisation of when Lemma 2.3 can be applied exists (under some con-
ditions) and necessitates notions from universal algebra and topology.

2.4 Topology

Let B be a countable set, and let k ≥ 1. The set O(k)
B of all maps from Bk to B can be

endowed with a natural metric, that is, a map d : O(k)
B ×O

(k)
B → R satisfying the following

properties:

• d(f, f) = 0 for all f ∈ O(k)
B ,

• d(f, g) = d(g, f) for all f, g ∈ O(k)
B ,

• d(f, g) ≤ d(f, h) + d(g, h) for all f, g, h ∈ O(k)
B .
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This metric can be defined as follows. Fix an enumeration (bn)n∈N of the k-tuples of B.
Define d(f, g) to be 0 if f = g, and otherwise to be 1

2n , where n is the smallest index such
that f(bn) 6= g(bn).

While the definition of the metric depends on the enumeration of Bk that we chose,

the topology that is induced on O(k)
B by any two such metrics is the same. We call this

topology the topology of pointwise convergence. A basic open set in this topology is a set

of the form Ua,b := {f ∈ O(k)
B | f(a) = b}, where a ∈ Bk and b ∈ B. Let (fn)n∈N be a

sequence of functions in O(k)
B , and let g ∈ O(k)

B . We say that fn converges to g (or that g
is a limit of (fn)n∈N) if for every finite set S ⊆ B, there exists N ∈ N such that for every

n ≥ N , we have fn|S = g|S . Given a set F of functions in O(k)
B , we write F for the set of

limits of sequences from F .

We endow OB := ∪k≥1O
(k)
B with the disjoint union topology. Let B ⊆ OB and

C ⊆ OC .
If B and C are endowed with the corresponding subspace topology, an arity-preserving

function ξ : B → C is continuous if for every finite subset C ′ ⊂ C of C and every f ∈ B,
there exists a finite subset B′ ⊂ B of B such that for every g ∈ B with the same arity as
f , if f |B′ = g|B′ then ξ(f)|C′ = ξ(g)|C′ . We say that ξ : B → C is uniformly continuous if
the set B′ only depends on C ′ and not on f . Of particular interest for us will be the case
when C is itself a finite set. Then, ξ is uniformly continuous if, and only if, for every k ≥ 1
there exists B′ ⊂ B such that f |B′ = g|B′ implies ξ(f) = ξ(g) for all f, g ∈ B of arity k.
Note that if B is finite, every arity-preserving map ξ : B → C is uniformly continuous.

2.5 Universal Algebra

2.5.1 Clones

So far, we have only seen Pol(A) as a set of functions. It is a simple observation that if
f ∈ Pol(A) is an n-ary polymorphism of A and g1, . . . , gn are m-ary polymorphisms of A,
then

f ◦ (g1, . . . , gn) : (a1, . . . , am) 7→ f(g1(a), . . . , gn(a))

is an m-ary polymorphism of A. Moreover, let πmi : Am → A denote the ith m-ary
projection on A. Then for all m ≥ 1 and i ∈ {1, . . . ,m}, the function πmi is in Pol(A).

Definition 2.6. Let A be a set of operations on A. We say that A is a clone if it contains
the projections on A and is closed under compositions.

Thus, Pol(A) is a clone for every relational structure A. Moreover, the composition
operation on Pol(A) is continuous. We say that Pol(A) is a topological clone. It is an easy
exercise to show that Pol(A) is a closed subset of OA, that is, that the limit of a converging
sequence of polymorphisms of A is again a polymorphism of A. Given two operations f, g
on A and a set of unary functions U on A, we say that f is interpolated by g modulo
U if f ∈ {ug(v1, . . . , vk) | u, v1, . . . , vk ∈ U }. We also write U gU for {ug(v1, . . . , vk) |
u, v1, . . . , vk ∈ U }. We say that f is generated by g modulo U if f is contained in
the smallest closed clone containing g and U . Since Pol(A) is a closed clone for every
relational structure A, if g ∈ Pol(A) and U ⊆ End(A), we obtain that f ∈ Pol(A) if f is
interpolated or generated by g modulo U .
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Definition 2.7. Let A and B be two clones on the sets A and B. A clone homomorphism
is a map ξ : A → B such that:

• if f ∈ A has arity n, then ξ(f) has arity n,

• for every n ≥ 1 and i ∈ {1, . . . , n}, ξ(πni ) = πni ,

• for every n-ary f ∈ A and m-ary g1, . . . , gn ∈ B, one has

ξ(f ◦ (g1, . . . , cn)) = ξ(f) ◦ (ξ(g1), . . . , ξ(gn)).

One sees from the definition that clone homomorphisms preserve identities. Identities
will only be defined formally in the next subsection, so we rather give here an example.
Consider the case that A contains a binary function f that is associative, that is, satisfies
f(a, f(b, c)) = f(f(a, b), c) for all a, b, c ∈ A. One can rewrite this as f(π3

1, f(π3
2, π

3
3)) =

f(f(π3
1, π

3
2), π3

3). If ξ : A → B is a clone homomorphism, then ξ(f)(π3
1, ξ(f)(π3

2, π
3
3)) =

ξ(f)(ξ(f)(π3
1, π

3
2), π3

3) holds, so that the function ξ(f) ∈ B is also associative. Barto,
Opršal, and Pinsker [6] gave a weaker notion of homomorphism between clones and showed
its tight connection with pp-constructions.

Definition 2.8. Let A and B be two clones on the sets A and B. A clonoid homomor-
phism is a map ξ : A → B such that:

• if f ∈ A has arity n, then ξ(f) has arity n,

• for every n-ary f ∈ A and m-ary projections g1, . . . , gn, one has

ξ(f ◦ (g1, . . . , gn)) = ξ(f) ◦ (g1, . . . , gn).

Note that a clonoid homomorphism need not map πni to πni .

Theorem 2.14 ([6]). Let A be an ω-categorical structure and let B be finite. Let A =
Pol(A) and B = Pol(B). The following are equivalent:

1. B has a pp-construction over A,

2. there exists a uniformly continuous clonoid homomorphism A
u.c.c.h.−−−−→ B.

The implication (1.)⇒ (2.) holds for arbitrary structures A and B.

This gives the desired algebraic characterisation of when Lemma 2.3 can be applied,
at least when B is finite. In particular, we obtain the following pendant to Corollary 2.4.
Let P = Pol(1-in-3-Sat).

Corollary 2.15. Let A be an ω-categorical structure. If there is a uniformly continuous

clonoid homomorphism Pol(A)
u.c.c.h.−−−−→P, then CSP(A) is NP-hard.
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2.5.2 Identities

Another way of studying the question of when B is pp-constructible in A is to study the
identities that are true in Pol(A) and Pol(B). Let X be a set and let σ be a functional
signature. The set of σ-terms over X is the smallest set of expressions t(x1, . . . , xn) (with
x1, . . . , xn ∈ X) such that:

• xi(x1, . . . , xn) is a term (often denoted by xi when x1, . . . , xn are clear from the
context),

• if t1(x1, . . . , xn), . . . , tk(x1, . . . , xn) are terms and f ∈ σ is a symbol of arity k, then
(f(t1, . . . , tk))(x1, . . . , xn) is a term.

We say that a term has height 1 if it is of the form f(x1, . . . , xn) for f ∈ σ.
A σ-identity is formally a pair (s(x1, . . . , xn), t(x1, . . . , xn)) of σ-terms. We write iden-

tities as equations s(x1, . . . , xn) ≈ t(x1, . . . , xn). We say that a set Σ of σ-identities is
satisfiable in a clone A if there exists a map ξ : σ → A such that for all (s, t) ∈ Σ the
statement

∀a1, . . . , an ∈ A, ξ(s)(a1, . . . , an) = ξ(t)(a1, . . . , an)

holds (where ξ is extended from σ to the set of σ-terms in the natural way). An identity
s ≈ t is said to have height 1 if both s and t have height 1.

The following proposition follows directly from the definitions.

Proposition 2.16. Let A ,B be two clones. The following are equivalent:

1. every set of height 1 identities that is satisfiable in A is satisfiable in B,

2. there exists a (not necessarily uniformly continuous) clonoid homomorphism A →
B.

The previous statement has a very important corollary. If A and B are finite structures
such that Pol(A) and Pol(B) satisfy the same height 1 identities, then there are clonoid
homomorphisms Pol(A) → Pol(B) and Pol(B) → Pol(A). Since the structures are finite
these homomorphisms are automatically uniformly continuous, so that by Theorem 2.14
and Lemma 2.3 we obtain that CSP(A) and CSP(B) have the same complexity up to
logspace reductions. In other words, the complexity of finite-domain CSPs is completely
encoded into height 1 identities.

Consider again the case of 1-in-3-Sat and its clone of polymorphisms. It can be seen
that P consists only of projection operations. Therefore, P ⊆ A for every clone A ,
so that the only identities that are satisfiable in P are the identities that are satisfiable
in every clone A . We call these identities trivial . We give now some examples of im-
portant non-trivial identities. A cyclic operation is a function f : An → A (for n ≥ 2)
such that ∀a1, . . . , an ∈ A, f(a1, . . . , an) = f(a2, . . . , an, a1). A weak near-unanimity op-
eration is a function f : An → A (for n ≥ 3) such that for all a, b ∈ A, f(a, b, . . . , b) =
f(b, a, b, . . . , b) = · · · = f(b, . . . , b, a). A Siggers operation is a function f : A6 → A such
that for all a, b, c ∈ A, f(a, b, a, c, b, c) = f(b, a, c, a, c, b). It is easy to see that no projec-
tion can be cyclic, a weak near-unanimity, or a Siggers operation, so that these are indeed
examples of non-trivial identities. These identities are in fact “minimally non-trivial” for
clones of operations on a finite set, in the sense of the following theorem.
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Theorem 2.17 ([4, 6, 54, 78]). Let A be a clone on a finite set. The following are
equivalent:

1. There is no clonoid homomorphism A
c.h.−−→P,

2. A satisfies a non-trivial identity,

3. A contains a weak near-unanimity operation,

4. A contains a cyclic operation,

5. A contains a Siggers operation.

Note that by the finite-domain dichotomy theorem (Theorem 2.5), if A is a finite
structure such that Pol(A) contains one of the operations in the previous statement, then
CSP(A) is in P!

The role of identities for infinite-domain constraint satisfaction is less clear than in
the finite case for two reasons. First, Theorem 2.14 does not hold in general if A is
not ω-categorical; thus, it is a possibility that Pol(A) does not satisfy any nontrivial
identities while CSP(A) is in P. Conversely, it is possible to construct structures with a
binary cyclic polymorphism and an undecidable CSP. Secondly, even for an ω-categorical
structure A, Theorem 2.14 is about algebraic and topological properties of Pol(A), while
Proposition 2.16 is purely algebraic. Therefore, knowing that Pol(A) does not satisfy
any nontrivial height 1 identities gives a clonoid homomorphism Pol(A) → P that is
not necessarily uniformly continuous and is a priori not enough to prove that CSP(A) is
NP-hard.

2.6 Model-completeness, Cores

We have seen with Example 2 that several templates can have the same CSP. For ω-
categorical structures, there is however a canonical template.

A finite or countably infinite ω-categorical structure A is called a core if all endomor-
phisms of A are embeddings, and it is called model-complete if all embeddings of A into
A preserve all first-order formulas.

Theorem 2.18 (Theorem 16 in [10]). Every ω-categorical structure A is homomorphically
equivalent to an ω-categorical model-complete core, which is up to isomorphism unique and
embeds into A.

Note that since A and its model-complete core are homomorphically equivalent, they
have pp-constructions in one another and their CSP has the same complexity.

Proposition 2.19 (Theorem 18 in [10]). For a countable ω-categorical structure A, the
following are equivalent.

• A is a model-complete core;

• the orbits of tuples under Aut(A) are pp-definable in A;

• End(A) = Aut(A), that is, every endomorphism of A is a limit of automorphisms.
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B has a pp-construction in A Pol(A)
u.c.c.h.−−−−→ Pol(B)

Pol(A)
c.h.−−→ Pol(B)

every height 1 identity in
Pol(A) is satisfiable in Pol(B)

Theorem 2.14

Prop. 2.16

Figure 2.1: A is an ω-categorical structure and B is a finite structure. The conditions in
the bottom row imply that CSP(B) reduces to CSP(A).

By the previous proposition, a model-complete core A has the property that expanding
A by a relation symbol for every orbit of tuples under Aut(A) does not change the com-
plexity of the CSP, since these relations are pp-definable in A. It is also possible to name
individual elements of A by unary singleton relations without changing the complexity of
the CSP:

Proposition 2.20 (Bodirsky [10], Barto, Opršal, Pinsker [6]). Let A be an ω-categorical
model-complete core, and let a ∈ A. The structure (A, a) has a pp-construction in A, and
in particular CSP(A, {a}) and CSP(A) have the same complexity.

Note that if A is finite and is a core (model-completeness is a vacuous condition for
finite structures), then one can add a unary relation for each element of the domain of
A. Let B be the resulting structure, that is, B is (A, a1, . . . , an) where A = {a1, . . . , an}.
The polymorphisms of B are idempotent , that is, every polymorphism f ∈ Pol(B) satisfies
f(a, . . . , a) = a for all a ∈ A. For finite idempotent clones, another equivalent condition
can be added to Theorem 2.17. We will give this equivalent condition in Chapter 4, and
it will be at the heart of our lifting techniques in Chapters 4 and 5.

For ω-categorical model-complete cores, Barto and Pinsker [7] recently proved a state-
ment analogous to Theorem 2.17. Let U be a set of unary functions on A. A pseudo-
Siggers operation modulo U is a function f : A6 → A such that there exists e1, e2 ∈ U
such that e1f(a, b, a, c, b, c) = e2f(b, a, c, a, c, b) holds for all a, b, c ∈ A.

Theorem 2.21 ([2, 7]). Let A be an ω-categorical structure and let B be its model-complete
core. The following are equivalent:

1. there is no uniformly continuous clonoid homomorphism Pol(A)
u.c.c.h.−−−−→P,

2. Pol(B) contains a pseudo-Siggers operation modulo End(B).

Note that in the previous statement, the first item is a statement about the algebraic
and topological structure of Pol(A) and Pol(B). The second item, however, is a purely
algebraic statement about Pol(B). We give a summary of the main statements in this
section in Figure 2.1 and Figure 2.2.
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1-in-3-Sat has a pp-construction in A Pol(A)
u.c.c.h.−−−−→P

Pol(A)
c.h.−−→P

Pol(A) does not satisfy any
non-trivial height 1 identity

Figure 2.2: A is an ω-categorical structure. The conditions in the bottom row imply that
CSP(A) is NP-hard.

2.7 The Infinite-Domain Tractability Conjecture

Finally, we present here the infinite-domain tractability conjecture by Bodirsky and Pinsker,
or rather an equivalent form thereof. The algebraic and topological notions involved in the
statement have been presented above; it remains now to define the scope of the conjecture.
We have seen that an algebraic and topological approach to complexity is available for
CSPs of ω-categorical structures, and it would therefore be natural to assume that the
complexity of said CSPs is well-behaved. However, Bodirsky and Grohe [16] proved that
there are ω-categorical (and even homogeneous) structures whose CSP is in coNP but is
neither in P nor coNP-complete (if P 6= NP). Their constructions rely on structures that
are not finitely bounded, in the following sense.

For a set F of τ -structures, let Forbind(F) be the set of finite τ -structures A such that
for every F ∈ F, there is no embedding of F into A. A relational structure B is called
finitely bounded if there exists a finite set of finite structures F (the bounds) such that
Age(B) = Forbind(F).

Example 8. Consider the Henson graph H3, which is uniquely defined up to isomorphism
by the properties that it is homogeneous and is such that a finite graph G is an induced
subgraph of H3 if, and only if, G does not contain any triangle. Let F = {K3}. By
definition, we have Age(H3) = Forbind(F), so that H3 is an example of a finitely bounded
structure.

Let A and B be two relational structures. We say that A is a first-order reduct of B if
A and B have the same domain and every relation of A is definable in B by a first-order
formula. Note that Theorem 2.6 and Lemma 2.11 imply that if B is ω-categorical then A
is as well.

Conjecture 1 (Infinite-domain tractability conjecture; see e.g. [2, 6, 37]). Let A be a
first-order reduct of a finitely bounded homogeneous structure. If there is no uniformly

continuous clonoid homomorphism Pol(A)
u.c.c.h.−−−−→P, then CSP(A) is solvable in polyno-

mial time.

To this date, Conjecture 1 has been confirmed in a number of special cases. In partic-
ular, the conjecture holds in the case that A is a first-order reduct of:

• (A,=), the naked structure;
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• (Q, <);

• any countable homogeneous undirected graph.

In the next chapters, we prove the conjecture in the following cases:

• For every finitely bounded homogeneous structure B, we prove that there exists a
relation RB such that for every first-order reduct A of B, the structure (A, RB)
satisfies Conjecture 1.

• We prove that every first-order reduct of a unary structure satisfies the dichotomy.

• Finally, we prove that the class of CSPs expressible in the logic MMSNP satisfies the
dichotomy.
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Chapter 3

Equations and Tractability Conditions

Finite-domain CSPs are much better understood than their infinite counterpart, mainly
because the theory of finite algebras is much better understood than the theory of infinite
algebras. Thus, a possible approach for the study of infinite-domain CSPs is to reduce
them to finite-domain CSPs in a controlled way. In this chapter, we prove that this
approach is indeed possible and we present a polynomial-time reduction from infinite-
domain constraint satisfaction problems to finite-domain constraint satisfaction problems.
This reduction applies to the CSP of every structure A that is a quantifier-free reduct of
a finitely bounded structure. Moreover, the reduction preserves the algebraic properties
of A, and we leverage this to obtain new abstract algebraic tractability conditions. This
chapter contains published results from [30].

3.1 The Type Structure

Write [n] for the set {1, . . . , n}. The quantifier-free (qf-) type of a tuple (b1, . . . , bm) in B
is the set of all quantifier-free formulas φ(z1, . . . , zm) such that B |= φ(b1, . . . , bm). If B
has a finite relational signature then there are only finitely many quantifier-free m-types
in B.

Let m be a positive integer and let A be a structure whose relations are definable in
B by a quantifier-free formula (i.e., A is a quantifier-free reduct of B). We define TB,m(A)
to be the relational structure whose domain is the set of quantifier-free m-types of B and
whose relations are as follows.

• For each symbol R of A of arity r, let χ(z1, . . . , zr) be a definition of R in B. For
i : [r] → [m] we write 〈χ(zi(1), . . . , zi(r))〉 for the unary relation that consists of all
the types that contain χ(zi(1), . . . , zi(r)), and add all such relations to TB,m(A)1.

• For each r ∈ [m] and i, j : [r] → [m], define Compi,j to be the binary relation
that contains the pairs (p, q) of m-types such that for every quantifier-free for-
mula χ(z1, . . . , zs) of B and t : [s] → [r], the formula χ(zit(1), . . . , zit(s)) is in p iff
χ(zjt(1), . . . , zjt(s)) is in q.

1In the following, we use functions to index tuples. This notation allows us to avoid double-subscripting
and to conveniently talk about subtuples.
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Note that if (a1, . . . , am) is of type p and (b1, . . . , bm) of type q, then Compi,j(p, q) holds
if and only if (ai(1), . . . , ai(r)) and (bj(1), . . . , bj(r)) have the same type in B. Also note
that if i : [m]→ [m] is the identity map, then Compi,i denotes the equality relation on the
domain of TB,m(A).

The next theorem holds for arbitrary finitely bounded structures B.

Theorem 3.1. Let A be a quantifier-free reduct of a finitely bounded structure B, and
suppose that A has a finite signature. Let ma be the maximal arity of a relation in A or
B, and mb be the maximal size of a bound for B. Let m be at least max(ma + 1,mb, 3).
Then there is a polynomial-time reduction from CSP(A) to CSP(TB,m(A)).

We give in the next section a sufficient condition for the existence of a polynomial-time
reduction in the other direction, from CSP(TB,m(A)) to CSP(A).

Proof of Theorem 3.1. Let Ψ be an instance of CSP(A), and let V = {x1, . . . , xn} be the
variables of Ψ. Assume without loss of generality that n ≥ m. We build an instance Φ of
CSP(TB,m(A)) as follows.

• The variable set of Φ is the set I of increasing functions2 from [m] to V (where the
variables are endowed with an arbitrary linear order). The idea of the reduction is
that the variable v ∈ I of Φ represents the qf-type of (h(v(1)), . . . , h(v(m))) in a
satisfying assignment h for Ψ.

• For each conjunct ψ of Ψ we add unary constraints to Φ as follows. The formula
ψ must be of the form R(j(1), . . . , j(r)) where R is a relation of A and j : [r]→ V .
By assumption, R has a qf-definition χ(z1, . . . , zr) over B. Let v ∈ I be such that
im(j) ⊆ im(v). Let U be the relation symbol of TB,m(A) that denotes the unary
relation 〈χ(zv−1j(1), . . . , zv−1j(r))〉. We then add U(v) to Φ.

• Finally, for all u, v ∈ I let k : [r] → im(u) ∩ im(v) be a bijection. We then add the
constraint Compu−1k,v−1k(u, v).

Before proving that the given reduction indeed works, we give an illustrating example.

Example 9. Let A be (N; =, 6=). We illustrate the reduction with the concrete instance

x1 = x2 ∧ x2 = x3 ∧ x3 = x4 ∧ x1 6= x4 .

of CSP(A). The structure (N; =, 6=) is a reduct of the homogeneous structure with domain
N and the empty signature, which has no bounds. We have in this example m = 3.

The structure TB,3(A) has a domain of size five, where each element corresponds to a
partition of {z1, z2, z3}. The structure has a unary relation U1 for 〈z2 = z3〉, containing all
partitions in which z2 and z3 belong to the same part. Similarly, the structure has a relation
U2 for 〈z1 = z3〉, U3 for 〈z1 = z2〉, V1 for 〈z2 6= z3〉, V2 for 〈z1 6= z3〉, and V3 for 〈z1 6= z2〉.
The instance Φ of CSP(TB,3(A)) that our reduction creates has four variables, for the four
order-preserving injections from [3]→ {x1, x2, x3, x4} (where we order x1, . . . , x4 according
to their index). Call v1, v2, v3, v4 these variables, where im(vj) = {x1, . . . , x4} \ {xj}. We
then have the following constraints in Φ:

2One could take I to be the set of all functions [m] → V without any change to the reduction. We
choose here to only take increasing functions so that the presentation of the example below is more concise.
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• U3(v3) and U3(v4) for the constraint x1 = x2 in Ψ;

• U1(v4) and U3(v1) for the constraint x2 = x3 in Ψ;

• U1(v2) and U1(v1) for the constraint x3 = x4 in Ψ;

• V2(v2) and V2(v3) for the constraint x1 6= x4 in Ψ.

For the compatibility constraints we only give an example. Let k, k′ : [2] → [4] be such
that k(1, 2) = (1, 3) and k′(1, 2) = (1, 2). Then Compk,k′(v4, v2) and Compk′,k′(v4, v3) are
in Φ.

We now prove that the reduction is correct. Let h : V → B be an assignment of the
variables to the domain of B. Let χ(z1, . . . , zr) be a qf-formula in the language of B, let
j : [r]→ V , and let v in I be such that im(j) ⊆ im(v). We first note the following property:

B |= χ(h(j(1)), . . . , h(j(r)))

iff (h(v(1)), . . . , h(v(m))) satisfies χ(zv−1j(1), . . . , zv−1j(r)) in B. (‡)

The property (‡) holds since in the type of the tuple (h(v(1)), . . . , h(v(m))), the variable
zi represents the element h(v(i)), and therefore zv−1j(i) represents h(j(i)).

(Ψ satisfiable implies Φ satisfiable.) Suppose that h : V → B satisfies Ψ in A. To
show that Φ is satisfiable in TB,m(A) define g : I → TB,m(A) by setting g(v) to be the type
of (h(v(1)), . . . , h(v(m))) in B, for every v ∈ I. To see that all the constraints of Φ are
satisfied by g, let U(v) be a constraint in Φ that has been introduced for a conjunct of
the form R(j(1), . . . , j(r)) in Ψ, where j : [r]→ V . Let χ(z1, . . . , zr) be a qf-formula that
defines R in B. Then

A |= R(h(j(1)), . . . , h(j(r)))

⇒ B |= χ(h(j(1)), . . . , h(j(r)))

⇒ χ(zv−1j(1), . . . , zv−1j(m)) ∈ g(v) (because of (‡))
⇒ TB,m(A) |= U(g(v)).

Next, consider a constraint of the form Compu−1k,v−1k(u, v) in Φ, and let r := |im(k)|.
Let χ(z1, . . . , zs) be a qf-formula in the language of B and let t : [s] → [r]. Suppose that
χ(zu−1kt(1), . . . , zu−1kt(s)) is in g(u). From (‡) we obtain that B |= χ(h(kt(1)), . . . , h(kt(s))).
Again by (‡) we get that χ(zv−1kt(1), . . . , zv−1kt(s)) is in g(v). Hence,

TB,m(A) |= Compu−1k,v−1k(g(u), g(v))

holds.
(Φ satisfiable implies Ψ satisfiable.) Conversely, suppose that Φ is satisfiable in

TB,m(A). That is, there exists a map h from I to the m-types in B that satisfies all
conjuncts of Φ. We show how to obtain an assignment {x1, . . . , xn} → A that satisfies
Ψ in A. Define an equivalence relation ∼ on V as follows. Let x, y ∈ V . Let u ∈ I be
such that there are p, q ∈ [m] such that u(p) = x and u(q) = y. We define x ∼ y if, and
only if, h(u) contains the formula zp = zq. Note that the choice of u is not important:
if u′, p′, q′ are such that u′(p′) = x and u′(q′) = y, the intersection of im(u) and im(u′)
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contains {x, y}. Let k : [r]→ im(u)∩ im(u′) be a bijection. By construction, the constraint
Compu−1k,u′−1k(u, u

′) is satisfied by h, which by definition of the relation means that h(u)
contains zp = zq iff h(u′) contains zp′ = zq′ .

We prove that ∼ is an equivalence relation. Reflexivity and symmetry are clear from
the definition. Assume that x ∼ y and y ∼ z. Let w ∈ I, p, q, r be such that w(p) =
x,w(q) = y, and w(r) = z, which is possible since m ≥ 3. Since x ∼ y, the previous
paragraph implies that h(w) contains the formula zp = zq. Similarly, since y ∼ z, the
formula zq = zr is in h(w). Since h(w) is a type, transitivity of equality implies that
zp = zr is in h(w), so that x ∼ z.

Define a structure C on V
/
∼ as follows. For every k-ary relation symbol R of B and k

elements [y1], . . . , [yk] of V
/
∼ , let w ∈ I, p1, . . . , pk ∈ [m] be such that w(pi) = yi (such a

w exists since m ≥ k). Add the tuple ([y1], . . . , [yk]) to RC if and only if h(w) contains the
formula R(zp1 , . . . , zpk). As in the paragraph above, this definition does not depend on the
choice of the representatives y1, . . . , yk or on the choice of w. Proving that the definition
does not depend on w is straightforward. Suppose now that y1 ∼ y′1, and let w ∈ I be
such that (w(p1), . . . , w(pk)) = (y1, . . . , yk) and such that h(w) contains R(zp1 , . . . , zpk).
Let w′ ∈ I be such that (w′(q), w′(p′1), . . . , w′(p′k)) = (y′1, y1, y2, . . . , yk), which is possible
since m ≥ k + 1. We prove that h(w′) contains R(zq, zp′2 , . . . , zp′k). Since y ∼ y′, we have
that h(w′) contains zq = zp′1 . Moreover, the images of w′ and w intersect on y1, . . . , yk,
and since h satisfies the Comp constraints, we obtain that h(w′) contains R(zp′1 , . . . , zp′k).
It follows that h(w′) contains R(zq, zp′2 , . . . , zp′k). Therefore, the definition of R in C does
not depend on the choice of the representative for the first entry of the tuple. By iterating
this argument for each coordinate, we obtain that RC is well-defined.

We claim that C embeds into B. Otherwise, there would exist a bound D of size k ≤ m
for B such that D embeds into C. Let [y1], . . . , [yk] be the elements of the image of D under
this embedding. Since k ≤ m, there exist w ∈ I, p1, . . . , pk such that (w(p1), . . . , w(pk)) =
(y1, . . . , yk). The quantifier-free type of ([y1], . . . , [yk]) in C is in h(w), by the previous
paragraph. It follows that if (a1, . . . , am) ∈ Bm is a tuple whose quantifier-free type is
h(w), there is an embedding of D into the substructure of B induced by {a1, . . . , am}. This
contradicts the fact that D does not embed into B.

Let e be an embedding C ↪→ B. For x ∈ V define f(x) := e([x]). We claim that
f : {x1, . . . , xn} → A is a valid assignment for Ψ. Let R(j(1), . . . , j(r)) be a constraint
from Ψ, where j : [r] → V . Let v ∈ I be such that im(j) ⊆ im(v), and such that
the constraint 〈χ(zv−1j(1), . . . , zv−1j(r))〉(v) is in Φ. Since h satisfies this constraint, h(v)
contains χ(zv−1j(1), . . . , zv−1j(r)). It follows that C |= χ([j(1)], . . . , [j(r)]). Since e embeds
C into B, we obtain B |= χ(f(j(1)), . . . , f(j(r))), whence A |= R(f(j(1)), . . . , f(j(r))), as
required.

The given reduction can be performed in polynomial time: the number of variables in
the new instance is in O(nm), and if c is the number of constraints in Ψ, then the number
of constraints in Φ is in O(cnm + n2m). Each of the new constraints can be constructed
in constant time.

We mention that the reduction is in fact a first-order reduction. Indeed, given an input
C to CSP(A), the corresponding input D of CSP(TB,m(A)) that we build is definable by
first-order formulas (the domain of D is the set of m-tuples from C, and each constraint
in D is definable in terms of the constraints of C (see [1] for a formal definition of first-
order reductions). Since first-order reductions have low complexity [60], we obtain that if
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CSP(TB,m(A)) is solvable by Datalog or is in L, then so is CSP(A).
We also note that Theorem 3.1 applies to all CSPs that can be described by an SNP

sentence (SNP is defined in Chapter 5; for SNP in connection to CSPs see, e.g., [52]).

3.2 Canonical Functions

Since CSP(A) reduces to CSP(TB,m(A)) when A is a quantifier-free reduct of the finitely
bounded structure B, we can derive upper bounds on the complexity of CSP(A) from upper
bounds on the complexity of CSP(TB,m(A)). We know from Section 2.5.2 that the com-
plexity of CSP(TB,m(A)) is encoded into the identities that are satisfiable in Pol(TB,m(A)),
since TB,m(A) is a finite structure. In this section, our goal is then to investigate the struc-
ture of Pol(TB,m(A)), especially in the case that B is homogeneous.

Remember that the domain of TB,m(A) consists of the quantifier-free types in B. When
B is homogeneous, we have by Proposition 2.9 and Theorem 2.8 that the quantifier-free
types correspond to orbits of tuples under Aut(B). A polymorphism of TB,m(A) is therefore
an operation on the set of orbits of m-tuples under Aut(B). This motivates the following

definition. Let Am
/

Aut(A) be the set of orbits of m-tuples under the natural action of

Aut(A) on Am.

Definition 3.1. Let A,B be two structures. A function f : Ak → B is canonical from
A to B if for all m ≥ 1, all m-tuples t1, . . . , tk ∈ Am and all α1, . . . , αk ∈ Aut(A), there
exists β ∈ Aut(B) such that βf(t1, . . . , tk) = f(α1(t1), . . . , αk(tk)).

One can rephrase Definition 3.1 as follows. A function f : Ak → B is canonical from A
to B if for all m ≥ 1 it induces a function f typ

m :
(
Am
/

Aut(A)

)k
→ Bm

/
Aut(B) as follows:

on input O1, . . . , Ok ∈ A
m
/

Aut(A) , let a1, . . . , ak be m-tuples of elements of A such that

the orbit of ai under Aut(A) is Oi. Let O′ be the orbit of the m-tuple f(a1, . . . , ak) under
Aut(A), and define f typ

m (O1, . . . , Ok) := O′. It follows from the definition of canonicity
that this definition does not depend on the choice of the tuples a1, . . . , ak. The function
f typ
m is called the behaviour of f on m-tuples. Note that if A is a homogeneous structure in

a finite language whose relations have arity at most m, then f : Ak → A is canonical if and

only if it induces a function f typ
m :

(
Am
/

Aut(A)

)k
→ Bm

/
Aut(B) for this particular m.

Moreover, if A and B are ω-categorical structures, there are only finitely many behaviours

on m-tuples as both Am
/

Aut(A) and Bm
/

Aut(B) are finite. We say that f is canonical

with respect to A if it is canonical from A to A.

Example 10. We illustrate the notion of canonicity for the structure Q = (Q;<). Recall
from Example 5 that Q is ω-categorical, and is moreover homogeneous in a finite rela-
tional language whose relations have arity at most 2. Thus, unary functions canonical

with respect to Q correspond to behaviours Q2
/

Aut(Q) → Q2
/

Aut(Q) (but not every

behaviour is realisable by an actual function on Q). For example, the identity behaviour

{(x, y) ∈ Q2 | x < y} 7→ {(x, y) ∈ Q2 | x < y}
{(x, y) ∈ Q2 | x = y} 7→ {(x, y) ∈ Q2 | x = y}
{(x, y) ∈ Q2 | x > y} 7→ {(x, y) ∈ Q2 | x > y}
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is realisable by any increasing function, and thus any increasing function is canonical with
respect to Q.

The behaviour

{(x, y) ∈ Q2 | x < y} 7→ {(x, y) ∈ Q2 | x > y}
{(x, y) ∈ Q2 | x = y} 7→ {(x, y) ∈ Q2 | x = y}
{(x, y) ∈ Q2 | x > y} 7→ {(x, y) ∈ Q2 | x < y}

is realisable by any decreasing function. Another example is the behaviour of a constant
function. It can be checked that any other behaviour is not realisable as a function Q→ Q,
and there are therefore essentially only three unary canonical functions with respect to Q.

It is easy to check that the set of functions that are canonical with respect to A forms
a clone; similarly, for every clone A on A, the set of functions in A that are canonical
with respect to A forms a subclone of A .

Canonical functions were discovered by Bodirsky and Pinsker [33], where they were
used to classify all minimal closed clones containing the automorphism group of the random
graph. Since then, their usefulness has been demonstrated in many contexts: they were
used to classify the first-order reducts of the random ordered graph [38], to classify the
complexity of the CSP of first-order reducts of (Q, <) [23] and the random graph [34], or
to give decidability results for variants of CSPs with infinite input structures [66, 67]. For
us, the interest in canonical functions comes from the following lemmas where we relate
Pol(TB,m(A)) with the clone of polymorphisms of A that are canonical with respect to B.

Let A be a reduct of a homogeneous relational structure B, and let C be the subclone
of Pol(A) that consists of the functions that are canonical with respect to B. Let C typ

m =

{f typ
m | f ∈ C }. It is easy to check that C typ

m is a clone of functions on Bm
/

Aut(B) , and

that the map ξtyp
m : f 7→ f typ

m is a continuous clone homomorphism from C to C typ
m .

Lemma 3.2. Let A be a reduct of a homogeneous relational structure B and let C be the
clone of polymorphisms of A that are canonical with respect to B. For all m ≥ 1, we have
C typ
m ⊆ Pol(TB,m(A)).

Proof. First, note that the inclusion in the statement makes sense: since B is homogeneous,
it is ω-categorical and admits quantifier-elimination by Proposition 2.9. Thus, orbits under
Aut(B) and quantifier-free types in B are in one-to-one correspondence, and C typ

m can be
seen as a clone on the domain of TB,m(A).

We have to show that ξtyp
m (f) ∈ Pol(TB,m(A)) for every f ∈ C . Let k be the arity of f .

Let χ(z1, . . . , zr) be a qf-definition of a relation of A. Let i : [r] → [m] and let p1, . . . , pk
be types in the relation 〈χ(zi(1), . . . , zi(r))〉 of TB,m(A). Let a1, . . . , ak be m-tuples whose
types are p1, . . . , pk respectively. Since B is homogeneous the orbits of m-tuples under
Aut(B) and the qf-types of B are in one-to-one correspondence and ξtyp

m (f) can be seen as
an operation on m-types. We have that ξtyp

m (f)(p1, . . . , pk) is the type of f(a1, . . . , ak) in
B. Since f preserves the relation defined by χ(zi(1), . . . , zi(r)), it follows that f(a1, . . . , ak)
satisfies χ(zi(1), . . . , zi(r)), which means that χ(zi(1), . . . , zi(r)) is contained in the type of

this tuple. Therefore, ξtyp
m (f) preserves the relations of TB,m(A) of the first kind.

We now prove that ξtyp
m (f) preserves the relations of the second kind in TB,m(A). In-

deed, let (p1, q1), . . . , (pk, qk) be pairs of types in Compi,j . Let (a1, b
1
), . . . , (ak, b

k
) be pairs
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of m-tuples such that tp(al) = pl and tp(b
l
) = ql for all l ∈ [k]. As noted above, the defi-

nition of Compi,j implies that the tuples (ali(1), . . . , a
l
i(r)) and (blj(1), . . . , b

l
j(r)) have the same

type in B for all l ∈ [k]. Since f is canonical, we have that (f(a1
i(1), . . . , a

k
i(1)), . . . , f(a1

i(r), . . . , a
k
i(r)))

has the same type as (f(b1j(1), . . . , b
k
j(1)), . . . , f(b1j(r), . . . , b

k
j(r))) in B. This implies that

Compi,j
(
ξtyp
m (f)(p1, . . . , pk), ξ

typ
m (f)(q1, . . . , qk)

)
holds in TB,m(A), which concludes the proof.

Suppose that B is homogeneous in a finite relational language, and that A is a reduct
of B. Suppose moreover that every polymorphism of A is canonical with respect to
Aut(B). The lemma above implies that ξtyp

m is a continuous homomorphism from Pol(A)
to Pol(TB,m(A)), if m is greater than the arity of the language of B. This in turn implies
that there is a polynomial-time reduction from CSP(TB,m(A)) to CSP(A) [35]. This proves
the following corollary.

Corollary 3.3. Let B be a finitely bounded homogeneous structure in a finite relational
language, and let A be a first-order reduct of B. Let m be defined as in Theorem 3.1.
Suppose that all the polymorphisms of A are canonical with respect to B. Then CSP(A)
and CSP(TB,m(A)) are polynomial-time equivalent. In particular, Conjecture 1 holds for
all such structures A.

Remark 1. Let B be a homogeneous structure in a language of maximal arity m. Let RB
be the relation of arity 2m such that for a, b ∈ Bm, the 2m-tuple (a, b) is in RB if, and
only if, a and b are in the same orbit under Aut(B). Note that a function f : Bk → B
is canonical with respect to B if, and only if, f preserves RB. Thus, a consequence of
Corollary 3.3 is that Conjecture 1 holds for all reducts A of B such that RB is pp-definable
over A.

If A is a reduct of a finitely bounded homogeneous structure B, then the inclusion
in Lemma 3.2 becomes an equality, for m large enough. This fact is only mentioned for
completeness and not used later, so we only sketch the proof.

Lemma 3.4. Let A be a reduct of a finitely bounded homogeneous structure B and let
C be the polymorphisms of A that are canonical with respect to Aut(B). Let m be larger
than each bound of B and strictly larger than the maximal arity of A and B. Then C typ

m =
Pol(TB,m(A)).

Proof sketch. The inclusion C typ
m ⊆ Pol(TB,m(A)) has been shown in Lemma 3.2. For the

reverse inclusion, we prove that for every g ∈ Pol(TB,m(A)) there exists an f ∈ C such that
ξtyp
m (f) = g. Let k be the arity of g. We prove that for every subset F of A there exists

a function h from F k → A such that for all ā1, . . . , āk ∈ Fm whose types are p1, . . . , pk,
respectively, h(ā1, . . . , āk) has type g(p1, . . . , pk). A standard compactness argument then
shows the existence of a function f : Ak → A such that for all ā1, . . . , āk ∈ Am whose types
are p1, . . . , pk, respectively, f(ā1, . . . , āk) has type g(p1, . . . , pk), and such a function must
satisfy ξtyp

m (f) = g.
Note that we can assume without loss of generality that B has for each relation symbol

R also a relation symbol for the complement of RB. This does not change C typ
m or TB,m(A).

The existence of a function h with the properties as stated above can then be expressed as
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an instance Ψ of CSP(B) where the variable set is F k and where we impose constraints from
B on ā1, . . . , āk to enforce that in any solution h to this instance the tuple h(ā1, . . . , āk)
satisfies g(p1, . . . , pk). Let Φ be the instance of CSP(TB,m(B)) obtained from Ψ under
the reduction from CSP(B) to CSP(TB,m(B)) described in the proof of Theorem 3.1. The
variables of Φ are the order-preserving injections from [m] to F k. For v : [m] → F k and
i ≤ k, let pi be the type of (v(1).i, . . . , v(m).i) in B. Then the mapping h that sends v to
g(p1, . . . , pk), for all variables v of Φ, is a solution to Φ:

• the constraints of Φ of the form 〈χ(. . . )〉(v) have been introduced to translate con-
straints of Ψ, and it is easy to see that they are satisfied by the choice of these
constraints of Ψ and by the choice of h.

• The other constraints of Φ are of the form Compi,j(u, v) where u, v are order-

preserving injections from [m] to F k. Since g is a k-ary polymorphism of Pol(TB,m(B))
and hence preserves the relations Compi,j of TB,m(B), it follows that h satisfies these
constraints, too.

By Theorem 3.1, the instance Ψ of CSP(B) is satisfiable, too.

It is also possible to relate the identities that are satisfiable in C typ
m with the identities

that are satisfiable in C . Clearly, since ξtyp
m is a clone homomorphism from C to C typ

m ,
every identity satisfiable in C is satisfiable in C typ

m . The converse is not necessarily true,
but we have the following lemma and proposition.

Lemma 3.5 (Bodirsky, Pinsker, Pongrácz [37]). Let B be an ω-categorical structure and
let f, g : Bk → B. Let s(x1, . . . , xk) ≈ t(x1, . . . , xk) be an equation. Suppose that for every
finite subset A of B, there exists an automorphism α of B such that αf(a1, . . . , ak) =
g(a1, . . . , ak) holds for all a1, . . . , ak ∈ A. Then there exists e1, e2 ∈ Aut(B) such that
e1f(a1, . . . , ak) = e2g(a1, . . . , ak) holds for all a1, . . . , ak ∈ B.

Proposition 3.6 (Bodirsky, Pinsker, Pongrácz [37]). Let m ≥ 1, and let B be a homoge-
neous structure whose relations have arity at most m. Let C be a closed clone of functions
on B that are canonical with respect to B. Let f(x1, . . . , xn) ≈ g(x1, . . . , xn) be an equa-
tion that is satisfiable in C typ

m . Then the equation e1f(x1, . . . , xn) ≈ e2g(x1, . . . , xn) is
satisfiable with f, g ∈ C and e1, e2 ∈ Aut(B).

In particular, there is a statement similar to Theorem 2.17 for clones of canonical
functions. Let f : An → A and let U be a set of unary functions on A. We say that f is
pseudo-cyclic modulo U if there exist e1, e2 ∈ U such that

∀a1, . . . , an ∈ A, e1f(a1, . . . , an) = e2f(a2, . . . , an, a1)

holds. Similarly, f is pseudo weak near-unanimity (pseudo-WNU) modulo U if there exist
e1, . . . , en ∈ U such that

∀a, b ∈ A, e1f(a, b, . . . , b) = e2f(b, a, b, . . . , b) = · · · = enf(b, . . . , b, a)

holds.

Corollary 3.7. Let m ≥ 1, and let B be a homogeneous structure whose relations have
arity at most m. Let C be a closed clone of functions on B that are canonical with respect
to B. Suppose that C typ

m is idempotent. The following are equivalent:
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1. There is no continuous clone homomorphism C →P,

2. C satisfies a non-trivial identity,

3. C contains a pseudo-WNU operation modulo Aut(B),

4. C contains a pseudo-cyclic operation modulo Aut(B),

5. C contains a pseudo-Siggers operation modulo Aut(B).

Note that item 1. in the previous statement is about clone homomorphisms (as opposed
to clonoid homomorphisms), due to the fact that the identities from items 3., 4., and 5.
do not have height 1. It is unknown whether the items in the previous statement are
equivalent to the absence of a uniformly continuous clonoid homomorphism from C to P.

3.3 New Abstract Tractability Conditions

Most of the known conditions that imply that CSP(A) is in P are concrete conditions, i.e.,
they are conditions on the abstract algebraic structure of Pol(A) (such as identities) as well
as conditions on the underlying structure A. One notable exception is tractability from
quasi near-unanimity polymorphisms, that is, polymorphisms that satisfy the identity

f(y, x, . . . , x) = f(x, y, x, . . . , x) = · · ·
= f(x, . . . , x, y) = f(x, . . . , x).

If A has a quasi near-unanimity polymorphism then CSP(A) is in P [14]: this is an abstract
tractability condition. Using Lemma 3.2, one can derive new tractability conditions for
reducts of finitely bounded homogeneous structures. The tractability conditions that we
are able to lift this way from the finite are all of the abstract type.

Theorem 3.8. Let A be a finite-signature reduct of a finitely bounded homogeneous struc-
ture B. Suppose that A has a four-ary polymorphism f and a ternary polymorphism g that
are canonical with respect to B, that are weak near-unanimity operations modulo Aut(B),
and such that there are operations e1, e2 in Aut(B) with e1(f(y, x, x, x)) = e2(g(y, x, x))
for all x, y. Then CSP(A) is in P.

Proof. Let m be as in the statement of Theorem 3.1. By Lemma 3.2, f ′ := ξtyp
m (f) and

g′ := ξtyp
m (g) are polymorphisms of TB,m(A). Moreover, f ′ and g′ must be weak near-

unanimity operations, and they satisfy f ′(y, x, x, x) = g′(y, x, x). It follows from [70]
in combination with [3] that TB,m(A) is in P (it can be solved by a Datalog program).
Theorem 3.1 then implies that CSP(A) is in P, too.

Note that since the reduction from CSP(A) to CSP(TB,m(A)) presented in Section 3.1
is a first-order reduction, it is computable in Datalog. In particular, the hypotheses of
Theorem 3.8 imply that CSP(A) is in Datalog. This result generalises many tractability
results from the literature, for instance

• the polynomial-time tractable fragments of RCC-5 [63];

• the two polynomial-time algorithms for partially-ordered time from [41];
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• polynomial-time tractable equality constraints [21];

• all polynomial-time tractable equivalence CSPs [40].

In all cases, the respective structures A have a polymorphism f such that ξtyp
2 (f) is a semi-

lattice operation [62]. Finite structures with a semilattice polymorphism also have weak
near-unanimity polymorphisms f ′ and g′ that satisfy f ′(y, x, x, x) = g′(y, x, x) (see [70]),
and hence A satisfies the assumptions of Theorem 3.8.

Using the same idea as in Theorem 3.1, one obtains a series of new abstract tractability
conditions: for every known abstract tractability condition for finite domain CSPs, we
obtain an abstract tractability condition for reducts of finitely bounded homogeneous
structures B. To show this, we first observe that the functions on A that are canonical
with respect to Aut(A) can be characterised algebraically.

Proposition 3.9. Let B be a homogeneous model-complete core with a finite relational
language. Then f : Bn → B is canonical with respect to B if and only if for all a1, . . . , an ∈
End(B) there exist e1, e2 ∈ End(B) such that

e1 ◦ f ◦ (a1, . . . , an) = e2 ◦ f .

Proof. The “if” direction is clear. In the other direction, the assumption that f is canonical
gives that for every finite subset of B, the equation f ◦ (a1, . . . , an) ≈ f is satisfiable
modulo Aut(B). By Lemma 3.5, there exist e1, e2 ∈ Aut(B) = End(B) such that e1 ◦ f ◦
(a1, . . . , an) = e2 ◦ f .

Proposition 3.9 shows that the following close relative to Theorem 3.8 is an abstract
tractability condition.

Theorem 3.10. Let A be a finitely bounded homogeneous model-complete core. Suppose
that A has a four-ary polymorphism f and a ternary polymorphism g that are canonical
with respect to A, that are weak near-unanimity operations modulo End(A) and such that
there are operations e1, e2 ∈ End(A) with e1(f(y, x, x, x)) = e2(g(y, x, x)) for all x, y.
Then CSP(A) is in P.

In the same way as in Theorem 3.10 every abstract tractability result for finite-domain
CSPs can be lifted to an abstract tractability condition for ω-categorical CSPs. Note that
the polynomial-time tractable cases in the classification for Graph-SAT problems [34] can
also be explained with the help of Corollary 3.11 below, using the recent solution to the
finite-domain tractability conjecture.

Corollary 3.11. Let A be a finite-signature reduct of a finitely bounded homogeneous
structure B, and suppose that A has a Siggers (or weak near-unanimity, or cyclic) poly-
morphism f modulo operations from Aut(B) such that f is canonical with respect to B.
Then CSP(A) is in P.

Proof. Let m be as in the statement of Theorem 3.1. By Lemma 3.2, ξtyp
m (f) is a poly-

morphism of TB,m(A). Since ξtyp
m (f) is a Siggers operation, Theorem 2.5 implies that

CSP(TB,m(A)) is in P and Theorem 3.1 implies that CSP(A) is in P.

34



Chapter 3. Equations and Tractability Conditions

Finally, we mention that the non-trivial polynomial-time tractable cases for reducts
of Q = (Q;<) provide examples that cannot be lifted from finite-domain tractability
results this way, since the respective languages do not have non-trivial canonical polymor-
phisms. As an example, CSP(TQ,m(Q)) is NP-complete for m ≥ 3, while CSP(Q) and
CSP(TQ,2(Q)) are solvable in polynomial time.

35





Chapter 4

Mashups

Theorem 3.10 and Corollary 3.11 in the previous chapter are of the form “if the canonical
polymorphisms of A satisfy some given nontrivial equation, then CSP(A) is in P.” In
this chapter, we investigate what can be said when the canonical polymorphisms of A do
not satisfy nontrivial equations. We can reformulate this as follows. Let C ⊆ Pol(A) be
the clone of polymorphisms of A that are canonical (with respect to some homogeneous
finitely bounded structure B). Corollary 3.11 is then equivalent (by Corollary 3.7) to the
statement: if there is no uniformly continuous clone homomorphism C →P, then CSP(A)
is in P. On the other hand, we know that the existence of a uniformly continuous clonoid

homomorphism Pol(A)
u.c.c.h.−−−−→ P implies that CSP(A) is NP-complete (Corollary 2.15).

This naturally raises the question as to when the existence of a uniformly continuous
clone homomorphism C → P implies the existence of a uniformly continuous clonoid

homomorphism Pol(A)
u.c.c.h.−−−−→P.

We focus on the case where every operation f ∈ Pol(A) interpolates modulo Aut(B)
an operation that is canonical with respect to Aut(B). We call this the canonisation
property. In this setting, there is a natural candidate for extending a clone homomorphism
ξ : C → P to φ : Pol(A) → P. Indeed, for every f ∈ Pol(A), define φ(f) to be ξ(g),
where g is any canonical function in Aut(B)f Aut(B). We prove that when this definition
does not depend on the choice of g, then φ is indeed a uniformly continuous clonoid
homomorphism. We also give a property of Pol(A) – that we call the mashup property –
that implies that the extension φ is well-defined. This chapter contains published results
from [30, 31].

4.1 Mashups

We start with the central definition of this chapter.

Definition 4.1. Let g, h : Bk → B, let 1 ≤ ` ≤ k, and let r, s ∈ B. An operation ω is an
`-mashup of g and h over {r, s} if the following equations hold:

ω(r, . . . , r, s, r, . . . , r) = g(r, . . . , r, s, r, . . . , r),

ω(s, . . . , s, r, s, . . . , s) = h(s, . . . , s, r, s, . . . , s),

where the different entry in the arguments above is the `-th entry. In case ` = 1, we simply
write mashup.
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Figure 4.1: A mashup (right) of two binary functions (left and center).

In the following, we encourage the reader to work with the case k = 2 in mind. In this
case, an example of a mashup of two binary functions over {r, s} is shown in Figure 4.1.

The motivation for this definition is the following. If g and h are assumed to be
projections, and we know that for all ` there exists an `-mashup of g and h, then g and h
must be the same projection.

Let B be an algebra. The class of all algebras A such that A is the homomorphic image
of a subalgebra of B is denoted by HS(B). We call A a subfactor of B. A trivial algebra is
an algebra over at least 2 elements whose operations are all projections. Remember that
an idempotent algebra B is an algebra whose every operation fB satisfies fB(b, . . . , b) = b
for all b ∈ B.

Proposition 4.1. Let B be a finite idempotent algebra, and let B be the clone generated
by the fundamental operations of B. The following are equivalent:

1. there is a clonoid homomorphism B →P,

2. there is a clone homomorphism B →P,

3. HS(B) contains a trivial algebra.

Proof. The first two items are equivalent by Theorem 1.4 in [6]. The last two items were
proved to be equivalent by Bulatov and Jeavons [45].

Lemma 4.2. Let B be an algebra, and let gB, hB be operations of B of arity k. Suppose
that for all ` ∈ {1, . . . , k} and all distinct elements r, s ∈ B, there exists an operation of B
that is an `-mashup of gB and hB over {r, s}. Then for every trivial algebra T in HS(B),
we have gT = hT.

Proof. Let S be a subalgebra of B and µ be a homomorphism S → T. Suppose that gT

is the `-th projection. Let r, s be two elements of S which are mapped by µ to different
elements of T, and let ωB be an `-mashup of gB and hB over {r, s}. By the assumption
that gT is the `-th projection, we have

gT(µ(r), . . . , µ(r), µ(s), µ(r), . . . , µ(r)) = µ(s),

so that

ωT(µ(r), . . . , µ(r), µ(s), µ(r), . . . , µ(r)) = µ(ωB(r, . . . , r, s, r, . . . , r))

= µ(gB(r, . . . , r, s, r, . . . , r))

= gT(µ(r), . . . , µ(r), µ(s), µ(r), . . . , µ(r))

= µ(s)
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which implies that ωT is the `-th projection, by the fact that µ(s) 6= µ(r). Whence,
ωT(µ(s), . . . , µ(s), µ(r), µ(s), . . . , µ(s)) = µ(r), and since ωB is a mashup of gB and hB

over {r, s}, we obtain

hT(µ(s), . . . , µ(s), µ(r), µ(s), . . . , µ(s)) = µ(hB(s, . . . , s, r, s, . . . , s))

= µ(ωB(s, . . . , s, r, s, . . . , s))

= ωT(µ(s), . . . , µ(s), µ(r), µ(s), . . . , µ(s))

= µ(r)

which implies that hT is the `-th projection and that gT = hT holds.

Let A,B be two structures. In the following, the algebra B we consider is the algebra

on B
/

Aut(B) whose operations are of the form ξtyp
1 (f), where f is a polymorphism of A

that is canonical with respect to B. In order to prove that the mashup of two operations
ξtyp

1 (g), ξtyp
1 (h) exists in this algebra, we therefore need to prove that there exists a canon-

ical function ω ∈ Pol(A) that induces this mashup in B. This motivates Definitions 4.2
and 4.3 below.

Definition 4.2. Let A,B be two relational structures. We say that B has the mashup
property relative to A if the following condition holds: for all f ∈ Pol(A), all functions g, h

in Aut(B)f Aut(B) that are canonical with respect to B, and all orbits O1, O2 ∈ B
/

Aut(B) ,

we have that Pol(A) contains a function ω that is canonical with respect to B and such
that ξtyp

1 (ω) is a 1-mashup of ξtyp
1 (g) and ξtyp

1 (h) over {O1, O2}.

Note that in the definition above, it is equivalent to ask for the existence of a 1-mashup
or for `-mashups for all `.

Definition 4.3. Let A,B be two relational structures. We say that B has the canonisation
property relative to A if for every operation f ∈ Pol(A), there exists in Aut(B)f Aut(B)
an operation g that is canonical with respect to B.

We say that B has the canonisation property if it has the canonisation property relative
to all its first-order reducts, and similarly for the mashup property. It is known that
if Aut(B) is an oligomorphic extremely amenable group, then B has the canonisation
property (this is a reformulation of Theorem 1 in [36]). In the next section, we give
examples of structures B such that Aut(B) is not extremely amenable but such that B has
the canonisation property.

Theorem 4.3 (Mashup theorem). Let A,B be ω-categorical structures such that A is
a first-order reduct of B. Let C be the clone of polymorphisms of A that are canonical
with respect to B. Suppose that B has the mashup property and the canonisation property
relative to A, and that C typ

1 is idempotent. If there exists a clonoid homomorphism from
C typ

1 to P, then there exists a clonoid homomorphism φ from Pol(A) to P. Moreover, φ
is constant on sets of the form Aut(B)f Aut(B) for f ∈ Pol(A).

Proof. Let B be an algebra on B
/

Aut(B) whose operations are exactly the operations in

C typ
1 . The algebra B is idempotent by hypothesis on C typ

1 , and since B is ω-categorical,
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B is finite. It follows from Proposition 4.1 that there exists a subalgebra S of B and
a homomorphism µ : S → T where T is a trivial algebra with two elements µ(r), µ(s).
Let ξ′ : C typ

1 → P be the clone homomorphism that maps an operation gB to gT. This
homomorphism has the property that for two operations gB, hB in D typ

1 of arity k, if for all
` ∈ {1, . . . , k} there is an operation in C typ

1 which is an `-mashup of gB and hB over {r, s},
then ξ′(g) = ξ′(h). By composition of ξtyp

1 with ξ′, we obtain a clone homomorphism
ξ : C →P. Define the extension φ of ξ to the whole clone Pol(A) by setting φ(f) := ξ(g),
where g is any function in Aut(B)f Aut(B) that is canonical with respect to B – such
a function exists by the canonisation property, and is in Pol(A) since A is a first-order
reduct of B. We claim that φ is well-defined, and that it is a uniformly continuous clonoid
homomorphism.

φ is well defined: let g, h be canonical and in Aut(B)f Aut(B). By the mashup
property, we obtain for each ` ∈ {1, . . . , k} an operation ω ∈ Pol(A) which is canonical
and such that ξtyp

1 (w) is an `-mashup of ξtyp
1 (g) and ξtyp

1 (h) over {r, s}. Since this holds for
all ` ∈ {1, . . . , k}, we have by Lemma 4.2 that ξ′(ξtyp

1 (g)) = ξ′(ξtyp
1 (h)), i.e., ξ(g) = ξ(h)

and φ is well defined.
φ is constant on Aut(B)f Aut(B), for f ∈ Pol(A): let f ′ be in Aut(B)f Aut(B). Let

g be canonical and interpolated by f ′ modulo Aut(B). Note that g is also interpolated
by f modulo Aut(B), so that φ(f) = ξ(g) = φ(f ′). It follows that φ is constant on
Aut(B)f Aut(B).

φ is a clonoid homomorphism: we need to prove that

φ(f ◦ (πmi1 , . . . , π
m
ik

)) = φ(f) ◦ (πmi1 , . . . , π
m
ik

)

for every f ∈ Pol(A) of arity k ≥ 1, every m ≥ 1, and every i1, . . . , ik ∈ {1, . . . ,m}. Let
g : Bk → B be canonical and interpolated by f modulo Aut(B). Then g ◦ (πmi1 , . . . , π

m
ik

) is
interpolated modulo Aut(B) by f ◦ (πmi1 , . . . , π

m
ik

). So

φ(f ◦ (πmi1 , . . . , π
m
ik

)) = ξ(g ◦ (πmi1 , . . . , π
m
ik

)) (4.1)

= ξ(g) ◦ (πmi1 , . . . , π
m
ik

) (4.2)

= φ(f) ◦ (πmi1 , . . . , π
m
ik

) (4.3)

where (4.1) and (4.3) hold by definition of φ, and (4.2) holds since ξ is a clone homomor-
phism.

The clonoid homomorphism that we built in the previous theorem might not be con-
tinuous; for this, we would need that for every sequence (fn)n∈N of polymorphisms of A
converging to f , we have φ(fn) = φ(f) for every large enough n. This problem is easily
solved in the case that Aut(B) = End(A).

Corollary 4.4. Let A,B be ω-categorical structures such that Aut(B) = End(A). Let C
be the clone of polymorphisms of A that are canonical with respect to B. Suppose that
B has the mashup property and the canonisation property relative to A. If there exists a
clonoid homomorphism from C typ

1 to P, then there exists a uniformly continuous clonoid
homomorphism φ from Pol(A) to P.

Proof. If Aut(B) = End(A), then A is a first-order reduct of B and C typ
1 is idempotent so

we can apply the previous theorem and obtain a clonoid homomorphism φ : Pol(A)→P
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that is constant on sets of the form Aut(B)f Aut(B) for f ∈ Pol(A). In particular, if
f ∈ Pol(A) and e ∈ Aut(B), we have φ(e ◦ f) = φ(f). Theorem 2.21 together with
Corollary I.8 in [2] give that either there is a uniformly continuous clonoid homomorphism
as in the statement, or there is a Siggers operation w in Pol(A) modulo Aut(B). In the
second case, φ(w) would be a Siggers operation in P: indeed, suppose that e1, e2 ∈ Aut(B)
are such that

∀x, y, z ∈ B, e1w(x, y, x, z, y, z) = e2w(y, x, z, x, z, y).

This property can also be written in the language of clones as

e1 ◦ w ◦ (π3
1, π

3
2, π

3
1, π

3
3, π

3
2, π

3
3) = e2 ◦ w ◦ (π3

2, π
3
1, π

3
3, π

3
1, π

3
3, π

3
2).

Applying φ on both sides of the equation, we obtain

φ(w) ◦ (π3
1, π

3
2, π

3
1, π

3
3, π

3
2, π

3
3) = φ(w) ◦ (π3

2, π
3
1, π

3
3, π

3
1, π

3
3, π

3
2),

as φ is a clonoid homomorphism such that φ(e1 ◦ w) = φ(w) = φ(e2 ◦ w). Whence, φ(w)
is a Siggers operation in P, a contradiction. So the first case must apply, i.e., there is a

uniformly continuous clonoid homomorphism Pol(A)
u.c.c.h.−−−−→P.

4.2 Disjoint Unions of Structures

Let A1, . . . ,An be structures with the same signature τ and with transitive automorphism

groups (that is, Ai
/

Aut(Ai) consists of one element, for every i ∈ {1, . . . , n}). In this

section, we define the disjoint union of A1, . . . ,An to be the structure B with domain⊎n
i=1Ai and with signature τ ∪ {A1, . . . , An}, where RB =

⋃n
i=1R

Ai for R ∈ τ and with
ABi = Ai for all i ∈ {1, . . . , n}.

Definition 4.4 (Local mashup). Let B be a structure. Let g, h, ω : Bk → B, let S ⊆ B,

and let U, V ∈ B
/

Aut(B) be two orbits. We say that ω is an S-mashup of g and h over

{U, V } iff the following holds: there exist α, β ∈ Aut(B) such that for all a1, . . . , ak ∈ S,
we have

ω(a1, . . . , ak) =

{
αg(a1, . . . , ak) if (a1, . . . , ak) ∈ U × V k−1

βh(a1, . . . , ak) if (a1, . . . , ak) ∈ V × Uk−1

Proposition 4.5. Let A1, . . . ,An be transitive ω-categorical structures with the same sig-
nature and let B be the disjoint union of A1, . . . ,An. Suppose that B has the canonisation
property. Let f : Ak → A, and let g and h be canonical and in Aut(B)f Aut(B). Let
i, j ∈ {1, . . . , n}. There exists a canonical function ζ in Aut(B)f Aut(B) which is for
every finite set S ⊂ A an S-mashup of g and h over {Ai, Aj}.

Proof. We first prove that for every finite subset S of B, there exists in Aut(B)f Aut(B) an
operation ωS which is an S-mashup of g and h over {Ai, Aj}. Let S ⊂ B be finite. Since g

and h are in Aut(B)f Aut(B), there exist operations α, γ, β1, δ1, . . . , βk, δk in Aut(B) such
that

∀a1, . . . , ak ∈ S
(
g(a1, . . . , an) = γf(δ1a1, . . . , δkak)

∧ h(a1, . . . , an) = αf(β1a1, . . . , βkak)
)
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Define ωS : Bk → B by

ωS(a1, . . . , ak) := f(ε1(a1), . . . , εk(ak)),

where

ε1(a) =

{
δ1(a) if a ∈ Ai
β1(a) if a 6∈ Ai

and

ε`(a) =

{
β`(a) if a ∈ Ai
δ`(a) if a 6∈ Ai

for ` > 1. It is easy to check that ε` is an element of Aut(B), for every ` ∈ {1, . . . , k}.
This immediately gives

ωS(a1, . . . , ak) =

{
γ−1(g(a1, . . . , ak)) a ∈ Ai × (Aj)

k−1

α−1(h(a1, . . . , ak)) a ∈ Aj × (Ai)
k−1

Thus, ωS ∈ Aut(B)f Aut(B) is an S-mashup of g and h over {Ai, Aj}.
We now prove that there exists a single operation which is an S-mashup for all finite

S ⊂ B. Let 0, 1, . . . be an enumeration of B. For each positive integer m, consider the
equivalence relation on functions {0, . . . ,m}k → B defined by r ∼m s iff there exists
α ∈ Aut(B) such that r = α ◦ s (i.e., the same equivalence relation as in Proposition 2.7).
For each m ≥ 0, this relation has finite index because the action of Aut(B) on B is
oligomorphic. Consider the following forest F . For each m ≥ 0 and each operation ω
which is an {0, . . . ,m}-mashup of g and h in Aut(B)f Aut(B), the forest F contains the
vertex (ω|{0,...,m})/∼m. For each m ≥ 1, if r/∼m is a vertex of F , then there is an edge
{s/∼m−1, r/∼m} where s = r|{0,...,m−1}. By the first paragraph, there are infinitely many
vertices in F . Since ∼m has finite index for all m ≥ 0, the forest is finitely branching, and
has finitely many roots. By König’s lemma, there exists an infinite branch in F , which we
denote by (ωm/∼m)m≥0.

We now construct a chain of functions ζm : {0, . . . ,m}k → B such that ζm ⊂ ζm+1

for all m ≥ 0, and such that ζm is ∼m-equivalent to ωm. For m = 0, take ζ0 = ω0.
Suppose that m > 0 and that ζm−1 is defined. There is an edge between ωm−1 and
ωm by hypothesis and ζm−1 ∼m−1 ωm−1, which means that there is α in Aut(B) such
that αωm|{0,...,m−1} = ζm−1. Define ζm to be αωm. We have ζm−1 = ζm|{0,...,m−1} and
ζm ∼m ωm, as required. Let now ζ =

⋃
m≥0 ζm.

It remains to prove that ζ is an S-mashup of g, h for every finite S ⊂ B. Let S be
such a finite set, and m be such that m ≥ max(S). Since ωm/∼m is an element of F ,
there exists ω ∈ Aut(B)f Aut(B) that is an {0, . . . ,m}-mashup of g and h and such that
ω|{0,...,m} = ωm. Let U, V be orbits of B. Let α, β be the elements in Aut(B) witnessing
that ω is an {0, . . . ,m}-mashup of g and h. Let γ ∈ Aut(B) be such that ωm = γζm. Then
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we have for all a1, . . . , ak ∈ {0, . . . ,m}:

ζ(a1, . . . , ak) = ζm(a1, . . . , ak)

= γωm(a1, . . . , ak)

= γω(a1, . . . , ak)

=

{
γαg(a1, . . . , ak) if (a1, . . . , ak) ∈ U × V k−1

γβh(a1, . . . , ak) if (a1, . . . , ak) ∈ V × Uk−1
.

Therefore ζ is an S-mashup of g, h, with γ ◦ α and γ ◦ β as witnesses.
Let ζ ′ be canonical and in Aut(B)ζ Aut(B), which exists by the canonisation property

for Aut(B). It is immediate that ζ ′ is an S-mashup of g, h for every finite S. Moreover, ζ ′

is in Aut(B)ζ Aut(B) and we have

Aut(B)ζ Aut(B) ⊆ Aut(B){ωm : m ≥ 0}Aut(B) ⊆ Aut(B)f Aut(B),

so that ζ ′ is in Aut(B)f Aut(B) as required.

Proposition 4.6 (Building Mashups). Let B be a structure. Let g, h : Bk → B be canon-

ical with respect to B and let U, V ∈ B
/

Aut(B) . Suppose that ω is canonical with respect

to B and is an S-mashup of g, h over {U, V } for every finite S ⊂ B. Then ξtyp
1 (ω) is a

mashup of ξtyp
1 (g) and ξtyp

1 (h) over {U, V }.

Proof. Let a ∈ U, b ∈ V . Then by definition ξtyp
1 (ω)(U, V, . . . , V ) is the orbit of ω(a, b, . . . , b)

under Aut(B). Since ω is by assumption an {a, b}-mashup of g and h, there exists an
α ∈ Aut(B) such that ω(a, b, . . . , b) = αg(a, b, . . . , b). Hence,

ξtyp
1 (ω)(U, V, . . . , V ) = ξtyp

1 (g)(U, V, . . . , V ).

We can prove similarly that

ξtyp
1 (ω)(V,U, . . . , U) = ξtyp

1 (h)(V,U, . . . , U),

so that ξtyp
1 (ω) is indeed a mashup of ξtyp

1 (g) and ξtyp
1 (h) over {U, V }.

Corollary 4.7. Let A1, . . . ,An be transitive ω-categorical structures and let B be their
disjoint union. If B has the canonisation property, then it has the mashup property.

4.3 Reducts of Unary Structures

In this section we study finite-signature reducts of unary structures, i.e., we study struc-
tures A for which there exist subsets U1, . . . , Un of the domain A such that the relations
of A are first-order definable in (A;U1, . . . , Un). We obtain a P/NP-complete dichotomy
for the CSPs of reducts of unary structures, and the border between tractability and
intractability agrees with the conjectured border of Conjecture 1.

Theorem 4.8. Let A be a finite-signature reduct of a unary structure. Then CSP(A) is in
P if the model-complete core B of A has a Siggers polymorphism modulo endomorphisms
of B, and is NP-complete otherwise.
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Without changing the class of structures that we are studying we can assume that
{U1, . . . , Un} forms a partition of A, and that each Ui is either infinite or a singleton {a}
for some a ∈ A. We call such a partition a stabilised partition. Our claim above is then
that for arbitrary subsets U1, . . . , Un of A, there exists a stabilised partition V1, . . . , Vm of
A such that the structure (A;U1, . . . , Un) is first-order definable in (A;V1, . . . , Vm).

4.3.1 The case of tame endomorphisms

We start by investigating reducts of unary structures whose endomorphisms are precisely
the injective operations that preserve the sets of the partition. In particular, such struc-
tures are model-complete cores. The milestone of this section is Theorem 4.9.

Theorem 4.9. Let {U1, . . . , Un} be a stabilised partition of A. Let A be a reduct of
(A;U1, . . . , Un) such that End(A) is the set of injective operations that preserve U1, . . . , Un.
Let C be the clone of polymorphisms of A that are canonical with respect to (A;U1, . . . , Un).
Then the following are equivalent.

1. there is no continuous clone homomorphism from C to P;

2. there is no uniformly continuous clonoid homomorphism from Pol(A) to P;

3. A has a cyclic (Siggers, weak near-unanimity) polymorphism modulo endomorphisms
of A;

4. A has a cyclic (Siggers, weak near-unanimity) polymorphism f modulo endomor-
phisms of A and f is canonical with respect to Aut(A;U1, . . . , Un).

The proof of the theorem will be given at the end of this subsection. For now, we
simply remark that the implications (1)⇒ (4)⇒ (3)⇒ (2) are either trivial or immediate
corollaries of statements from the literature. We prove the implication from 2 to 1 by
contraposition.

Let {U1, . . . , Un} be a stabilised partition of A, and let A be a first-order reduct of
(A;U1, . . . , Un) such that End(A) is precisely the set of injective operations that preserve
U1, . . . , Un. Let C be the subclone of Pol(A) that consists of the functions that are canon-
ical with respect to (A;U1, . . . , Un). Note that Aut(A;U1, . . . , Un) is dense in End(A), so
that for every i ∈ {1, . . . , n} the map that takes f ∈ Pol(A) to f |Ui is well-defined and
is a continuous clone homomorphism: the restriction of some projection πni remains the
same projection, and f |Ui ◦ (g1|Ui , . . . , gk|Ui) = (f ◦ (g1, . . . , gk))|Ui holds; the image of this
clone homomorphism is a function clone Pol(A)Ui over the set Ui. We show in the next
two propositions that one of the following holds: there exists some i ∈ {1, . . . , n} such
that Pol(A)Ui →P, or C typ

1 →P, or C typ
2 contains a cyclic operation.

Clearly, every permutation of Ui is an operation in Pol(A)Ui . Such clones have been
studied in [21] in the context of constraint satisfaction problems. In particular, the authors
show the following.

Theorem 4.10 (Consequence of Theorem 7 in [21]). Let A be a closed clone over a
countably infinite set A containing Sym(A). Then A has a continuous homomorphism to
P if and only if there is no constant unary and no injective binary operation in A .

44



Chapter 4. Mashups

We say that an operation f : Ak → A is injective in its ith argument if f(a) 6= f(b) for
all tuples a, b with ai 6= bi.

Proposition 4.11. Let A be an infinite set and let f : Ak → A be a function that is
canonical with respect to (A,=). Either f is a constant function, or there is an i ∈
{1, . . . , k} such that f is injective in its ith argument.

Proof. For two tuples a, b, let Ia,b = {j ∈ {1, . . . , k} | aj 6= bj}. By canonicity of f , if

a, b, c, d are such that Ia,b = Ic,d, then f(a) = f(b) if and only if f(c) = f(d). Suppose
that the second case of the statement does not apply. That is, for all i ∈ {1, . . . , k}, there
are tuples a, b with f(a) = f(b) and i ∈ Ia,b. We prove that for all i ∈ {1, . . . , k}, there

are tuples c, d such that f(c) = f(d) and Ic,d = {i}. Let i ∈ {1, . . . , k} be arbitrary. Pick

a, b such that f(a) = f(b) and such that Ia,b is minimal with the property that i ∈ Ia,b.
Suppose for contradiction that |Ia,b| > 1. Let i′ ∈ Ia,b \ {i}. Let c1, . . . , ck ∈ A be

elements such that:

• ci′ = ai′ ,

• cj = aj = bj for j ∈ {1, . . . , k} \ Ia,b,

• cj 6∈ {aj , bj} for all j ∈ Ia,b \ {i
′}.

Note that Ib,c = Ia,b, that i ∈ Ia,c, and that Ia,c ⊂ Ia,b. The first equality implies that

f(b) = f(c), by canonicity of f . Therefore, f(a) = f(c). This contradicts the minimality
assumption on Ia,b, which proves the claim.

We can now prove that f is constant. Let a, b be arbitrary k-tuples. For i ∈ {0, . . . , k},
define ci to be the tuple (b1, . . . , bi, ai+1, . . . , ak). For all i ∈ {0, . . . , k − 1}, we have
Ici,ci+1 = {i+ 1}, so that by the claim above, we have f(ci) = f(ci+1). Note that c0 = a,

and ck = b, so that f(a) = f(b).

Proposition 4.12. Let U1, . . . , Un be a stabilised partition of a set A. Every f : Ak → A
interpolates modulo Aut(A;U1, . . . , Un) an operation g : Ak → A that is canonical with
respect to (A;U1, . . . , Un).

Proof. Let ≺ be any linear order on A such that if u ∈ Ui, v ∈ Uj and i < j, then u ≺ v,
and such that ≺ is dense and without endpoints on Ui whenever Ui is infinite. The group
Aut(A;U1, . . . , Un,≺) is extremely amenable (this is a corollary of the fact that extreme
amenability is preserved under direct products, and that the automorphism group of a
countable dense linear order is extremely amenable [82]). It follows from Theorem 1
in [36] that there exists a g which satisfies the conclusion of the lemma, except that g is
canonical with respect to (A;U1, . . . , Un,≺).

We prove that g is also canonical with respect to (A;U1, . . . , Un). Since the structure
(A;U1, . . . , Un) is homogeneous and ω-categorical, the orbits of tuples in (A;U1, . . . , Un)
can be defined by quantifier-free formulas without disjunctions (Theorem 2.8 and Proposi-
tion 2.9). Since the signature of (A;U1, . . . , Un) (including the equality relation) is binary,
these quantifier-free formulas can be taken to be conjunctions of binary formulas. This im-
plies that g is canonical if and only if for all pairs (a1, b1), . . . , (ak, bk), (c1, d1), . . . , (ck, dk)
such that (aj , bj) is in the same orbit as (cj , dj) for all j ∈ {1, . . . , k}, we have that
(g(a1, . . . , ak), g(b1, . . . , bk)) and (g(c1, . . . , ck), g(d1, . . . , dk)) are in the same orbit under
Aut(A;U1, . . . , Un). Note that Aut(A;U1, . . . , Un) satisfies the following property:
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(†) two pairs (a, b), (c, d) are in the same orbit under Aut(A;U1, . . . , Un)
iff a and c are in the same orbit, b and d are in the same orbit, and a = b iff

c = d.

Let a, b, c, d ∈ Ak be such that for all i ∈ {1, . . . , k}, the pairs (ai, bi) and (ci, di) are
in the same orbit under Aut(A;U1, . . . , Un). We first prove that g(a) and g(c) are in the
same orbit under Aut(A;U1, . . . , Un). Using property (†) we know that ai and ci are in
the same orbit under Aut(A;U1, . . . , Un). It follows that they are in the same orbit under
Aut(A;U1, . . . , Un,≺) (because if ai and ci belong to one of the finite sets of the partition,
they must be equal from the assumption that {U1, . . . , Un} is a stabilised partition). Since
g is known to be canonical with respect to (A;U1, . . . , Un,≺), we have that g(a) and g(c)
are in the same orbit under Aut(A;U1, . . . , Un,≺), and therefore they are in the same orbit
under Aut(A;U1, . . . , Un). Similarly we obtain that g(b) and g(d) are in the same orbit
under Aut(A;U1, . . . , Un).

Therefore, it remains to check that g(a) is equal to g(b) iff g(c) equals g(d). Suppose
that g(a) = g(b). Let i ∈ {1, . . . , n} be such that all of g(a), g(b), g(c), g(d) are in Ui. If Ui
is finite, we have that g(a) = g(c) and g(b) = g(d), so the property is true. Assume now
that Ui is infinite. For j ∈ {1, . . . , k}, let ej ∈ A be such that either:

• aj ≺ bj and ei is taken to be in Ui and larger than cj and dj ,

• bj ≺ aj and ei is taken to be in Ui and smaller than cj and dj , or

• aj = bj and ej = cj .

Note that if aj = bj then cj = dj so ej = cj = dj . By definition, (aj , bj), (cj , ej), and
(dj , ej) all are in the same orbit under Aut(A;U1, . . . , Un,≺) for all j ∈ {1, . . . , k}. We
therefore have that (g(a), g(b)), (g(c), g(e)), and (g(d), g(e)) are in the same orbit under
Aut(A;U1, . . . , Un,≺), whence they are in the same orbit under Aut(A;U1, . . . , Un). Thus,
if g(a) = g(b) then g(c) = g(e) and g(d) = g(e). In particular, we have g(c) = g(d).

Proposition 4.13. Let U1, . . . , Un be a stabilised partition of A and let A be a reduct
of (A;U1, . . . , Un) whose endomorphisms are the injective functions preserving U1, . . . , Un.
Let C be the subclone of Pol(A) consisting of the functions that are canonical with re-
spect to (A;U1, . . . , Un). Suppose that neither C typ

1 nor any Pol(A)Ui has a continuous
homomorphism to P. Then C typ

2 contains a cyclic operation.

Proof. Note that C typ
1 is idempotent since End(A) = Aut(A;U1, . . . , Un). Since C typ

1 does
not have a homomorphism to P, Theorem 2.17 implies that there exists an operation c ∈ C
of arity k ≥ 2 such that ξtyp

1 (c) is cyclic in C typ
1 . For every i ∈ {1, . . . , n}, by assumption

Pol(A)Ui does not have a homomorphism to P and since all the functions in End(A)
are injective, Pol(A)Ui cannot contain a unary constant function. By Theorem 4.10,
there exists a binary operation in Pol(A) that is injective when restricted to Ui (if Ui
is finite it is a singleton by assumption, so such an operation also exists in this case).
One sees that such a binary operation generates a k-ary operation whose restriction to
Ui is again injective. Finally, by Proposition 4.12, this operation interpolates modulo
Aut(A;U1, . . . , Un) a canonical function gi ∈ C of arity k, which is still injective on Ui.

We prove by induction on m, with 1 ≤ m ≤ n, that there exists in C an operation g
which is injective on

⋃m
i=1(Ui)

k, the case m = 1 being dealt with by the paragraph above.
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So assume that the operation g′ is in C and is injective on
⋃m−1
i=1 (Ui)

k. Define a new
operation g by

g(x1, . . . , xk) := gm(g′(x), g′(σx), . . . , g′(σk−1x)),

where σ is the permutation (x1, . . . , xk) 7→ (x2, . . . , xk, x1) and gm is the k-ary canonical
function whose existence is asserted in the previous paragraph. Since Aut(A;U1, . . . , Un)
is dense in End(A), it is clear that if x ∈ (Ui)

k and y ∈ (Uj)
k for i 6= j, then g(x) 6= g(y). If

x, y ∈ (Ui)
k are two different tuples with i ≤ m−1, we have for all j that g′(σjx) 6= g′(σjy).

Since gm is canonical and there is no constant operation in Pol(A), this operation is
injective in one of its arguments, by Proposition 4.11. It follows that g(x) 6= g(y). If
x, y ∈ (Um)k, a similar argument works: since g′ is canonical and non-constant, it is
injective in at least one of its arguments by Proposition 4.11. Whence, for at least one
j ∈ {0, . . . , k − 1} we have that g′(σjx) 6= g′(σjy), and by injectivity of gm on (Um)k, we
obtain g(x) 6= g(y). It follows that g is canonical and injective on

⋃m
i=1(Ui)

k as required.
Define now c′ ∈ C by

c′(x) := g(c(x), c(σx), . . . , c(σk−1x)),

where g is the operation built in the previous paragraph. We claim that ξtyp
2 (c′) ∈ C typ

2

is cyclic. It is trivial to check that ξtyp
1 (c′) is cyclic in C typ

1 . We now show that for all
k-tuples a, b such that c′(a) = c′(b) we have c′(σa) = c′(σb). Suppose that a and b are
given and map to the same point under c′. This means that

g(c(a), c(σa), . . . , c(σk−1a)) = g(c(b), c(σb), . . . , c(σk−1b)) (4.4)

holds. Note that (c(a), c(σa), . . . , c(σk−1a)) and g(c(b), c(σb), . . . , c(σk−1b)) are both tuples
in
⋃n
i=1(Ui)

k. By injectivity of g on this set, we therefore get that for all j ∈ {0, . . . , k−1},
the equality c(σja) = c(σjb) holds. By injecting this back into equation (4.4), we conclude
that c′(σa) = c′(σb).

To show that ξtyp
2 (c′) is cyclic, let (a1, b1), . . . , (ak, bk) be pairs of elements of A. We

have to show that (c′(a), c′(b)) and (c′(σa), c′(σb)) are in the same orbit under G. Since
ξtyp

1 (c′) is cyclic, we already know that c′(a) and c′(σa) are in the same orbit, and that
c′(b) and c′(σb) are in the same orbit. Recall that Aut(A;U1, . . . , Un) satisfies the following
property: two pairs (a, b), (c, d) are in the same orbit under Aut(A;U1, . . . , Un) iff a, c are
in the same orbit, b, d are in the same orbit and a = b iff c = d. So we only need to
check that c′(a) = c′(b) iff c′(σa) = c′(σb). In the left-to-right direction, this is what we
proved above. For the other direction, note that we can apply k−1 times the argument of
the previous paragraph to obtain that if c′(σa) = c′(σb), then c′(σk(a)) = c′(σk(b)), i.e.,
c′(a) = c′(b).

Recall that we want to prove the implication (2) ⇒ (1) of Theorem 4.9 by contra-
position, that is, that if there is a continuous clone homomorphism from the canonical
subclone C of Pol(A) to P, then there is a uniformly continuous clonoid homomorphism

Pol(A)
u.c.c.h.−−−−→P. The assumption implies that C typ

2 does not contain a cyclic operation.
The previous proposition implies that Pol(A)Ui has a continuous clone homomorphism
to P, or that C typ

1 has a continuous homomorphism to P. In the first case, we imme-
diately obtain a continuous clone homomorphism Pol(A) → P. In the second case, we
apply Corollary 4.4. In order to do so, we need to prove that the automorphism group
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of the structure (A;U1, . . . , Un) has the canonisation property and the mashup property.
Note that (A;U1, . . . , Un) is the disjoint union of n times the structure (A; =), and that
(A;U1, . . . , Un) has the canonisation property by Proposition 4.12. It follows from Corol-
lary 4.7 that (A;U1, . . . , Un) has the mashup property.

Proof of Theorem 4.9. We prove the implications 1 ⇒ 4 ⇒ 3 ⇒ 2 ⇒ 1. Let D be the
clone of polymorphisms of A; so C is the subclone of D consisting of the operations that
are canonical with respect to (A;U1, . . . , Un).

Suppose that 1 holds, that is, there is no continuous clone homomorphism from C to P.
The finite clone C typ

2 is idempotent, by the assumption that Aut(A;U1, . . . , Un) = End(A).
By Corollary 3.7, C contains a pseudo-cyclic operation modulo End(A). This proves 4.

The implication 4⇒ 3 is trivial.
Suppose now that D contains a pseudo-Siggers polymorphism. Since A is a model-

complete core, Theorem 2.21 implies that there is no uniformly continuous clonoid homo-

morphism Pol(A)
u.c.c.h.−−−−→P, proving 2.

It remains to prove that 2 implies 1. By contraposition, let us suppose that 1 does
not hold. Thus, there is a continuous clone homomorphism from C to P. In particular,
C does not contain any pseudo-cyclic operation and by Proposition prop:equations-lift,
C typ

2 does not contain any cyclic operation. By Proposition 4.13, either there exists a
continuous clone homomorphism DUi → P for some i ∈ {1, . . . , n}, or there is a clone
homomorphism C typ

1 → P. In the first case we are done: we obtain by composing with
D → DUi a continuous clone homomorphism D →P, so 2 does not hold. Suppose we are
in the second case. Proposition 4.12 implies that Aut(A;U1, . . . , Un) has the canonisation
property. By Corollary 4.7, it also has the mashup property. Corollary 4.4 implies that
there exist a uniformly continuous clone homomorphism from D to P. This shows that
2 does not hold in this case either, and concludes the proof of 2⇒ 1.

4.3.2 The general case

In this section we conclude the proof of the dichotomy theorem for reducts A of unary
structures (A;U1, . . . , Un). The previous section treated the special case where End(A)
consists exactly of the injective operations preserving U1, . . . , Un. In the following, we
reduce the general case to this situation.

The first step of the strategy for this is to show that we can assume without loss
of generality that A is a model-complete core. Since reducts of unary structures are ω-
categorical, and since every ω-categorical structure has a model-complete core, it suffices
to prove that the model-complete core of a reduct of a unary structure is again a reduct
of a unary structure (Lemma 4.14 below). The second step is to show that by adding
constants in a suitable way, we obtain a reduct of a unary structure which satisfies the
hypothesis of the previous section (Proposition 4.15).

Lemma 4.14. Let A be a reduct of a unary structure, and let B be the model-complete
core of A. Then B is a reduct of a unary structure.

Proof. Let A be a reduct of (A;U1, . . . , Un). Suppose without loss of generality that B is a
substructure of A. Let h be a homomorphism from A to B. We show that B is a reduct of
(B;U1∩B, . . . , Un∩B). To this end, we prove that every permutation of B preserving the
sets U1 ∩ B, . . . , Un ∩ B is an automorphism of B. Let β be such a permutation. Then β

48



Chapter 4. Mashups

can be extended by the identity to a permutation α of A which preserves U1, . . . , Un, and
therefore α is an automorphism of A. Thus, h ◦ β = h ◦ α|B : B → B is an endomorphism
of B, and so an embedding since B is a model-complete core. This implies that β is an
embedding, i.e., it is an automorphism of B. Note that (B;U1 ∩ B, . . . , Un ∩ B) is ω-
categorical. By Theorem 2.12, we obtain that all the relations of B are fo-definable in
(B;U1 ∩B, . . . , Un ∩B).

It can be the case that End(A) contains more operations than the injections preserving
U1, . . . , Un even when A is a reduct of (A;U1, . . . , Un) which is a model-complete core. An
example is (A;E, 6=) where A = U1 ] U2 and E = {(x, y) ∈ A2 | x ∈ U1 ⇔ y ∈ U2}.
However, for every such reduct there are finitely many constants c1, . . . , cn ∈ A such that
the (A, c1, . . . , cn) satisfies the condition of Theorem 4.9.

Proposition 4.15. Let A be a reduct of a unary structure that is a model-complete core.
There exist elements c1, . . . , cn ∈ A and a stabilised partition {V1, . . . , Vm} of A such that
(A, c1, . . . , cn) is a reduct of the unary structure (A;V1, . . . , Vm) and such that the endo-
morphisms of (A, c1, . . . , cn) are precisely the injective functions preserving V1, . . . , Vm.

Proof. Let {U1, . . . , Un} be a stabilised partition of A where n is minimal with the property
that A is a reduct of (A;U1, . . . , Un). Up to a permutation of the blocks, we can assume
that U1, . . . , Ur are the finite blocks of the partition. For every i ∈ {1, . . . , n}, let ci ∈ Ui.
We claim that

Aut(A, c1, . . . , cn) = Aut(A;U1, . . . , Un, c1, . . . , cn).

If r = n, there is nothing to prove, because of the assumption that the sets U1, . . . , Un
are either singletons are infinite. Therefore, if r = n, we have Aut(A, c1, . . . , cn) =
Aut(A;U1, . . . , Un).

We prove that Aut(A, c1, . . . , cr) preserves the binary relation

E := {(x, y) ∈ A2 | ∀i ∈ {r + 1, . . . , n}, x ∈ Ui ⇔ y ∈ Ui}.

Let α be an automorphism of A. For i, j ∈ {r + 1, . . . , n}, define Vij(α) to be the set of
elements of Ui that are mapped to Uj under α.

Claim 0: for every i ∈ {r + 1, . . . , n} and every automorphism α of A, there exists a
j ∈ {r + 1, . . . , n} such that Vji(α) is infinite.

Proof. Since α is a bijection, every element of Ui has a preimage under α. Since there
are only finitely many sets in the partition, one of the sets Uj contains infinitely many of
those preimages, i.e., Vji(α) is infinite. ♦

Claim 1: for every i ∈ {r+ 1, . . . , n} and every automorphism α of A, the set Vii(α) is
either finite or Ui.

Proof. Let α be an automorphism of A, and suppose that ∅ 6= Vii(α) 6= Ui. Since Vii(α) 6=
Ui, there exists a j ∈ {r + 1, . . . , n} such that Vij(α) 6= ∅, which is equivalent to say that
Vji(α

−1) 6= ∅. Suppose for contradiction that Vii(α) is infinite. Equivalently, Vii(α
−1) is

infinite. We claim that for every finite subset S of A, there exists an automorphism α′

of A such that α′(S) ∩ Uj = ∅. This is clear: let β be an automorphism of A that maps
S ∩ Ui to Vii(α

−1) (which is possible since Vii(α
−1) is infinite) and one element of S ∩ Uj
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to Vji(α
−1). The automorphism α′1 := α−1 ◦ β maps one point from S ∩ Uj to Ui, and

maps all the elements of S ∩ Ui to Ui. Possibly, some elements in S ∩ Uk for k 6∈ {i, j}
are mapped by α′1 to Uj . We repeat this procedure and obtain automorphisms α′2, . . . , α

′
m

with m ≤ |S|, until α′m(S) ∩ Uj is empty. Using a standard compactness argument, we

obtain an operation e ∈ Aut(A) whose image does not intersect Uj . This is a contradiction
to the minimality of the partition {U1, . . . , Un}: the structures e(A) and A are isomorphic,
and the relations of e(A) are definable in (A \ Uj ;U1, . . . , Uj−1, Uj+1, . . . , Un). Therefore
Vii(α) is finite. ♦

Claim 2: for every i ∈ {r+ 1, . . . , n} and every automorphism α of A, the set Vii(α) is
either empty or Ui.

Proof. Suppose that for some α ∈ Aut(A), the set Vii(α) is not equal to Ui and is not
empty. We prove that for every k ≥ 1, there exists an automorphism αk of A such that
|Vii(αk)| ≥ k and such that αk does not preserve Ui. Let k ≥ 1. By Claim 0, there exists
a j ∈ {r + 1, . . . , n} such that Vji(α) is infinite and by Claim 1, it must be the case that
j 6= i. Note that Vij(α

−1) is infinite, and that Vii(α
−1) is not empty. Let x1, . . . , xk be

pairwise distinct elements in Vij(α
−1), and let y ∈ Vii(α−1). Let z be an element of Ui

such that α(z) 6∈ Ui, which exists since Vii(α) 6= Ui. Let β be an automorphism of A that
maps α−1(y) to z and which leaves α−1(x1), . . . , α−1(xk) fixed. Then α ◦ β ◦ α−1 is an
automorphism ofA such that x1, . . . , xk ∈ Vii(α◦β◦α−1) and such that (α◦β◦α−1)(y) 6∈ Ui.

For each k ≥ 1, there exists by Claim 0 a j ∈ {r + 1, . . . , n} such that Vji(αk) is
infinite. Since αk does not preserve Ui by assumption, Vii(αk) 6= Ui. By Claim 1,
Vii(αk) has to be finite, so j is distinct from i. By the pigeonhole principle, there is
a j ∈ {r + 1, . . . , n} distinct from i such that Vji(αk) is infinite for infinitely many k.
Therefore, using another argument one can show that there is an endomorphism of A in
〈Aut(A;U1, . . . , Un) ∪ {αk : k ≥ 1}〉 whose image does not intersect Uj , which is a contra-
diction to the minimality of the partition {U1, . . . , Un}. Hence, Vii(α) is either empty or
Ui. ♦

Claim 3: for every i ∈ {r + 1, . . . , n} and every automorphism α of A, there is exactly
one j ∈ {r + 1, . . . , n} such that Vij(α) is nonempty.

Proof. Suppose that j, j′ ∈ {r + 1, . . . , n} are distinct and that Vij(α) and Vij′(α) are
both nonempty, say that α(x) ∈ Uj and α(y) ∈ Uj′ . Since Vjj(α

−1) is not Uj , it must be
empty by Claim 2. Thus, there exists a k distinct from j such that Vjk(α

−1) is infinite,
which gives the existence of a z ∈ Uj distinct from α(x) such that α−1(z) ∈ Uk. Let
β be an automorphism of A that maps x to y, and leaves α−1(z) fixed. Then the map
α ◦ β ◦ α−1 maps α(x) ∈ Uj to α(y) ∈ Uj′ , and maps z ∈ Uj to itself. Therefore, we have
that Vjj(α◦β ◦α−1) is neither empty nor equal to Uj , a contradiction to the second claim.
♦

Therefore, the relation E is preserved by Aut(A, c1, . . . , cr). This implies that each of
U1, . . . , Un is preserved by Aut(A, c1, . . . , cn). We obtain that (A, c1, . . . , cn) is a reduct of
(A;U1\{c1}, . . . , Un\{cn}, {c1}, . . . , {cn}) whose endomorphisms are precisely the injective
functions that preserve this stabilised partition.
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Corollary 4.16. Let A be a reduct of a unary structure. Then there exists an expansion
C of the model-complete core of A by finitely many constants such that Pol(C) satisfies
either 1. or 2.:

1. there is a uniformly continuous clonoid homomorphism Pol(C) u.c.c.h.−−−−→P;

2. Pol(C) contains a cyclic (equivalently: a Siggers, or a weak near-unanimity) opera-
tion f modulo End(C); moreover, f is canonical with respect to C.

Proof. Let U1, . . . , Un be a partition of A such that A is a reduct of (A;U1, . . . , Un). If the
model-complete core B of A is finite, then we can expand by a constant for each element of
B, and the statement follows from Theorem 2.17. Otherwise, for some stabilised partition
{V1, . . . , Vm} of B the structure B is a reduct of (B;V1, . . . , Vm), by Lemma 4.14. Then by
Proposition 4.15, there are finitely many constants c1, . . . , cm such that (B, c1, . . . , cm) sat-
isfies the hypothesis of Theorem 4.9, and the statement follows directly from Theorem 4.9.

We are now ready to give a proof of Theorem 4.8.

Proof of Theorem 4.8. Let A be a finite-signature reduct of (A;U1, . . . , Un). Let B be the
model-complete core of A and let C be the expansion of B by finitely many constants given
by Corollary 4.16. Since B is a model-complete core, the set of automorphisms of B is
dense in the set of endomorphisms. As in the proof of 3⇒ 2 in Theorem 4.9, we can use
this fact to prove that C has a Siggers polymorphism modulo endomorphisms if, and only
if, B has such a polymorphism.

• If C has such a polymorphism, it has a canonical one, by Theorem 4.9. Let m ≥ 3 be
greater than the arity of any relation of C. Then TC,m(C) has a Siggers polymorphism,
by Lemma 3.2. By Theorem 2.5, the CSP of TC,m(C) is in P. It follows from
Theorem 3.1 that CSP(C) is in P, too.

• If C does not have a Siggers polymorphism modulo endomorphisms, then Corol-
lary 4.16 gives a uniformly continuous clonoid homomorphism from Pol(C) to P.
By Corollary 2.15, CSP(C) is NP-complete.

We mention that the condition in Theorem 4.8 is decidable: given subsets U1, . . . , Un
of A (given by the sizes of the sets in the boolean algebra they generate), it is easily seen
that one can compute a finite set of bounds for the age of (A;U1, . . . , Un). Given first-order
formulas that define the relations of A over (A;U1, . . . , Un), it is also possible to compute
the model-complete core B ofA. Our results then imply that B has a Siggers polymorphism
modulo endomorphisms if, and only if, it has a canonical one. Testing the existence of a
canonical pseudo-Siggers polymorphism is then decidable, since it is equivalent to testing
the existence of a Siggers polymorphism of TB,m(B) for m large enough.
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Chapter 5

MMSNP: Proof of the Algebraic Dichotomy Conjecture

Monotone Monadic SNP (MMSNP) is a fragment of monadic existential second-order logic
whose sentences describe problems of the form “given a structure A, is there a colouring
of the elements of A that avoids some fixed family of forbidden patterns?” Examples of
such problems are the classical k-colourability problem for graphs (where the forbidden
patterns are edges whose endpoints have the same colour), or the problem of colouring
the vertices of a graph so as to avoid monochromatic triangles (Figure 5.1).

MMSNP has been introduced by Feder and Vardi [52], whose motivation was to find
fragments of existential second-order logic that exhibit a complexity dichotomy between P
and NP-complete. They proved that every problem described by an MMSNP sentence is
equivalent under polynomial-time randomised reductions to a CSP over a finite domain.
Kun [71] later improved the result by derandomising the equivalence, thus showing that
MMSNP exhibits a complexity dichotomy if and only if the Feder-Vardi dichotomy con-
jecture holds. By Theorem 2.5, we obtain that MMSNP exhibits a complexity dichotomy.

Dalmau and Bodirsky [14] showed that every problem in MMSNP is a finite union
of constraint satisfaction problems for ω-categorical structures. These structures can be
expanded to finitely bounded homogeneous structures so that they fall into the scope of
Conjecture 1. It is easy to see that in order to prove the MMSNP dichotomy, it suffices
to prove the dichotomy for those MMSNP problems that are CSPs (see Section 5.1.1).
This poses the question whether the complexity of MMSNP can be studied directly using
the universal-algebraic approach, rather than the reduction of Kun which involves a com-
plicated construction of expander structures. In particular, even though we now have a
complexity dichotomy for MMSNP, it was hitherto unknown whether the CSPs in MMSNP
satisfy the infinite-domain tractability conjecture.

Figure 5.1: The No-Mono-Triangle problem: the input is a finite graph G, and the
question is whether there exists a colouring of the vertices of G with two colours that avoids
monochromatic triangles. Colours are also shown with different shape of vertices for visual
aid only. Non-coloured vertices will appear as white round vertices in the following.



The main result of this chapter is the confirmation of Conjecture 1 for CSPs in MMSNP.
As a by-product, we obtain a new proof of the complexity dichotomy for MMSNP that
does not rely on the results of Kun. To the best of our knowledge, this is the first-time that
the universal-algebraic approach for infinite-domain CSPs provides a classification for a
class of computational problems that has been studied in the literature before1, and which
has been introduced without having the universal-algebraic approach in mind. We also
solve an open question by Lutz and Wolter [73]. Informally, we prove that the existential
second-order predicates of an MMSNP sentence can be added to the original (first-order)
signature of the sentence without increasing the complexity of the corresponding problem;
we refer the reader to Section 5.3 for a formal statement.

The strategy for our proof is as follows. Let A be an ω-categorical structure such that
CSP(A) is described by an MMSNP sentence Φ. First, we exhibit an MMSNP sentence
Ψ in strong normal form such that Φ and Ψ are equivalent (and in particular, CSP(A)
is described by Ψ). For this sentence Ψ, we construct another ω-categorical structure CΨ

whose CSP is described by Ψ and proceed with the following steps:

1. Using the infinite-to-finite reduction from Chapter 3, we show that CSP(CΨ) is in P
if Pol(CΨ) has a canonical polymorphism that behaves on the orbits of the template
as a Siggers operation.

2. In order to prove that this is the only way to obtain polynomial-time tractability,
we want to show that the absence of such a canonical polymorphism is equivalent
to the existence of a uniformly continuous clonoid homomorphism to the clone of
projections, which is known to entail NP-hardness (Corollary 2.15). We construct
this map by first defining a clonoid homomorphism from the clone of canonical
polymorphisms of the template to the clone of projections, followed by extending
this map to the whole polymorphism clone (similarly as in Chapter 4). For this, two
ingredients are necessary.

3. The first one is the fact that the template has the canonisation property as defined
in Chapter 4. This requires proving that the template under consideration has an
ω-categorical Ramsey expansion, which follows from recent results of Hubička and
Nešetřil [58].

4. The second ingredient is the fact that every polymorphism of our template canonises
in essentially one way. In Chapter 4, this was proved using the mashup property. In
the case of MMSNP, we were unable to prove the mashup property for our template
(although no counterexample was found). Indeed, we bypass this problem through an
analysis of the binary symmetric relations that are preserved by the polymorphisms
of the template.

This presentation of the strategy oversimplifies certain aspects, and we have to defer a
more precise discussion to Section 5.4. This chapter contains published results from [24].

1https://complexityzoo.uwaterloo.ca/Complexity_Zoo:M#mmsnp.
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Chapter 5. Proof of the dichotomy conjecture for MMSNP

5.1 MMSNP

Let τ be a relational signature (we also refer to τ as the input signature). SNP is a
syntactically restricted fragment of existential second order logic. A sentence in SNP is of
the form ∃P1, . . . , Pn. φ where P1, . . . , Pn are predicates (i.e., relation symbols) and φ is a
universal first-order-sentence over the signature τ∪{P1, . . . , Pn}. Monotone Monadic SNP
without inequality, MMSNP, is the popular restriction thereof which consists of sentences
Φ of the form

∃P1, . . . , Pn ∀x̄
∧
i

¬
(
αi ∧ βi

)
,

where P1, . . . , Pn are monadic (i.e., unary) relation symbols not in τ , where x̄ is a tuple
of first-order variables, and for every negated conjunct:

• αi consists of a conjunction of atomic formulas involving relation symbols from τ
and variables from x̄; and

• βi consists of a conjunction of atomic formulas or negated atomic formulas involving
relation symbols from P1, . . . , Pn and variables from x̄.

Notice that the equality symbol is not allowed in MMSNP sentences.
Every MMSNP τ -sentence describes a computational problem: the input consists of a

finite τ -structure A, and the question is whether A |= Φ, i.e., whether the sentence Φ is
true in A. We sometimes identify MMSNP with the class of all computational problems
described by MMSNP sentences.

5.1.1 Connected MMSNP

A pp-formula φ with at least one variable is called connected if the conjuncts of φ cannot
be partitioned into two non-empty sets of conjuncts with disjoint sets of variables, and
disconnected otherwise. Note that a pp-formula φ without equality conjuncts is connected
if and only if the Gaifman graph2 of the canonical database of φ is connected in the
graph theoretic sense. A connected pp-formula is called biconnected if the conjuncts of φ
cannot be partitioned into two non-empty sets of conjuncts that only share one common
variable. Note that formulas with only one variable might not be biconnected, e.g., the
formula R1(x) ∧ R2(x) is not biconnected. An MMSNP τ -sentence Φ is called connected
(or biconnected) if for each conjunct ¬(α∧ β) of Φ where α is a conjunction of τ -formulas
and β is a conjunction of unary formulas, the formula α is connected (or biconnected,
respectively).

Proposition 5.1 (implicit in [52]; see also Section 6 of [76]). Let Φ be an MMSNP sen-
tence. Then Φ is logically equivalent to a finite disjunction of connected MMSNP sentences;
these connected MMSNP sentences can be effectively computed from Φ.

Proof. Let P1, . . . , Pk be the existential monadic predicates in Φ, and let τ be the input
signature of Φ. Suppose that Φ has a conjunct ¬(α ∧ β) where α is a disconnected
conjunction of atomic τ -formulas and β contains unary predicates only. Suppose that

2The Gaifman graph of a relational structure A is the undirected graph with vertex set A which contains
an edge between u, v ∈ A if and only if u and v both appear in a tuple contained in a relation of A.
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5.1. MMSNP

α is equivalent to α1 ∨ α2 for non-empty formulas α1 and α2. Let Φ1 be the MMSNP
sentence obtained from Φ by replacing α by α1, and let Φ2 be the MMSNP sentence
obtained from Φ by replacing α by α2. It is then straightforward to check that every finite
(τ ∪{P1, . . . , Pk})-structure A we have that A satisfies the first-order part of Φ if and only
if A satisfies the first-order part of Φ1 or the first-order part of Φ2. Iterating this process
for each disconnected clause of φ, we eventually arrive at a finite disjunction of connected
MMSNP sentences.

It is well-known that the complexity classification for MMSNP can be reduced to the
complexity classification for connected MMSNP; we add the simple proof for the conve-
nience of the reader.

Proposition 5.2. Let Φ be an MMSNP τ -sentence which is logically equivalent to Φ1 ∨
· · · ∨Φk for connected MMSNP τ -sentences Φ1, . . . ,Φk where k is smallest possible. Then
Φ is in P if each of Φ1, . . . ,Φn is in P. If one of the Φi is NP-hard, then so is Φ.

Proof. If each Φi can be decided in polynomial time by an algorithm Ai, then it is clear
that Φ can be solved in polynomial time by running all of the algorithms A1, . . . , Ak on
the input, and accepting if one of the algorithms accepts.

Otherwise, if one of the Φi describes an NP-complete problem, then Φi can be reduced
to Φ as follows. Since k was chosen to be minimal, there exists a τ -structure B such
that B satisfies Φi, but does not satisfy Φj for all j ≤ n that are distinct from i, since
otherwise we could have removed Φi from the disjunction Φ1 ∨ · · · ∨ Φk without affecting
the equivalence of the disjunction to Φ. We claim that A ] B satisfies Φ if and only if A
satisfies Φi. First suppose that A satisfies Φi. Since B also satisfies Φi by choice of B,
and since Φi is closed under disjoint unions, we have that A ] B satisfies Φi as well. The
statement follows since Φi is a disjunct of Φ.

For the opposite direction, suppose that A]B satisfies Φ. Since B does not satisfy Φj

for all j distinct from i, A] B does not satisfy Φj as well, by monotonicity of Φj . Hence,
A ] B must satisfy Φi. By monotonicity of Φi, it follows that A satisfies Φi. Since A ] B
is for fixed B clearly computable from A in linear time this concludes our reduction from
Φi to Φ.

Proposition 5.3 (Corollary 1.4.15 in [11]). An MMSNP sentence Φ describes a CSP if
and only if Φ is logically equivalent to a connected MMSNP sentence.

5.1.2 Templates for connected MMSNP sentences

In this section we first revisit the fact that every connected MMSNP sentence describes a
CSP of an ω-categorical structure [14]. The proof uses a theorem due to Cherlin, Shelah,
and Shi, stated for graphs in [48]; Theorem 5.4 below is formulated for general relational
structures. Another proof of the theorem of Cherlin, Shelah, and Shi has been given by
Hubička and Nešetřil [59].

For a set F of finite structures, denote by Forbhom(F) the set of all finite structures A
such that for all F ∈ F, there does not exist any homomorphism from F to A.

Theorem 5.4 (Theorem 4 in [48]). Let F be a finite set of finite connected τ -structures.
Then there exists a countable model-complete τ -structure Bind

F such that Age(Bind
F ) =
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Chapter 5. Proof of the dichotomy conjecture for MMSNP

Forbhom(F). The structure Bind
F is ω-categorical and without algebraicity, and unique with

these properties.

Let Φ be a connected MMSNP τ -sentence. Let σ be the existentially quantified unary
relation symbols in Φ, and let σ̄ be the signature that contains a relation symbol P̄ for
every relation symbol P ∈ σ. We write |Φ| for the maximal number of variables in the
clauses of Φ. For every P ∈ σ, add the clause ¬(P (x) ∧ P̄ (x)) to Φ. Let Φ′ be the
formula obtained from Φ by replacing each occurrence of ¬P (y) in Φ by P̄ (y). Then the
obstruction set for Φ is the set F of all finite connected (τ ∪ σ ∪ σ̄)-structures A such that

• A = {1, . . . , k} for k ≤ |Φ|;

• for every u ∈ A either P (u) or P̄ (u) holds;

• A falsifies a clause of Φ′.

Note that F satisfies the conditions from Theorem 5.4.

Definition 5.1. Let Φ be an MMSNP sentence, and F the obstruction set for Φ. Then BΦ

denotes the substructure induced in Bind
F by all the elements b such that Bind

F |= P (b)∨P̄ (b)
for all P ∈ σ.

Let τ be a subset of the signature of A; then the τ -reduct of A is the τ -structure
obtained from A by dropping all relations that are not in τ , and denoted by Aτ . Note
that reducts of ω-categorical structures are ω-categorical, and hence the structure BτΦ is
ω-categorical for all Φ.

Theorem 5.5 ([14]). Let Φ be an MMSNP τ -sentence. Then a finite τ -structure A sat-
isfies Φ if and only if A homomorphically maps to BτΦ.

5.1.3 Statement of the main result

The main result of this chapter is the proof of the infinite-domain tractability conjecture
(Conjecture 1) for CSPs in MMSNP. We actually show a stronger formulation than the
conjecture since we also provide a characterisation of the polynomial-time tractable cases
using pseudo-Siggers polymorphisms.

Combined with Proposition 5.1 we obtain the following theorem for MMSNP in general.

Theorem 5.6. Let Φ be an MMSNP τ -sentence. Then Φ is logically equivalent to a finite
disjunction Φ1 ∨ · · · ∨ Φk of connected MMSNP sentences; for each i ≤ k there exists an
ω-categorical structure Bi such that Φi describes CSP(Bi), and either

• Pol(Bi) has a uniformly continuous clonoid homomorphism to P, for some i ∈
{1, . . . , k}, and Φ is NP-complete, or

• Pol(Bi) contains a pseudo-Siggers polymorphism, for each i ∈ {1, . . . , k}, and Φ is
in P.

In particular, every problem in MMSNP is in P or NP-complete.
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5.2 Normal Forms

We recall and adapt a normal form for MMSNP sentences that was initially proposed
by Feder and Vardi in [51, 52] and later extended in [76]. The normal form has been
invented by Feder and Vardi to show that for every connected MMSNP sentence Φ there
is a polynomial-time equivalent finite-domain CSP. In their proof, the reduction from
an MMSNP sentence to the corresponding finite-domain CSP is straightforward, but the
reduction from the finite-domain CSP to Φ is tricky: it uses the fact that hard finite-
domain CSPs are already hard when restricted to high-girth instances. The fact that
MMSNP sentences in normal form are biconnected is then the key to reduce high-girth
instances to the problem described by Φ.

In our work, the purpose of the normal form is the reduction of the classification prob-
lem to MMSNP sentences that are precoloured in a sense that will be made precise in
Section 5.3, which is later important to apply the universal-algebraic approach. More-
over, we describe a new strong normal form that is based on recolourings introduced by
Madelaine [75]. Recolourings have been applied by Madelaine to study the computational
problem whether one MMSNP sentence implies another. In our context, the importance
of strong normal forms is that the templates that we construct for MMSNP sentences in
strong normal form, expanded with the inequality relation 6=, are model-complete cores
(Theorem 5.25). Let us mention that in order to get this result, the biconnectivity of
the MMSNP sentences in normal form is essential (e.g., the proof of Theorem 5.25 uses
Corollary 5.15, which uses Lemma 5.13, which uses Lemma 5.8, which crucially uses bi-
connectivity of Φ).

5.2.1 The normal form for MMSNP

Every connected MMSNP sentence can be rewritten to a connected MMSNP sentence of
a very particular shape, and this shape will be crucial for the results that we prove in the
following sections.

Definition 5.2 (originates from [52]; also see [76]). Let Φ be an MMSNP sentence where
M1, . . . ,Mn, for n ≥ 1, are the existentially quantified predicates (also called the colours
in the following). Then Φ is said to be in normal form if it is connected and

1. (Every vertex has a colour) the first conjunct of Φ is

¬
(
¬M1(x) ∧ · · · ∧ ¬Mn(x)

)
;

2. (Every vertex has at most one colour) Φ contains the conjunct

¬
(
Mi(x) ∧Mj(x)

)
for all distinct i, j ∈ {1, . . . , n};

3. (Clauses are fully coloured) for each conjunct ¬φ of Φ except the first, and for each
variable x that appears in φ, there is an i ≤ n such that φ has a literal of the form
Mi(x);

4. (Clauses are biconnected) if a conjunct ¬φ of Φ is not of the form as described in
item 1 and 2, the formula φ is biconnected;
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Chapter 5. Proof of the dichotomy conjecture for MMSNP

5. (Small clauses are explicit) any (τ ∪ {M1, . . . ,Mn})-structure A with at most k
elements satisfies the first-order part of Φ if A satisfies all conjuncts of Φ with at
most k variables.

Note that when Φ is in normal form then in all conjuncts ¬φ of Φ except for the
first we can drop conjuncts where predicates appear negatively in φ; hence, we assume
henceforth that φ is a conjunction of atomic formulas. We illustrate item 4 and item 5 in
this definition with the following examples.

Example 1. Let Φ be the connected MMSNP sentence

∀a, b, c, d, e.¬
(
E(a, b) ∧ E(b, c) ∧ E(c, d) ∧ E(d, e) ∧ E(e, a)

)
which is in fact a first-order formula. The canonical database of

E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x4) ∧ E(x4, x3) ∧ E(x3, x1)

has only four elements, does not satisfy Φ, but the only conjunct of Φ has five elements.
So this is an example that satisfies all items except item 5 in the definition of normal
forms.

However, Φ is logically equivalent to the following MMSNP formula, and it can be
checked that this formula is in normal form.

∃M1∀x0, . . . , x4

(
¬(¬M1(x0))∧¬(

∧
0≤i≤4

M1(xi) ∧ E(xi, xi+1 mod 5))

∧¬(
∧

0≤i≤2

M1(xi) ∧ E(xi, xi+1 mod 3))

∧¬(M1(x0) ∧ E(x0, x0))
)
.

Adding clauses to an MMSNP sentence to obtain an equivalent sentence that satis-
fies item 5 can make a biconnected sentence not biconnected, as we see in the following
example.

Example 2. Let Φ be the following biconnected MMSNP sentence.

∀a, b, c, d.¬
(
E(a, b) ∧ E(b, d) ∧ E(a, c) ∧ E(c, d)

)
Note that Φ does not satisfy item 5 (it has implicit small clauses) and in fact is equivalent
to

∀a, b, d.¬
(
E(a, b) ∧ E(b, d)

)
which is not biconnected.

Lemma 5.7. Every connected MMSNP sentence Φ is equivalent to an MMSNP sentence
Ψ in normal form, and Ψ can be computed from Φ.

Proof. We transform Φ in several steps (their order is important).

1: Biconnected clauses. Suppose that Φ contains a conjunct ¬φ such that φ is not
biconnected, i.e., φ can be written as φ1(x, ȳ)∧φ2(x, z̄) for tuples of variables ȳ and z̄ with
disjoint sets of variables, and where φ1 and φ2 are conjunctions of atomic formulas. Then
we introduce a new existentially quantified predicate P , and replace ¬φ by ¬(φ1(x, ȳ) ∧
P (x))∧¬(φ2(x, z̄)∧¬P (x)). Repeating this step, we can establish item 4 in the definition
of normal forms.
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2: Making implicit small clauses explicit. Let ¬φ(x1, . . . , xn) be a conjunct of Φ
that is not the first conjunct. Let x be a variable that does not appear among x1, . . . , xn,
and consider the formula φ(y1, . . . , yn) where yi is either xi or x, and suppose that yi =
yj = x for at least two different i, j ≤ n. If φ(y1, . . . , yn) is biconnected, then add
¬φ(y1, . . . , yn) to Φ. Otherwise, φ(y1, . . . , yn) can be written as φ1(x, z̄1) ∧ φ2(x, z̄2). We
then apply the procedure from step 1 with the formula ¬φ(y1, . . . , yn). In this way we can
produce an equivalent MMSNP sentence that still satisfies item 4 (biconnected clauses).
When we repeat this in all possible ways the procedure eventually terminates, and we
claim that the resulting sentence Ψ satisfies additionally item 5. To see this, let A be
a (τ ∪ {M1, . . . ,Mn})-structure with at most k elements which does not satisfy some
conjunct ¬φ of Φ. Pick the conjunct ¬φ from Φ with the least number of variables and
this property. Then there are a1, . . . , al ∈ A such that A satisfies φ(a1, . . . , al). If l ≤ k,
we are done. Otherwise, there must be i, j ≤ l such that ai = aj . If the conjunct
¬φ(y1, . . . , xi−1, x, xi+1, . . . , xj−1, x, xj+1, . . . , yl) is biconnected, it has been added to Φ,
and it has less variables than φ, a contradiction. Otherwise, our procedure did split the
conjunct, and inductively we see that a clause that it not satisfied by A and has less
variables than φ has been added to Φ.

3: Predicates as colours. Next, we want to ensure the property that Φ contains
for each pair of distinct existentially quantified monadic predicates Mi,Mj the negated
conjunct

¬
(
Mi(x) ∧Mj(x)

)
,

and when M1, . . . ,Mc are all the existentially quantified predicates, then Φ contains the
negated conjunct

¬
(
¬M1(x) ∧ · · · ∧ ¬Mc(x)

)
.

We may transform every MMSNP sentence into an equivalent MMSNP sentence of this
form, via the addition of further monadic predicates (2n predicates starting from nmonadic
predicates). If n = 0 then Φ was a first-order formula; in this case, to have a unified
treatment of all cases, we introduce a single existentially quantified predicate M1, too.

4: Fully coloured clauses. Finally, if ¬φ is a conjunct of Φ and x a variable from φ
such that x does not appear in any literal of the form Mi(x) in φ, then we replace ¬φ by
the conjuncts

¬(φ ∧M1(x)) ∧ · · · ∧ ¬(φ ∧Mn(x)).

We do this for all conjuncts of Φ and all such variables, and obtain an MMSNP sentence
that finally satisfies all the items from the definition of normal forms.

Example 3. We revisit an MMSNP sentence from Example 2,

∀a, b, c.¬
(
E(a, b) ∧ E(b, c)

)
.
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An equivalent MMSNP sentence Ψ in normal form is

∃M1,M2 ∀x, y
(
¬(¬M1(x) ∧ ¬M2(x))

∧¬(M1(x) ∧M2(x))

∧¬(M1(x) ∧R(x, x))

∧¬(M2(x) ∧ E(x, x))

∧¬(M1(x) ∧M1(y) ∧ E(x, y))

∧¬(M2(x) ∧M2(y) ∧ E(x, y))

∧¬(M2(x) ∧M1(y) ∧ E(x, y)
)
.

The following lemma states a key property that we have achieved with our normal
form (in particular, we use the biconnectivity assumption).

Lemma 5.8. Let φ be the first-order part of an MMSNP τ -sentence in normal form with
colour set σ and let ψ1(x, ȳ) and ψ2(x, z̄) be two conjunctions of atomic (τ ∪ σ)-formulas
such that

• ȳ and z̄ are vectors of disjoint sets of variables;

• the canonical databases of ψ1 and of ψ2 satisfy φ;

• the canonical database A of ψ1(x, ȳ) ∧ ψ2(x, z̄) does not satisfy φ.

Then ψ1 must contain a literal Mi(x) and ψ2 must contain a literal Mj(x) for distinct
colours Mi and Mj of φ.

Proof. First observe that all vertices of A must be coloured since all vertices of the canoni-
cal databases of ψ1 and of ψ2 are coloured (because they satisfy φ). Therefore, since A does
not satisfy φ, there is a conjunct ¬φ′ of φ and a1, . . . , al ∈ A such that A |= φ′(a1, . . . , al).
Pick the conjunct such that l is minimal. Since both the canonical database of ψ1 and of
ψ2 satisfy φ, not all of a1, . . . , al can lie in the canonical database of ψ1, or in the canonical
database of ψ2. If φ′ is of the form Mi(x)∧Mj(x) for i 6= j then we are done. Otherwise,
since φ′ is biconnected, there are i, j ≤ n such that ai = aj = x. In this case, the structure
A′ induced by a1, . . . , al in A has strictly less then l elements. Since Φ is in normal form,
and since A′ does not satisfy φ, by item 5 in the definition of normal forms there must be
a conjunct ¬φ′′ of φ with at most |A′| variables such that φ′′ holds in A′. This contradicts
the choice of φ′.

5.2.2 Templates for sentences in normal form

Let Φ be an MMSNP τ -sentence in normal form. Let σ be the set of colours of Φ. We will
now construct an ω-categorical (τ ∪ σ)-structure CΦ for an MMSNP sentence Φ in normal
form; this structure will have several important properties:

1. a structure A satisfies Φ if and only if A homomorphically maps to CτΦ;

2. for every colour M of Φ, MCΦ is an orbit of elements under Aut(CΦ); moreover, every
orbit is of this form.
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3. (CΦ, 6=) is a model-complete core;

4. if Φ is furthermore in strong normal form (to be introduced in Section 5.2.3) then
even (CτΦ, 6=) is a model-complete core.

If Φ is an MMSNP sentence in normal form, it is more natural to consider a variant
of the notion of an obstruction set introduced in Section 5.1.2, which we call coloured
obstruction set, because when Φ is in normal form we do not have to introduce a new
symbol for the negation of each existentially quantified predicate to construct a template.

Definition 5.3. Let Φ be an MMSNP τ -sentence in normal form. The coloured obstruction
set for Φ is the set F of all canonical databases for formulas φ such that ¬φ is a conjunct
of Φ, except for the first conjunct.

Theorem 5.4 has the following variant in the category of injective homomorphisms.

Theorem 5.9. Let F be a finite set of finite connected τ -structures. Then there exists a
τ -structure Bhom

F such that

• a finite τ -structure A homomorphically and injectively maps to Bhom
F if and only if

A ∈ Forbhom(F);

• (Bhom
F ; 6=) is a model-complete core.

The structure Bhom
F is ω-categorical, and is unique up to isomorphism with these properties.

Proof. Let (Bhom
F , 6=) be the model-complete core of (Bind

F , 6=); by Theorem 2.18 the struc-

ture (Bhom
F ; 6=) is unique up to isomorphism, and ω-categorical. Let A be a finite τ -

structure. If A ∈ Forbhom(F), then A embeds into Bind
F by Theorem 5.4, and since (Bind

F , 6=)

is homomorphically equivalent to (Bhom
F , 6=), there is an injective homomorphism from A

to Bhom
F . These reverse implication can be shown similarly, and this shows the first item.

The structure Bind
F from Theorem 5.4 and the structure Bhom

F from Theorem 5.9 might
or might not be isomorphic, as we see in the following example.

Example 4. The structure Bhom
F might be isomorphic to the structure Bind

F : it is for

example easy to verify that for F := {K3} the structure Bind
F is a model-complete core,

and therefore isomorphic to Bhom
F .

In general, however, the two structures are not isomorphic. Consider for example the
signature τ = {E} for E binary and F := {L} where L := ({0}; {(0, 0)}), i.e., L is the
canonical database of E(x, x). Then all finite τ -structures embed into Bind

F , but Bhom
F

satisfies ∀x, y (E(x, y) ∨ x = y), i.e., Bhom
F is the countably infinite complete graph.

Definition 5.4. Let Φ be an MMSNP τ -sentence in normal form and let F be the coloured
obstruction set of Φ. Then CΦ denotes the substructure of Bhom

F induced by the coloured

elements of Bhom
F .

The τ -reduct CτΦ of the structure CΦ that we constructed for an MMSNP sentence Φ
in normal form is indeed a template for the CSP described by Φ.
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Lemma 5.10. Let Φ be an MMSNP τ -sentence in normal form and let A be a τ -structure.
Then the following are equivalent.

(1) A |= Φ;

(2) A homomorphically and injectively maps to CτΦ;

(3) A homomorphically maps to CτΦ.

Proof. Let ρ be the colour set and let F be the coloured obstruction set of Φ. (1) ⇒ (2).
If A satisfies Φ it has a (τ ∪σ)-expansion A′ such that no structure in F homomorphically
maps to A′. So A′ homomorphically and injectively maps to Bhom

F by Theorem 5.9.
Moreover, every element of A′ is contained in one predicate from σ (because of the first
conjunct of Φ) and hence the image of the embedding must lie in CΦ.

(2)⇒ (3) is trivial. For (3)⇒ (1), let h be the homomorphism from A to CτΦ. Expand
A to a (τ ∪ σ)-structure A′ by colouring each element a ∈ A by the colour of h(a) in CΦ;
then there is no homomorphism from a structure F ∈ F to A′, since the composition of
such a homomorphism with h would give a homomorphism from F to Bind

F , a contradiction.
The expansion A′ also satisfies the first conjunct of Φ, and hence A |= Φ′.

In the following we prove that CΦ indeed has the properties that we announced at the
beginning of this section. We start with some remarkable properties of the structure Bind

F

(Section 5.2.2) and continue with properties of CΦ (Section 5.2.2).

Properties of Cherlin-Shelah-Shi structures

An existential formula is called primitive if it does not contain disjunctions.

Lemma 5.11. For every k ∈ N, the orbits of k-tuples in Bind
F can be defined by φ1 ∧ φ2

where φ1 is a pp-formula and φ2 is a conjunction of negated atomic formulas.

Proof. It suffices to prove the statement for k-tuples ā with pairwise distinct entries. Since
Bind
F is ω-categorical and model-complete, there is an existential definition φ(x) of the orbit

of a in Bind
F . Since φ defines an orbit of k-tuples it can be chosen to be primitive. Moreover,

since ā is a tuple with pairwise distinct entries, φ can be chosen to be without conjuncts of
the form x = y (it is impossible that both x and y are among the free variables x1, . . . , xn;
if one of the variables is existentially quantified, we can replace all occurrences of it by
the other variable and obtain an equivalent formula). Let φ1 be the pp-formula obtained
from φ by deleting all the negated conjuncts. Let φ2 be conjunction of all negated atomic
formulas that hold on ā. Clearly, φ implies φ1 ∧ φ2.

Let b̄ be a tuple that satisfies φ1 ∧ φ2; we have to show that b̄ satisfies φ. Let
ψ(x1, . . . , xn) be the existential definition of the orbit of b̄. Again, we may assume that ψ
is disjunction-free and free of literals of the form x = y. Let ψ1 be the formula obtained
from ψ by dropping negated conjuncts. Let A be the canonical database of φ1∧ψ1 (which
is well-defined since both φ1 and ψ1 are primitive positive and do not involve literals of
the form x = y). We have Bind

F |= φ1(b̄) ∧ ψ1(b̄), so A does not homomorphically embed

any structure from F. By definition of Bind
F (Theorem 5.4), there exists an embedding e of

A into Bind
F . Then e provides witnesses for the existentially quantified variables in φ ∧ ψ

showing that Bind
F |= (φ ∧ ψ)(e(x1), . . . , e(xn)) because for those witnesses the negated
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conjuncts will also be satisfied. Hence, φ and ψ define the same orbit of n-tuples. In
particular, t satisfies φ which is what we wanted to show.

When B is a structure, we write B∗ for the expansion of B by all pp-formulas.

Corollary 5.12. The structure (Bind
F )∗ is homogeneous.

Proof. Let ā, b̄ be two k-tuples of elements of (Bind
F )∗ such that the map that sends ai to

bi, for i ∈ {1, . . . , k}, is an isomorphism between the substructures induced by {a1, . . . , an}
and by {b1, . . . , bn} in (Bind

F )∗. Then ā and b̄ satisfy in particular the same negated atomic

formulas, and they also satisfy the same primitive positive formulas in Bind
F since α must

preserve the relations that we have introduced for these formulas in (Bind
F )∗. The statement

now follows from Lemma 5.11.

Definition 5.5. A relational structure B is said to be 1-homogeneous if it has the property
that when a, b ∈ B satisfy the same unary relations in B, then there exists an automor-
phism of B that maps a to b.

Lemma 5.13. Let Φ be an MMSNP sentence in normal form with coloured obstruction
set F. Then Bind

F is 1-homogeneous.

Proof. Let a1 and a2 be two elements that induce isomorphic 1-element substructures of
Bind

Φ . Since Bind
F is model-complete, the orbit of ai, for i = 1 and i = 2, has a primitive

definition ψi(x) in Bind
F . Pick elements for the existentially quantified variables in ψi that

witness the truth of ψi(ai), and let ψ′i be the canonical query of the structure induced by
ai and those elements in Bind

Φ .

Suppose for contradiction that a1 and a2 are in different orbits of Bind
F . This means

that ψ1(x) ∧ ψ2(x), and therefore also ψ′1(x) ∧ ψ′2(x), is unsatisfiable in the structure
Bind
F . Since a1 and a2 induce isomorphic 1-element substructures, the contrapositive of

Lemma 5.8 shows that already the canonical database of ψ′1 or of ψ′2 does not satisfy the
first-order part of Φ, a contradiction.

Properties of our templates for MMSNP

Some properties that we have derived for Bind
F transfer to Bhom

F and CΦ.

Lemma 5.14. Let Φ be an MMSNP sentence in normal form with coloured obstruction
set F. Then Bhom

F is 1-homogeneous.

Proof. We already know that Bind
F is 1-homogeneous. Let f be an injective homomorphism

from Bind
F to Bhom

F and g an injective homomorphism from Bhom
F to Bind

F . Let u and v be

two elements of Bhom
F that induce isomorphic 1-element substructures. Then g(u) and

g(v) must induce isomorphic 1-element substructures, too, since otherwise the injection
e := f ◦ g would not preserve all first-order formulas, in contradiction to the assumption
that (Bhom

F , 6=) is a model-complete core. By the 1-homogeneity of Bind
F (Lemma 5.13)

there exists α ∈ Aut(Bind
F ) such that α(g(u)) = g(v). The mapping e′ := f ◦ α ◦ g is

an endomorphism of (Bhom
F , 6=), and since (Bhom

F , 6=) is a model-complete core there exists
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β ∈ Aut(Bhom
F , 6=) such that β(u) = e′(u). There also exists a γ ∈ Aut(Bhom

F , 6=) such that
γ(u) = e(v). Then

γ−1(β(u)) = γ−1(f(α(g(u))))

= γ−1(f(g(v)))

= γ−1(e(v)) = v

and so u and v are in the same orbit of Aut(Bhom
F ).

Corollary 5.15. Let Φ be an MMSNP sentence in normal form. Then CΦ is 1-homogeneous.

Proof. Let F be the coloured obstruction set for Φ. Recall that CΦ is a substructure of
Bhom
F . Let x and y be two elements of CΦ that induce isomorphic 1-element substructures.

By Lemma 5.13, x and y lie in the same orbit of Bhom
F . When x and y are in the same

orbit of Bhom
F , they are clearly also in the same orbit of CΦ since automorphisms of Bhom

F

respect the domain of CΦ.

Lemma 5.16. Let Φ be in normal form with colours M1, . . . ,Mn. Let a and b be two
elements of CΦ that induce non-isomorphic one-element structures in CΦ. Then there are
distinct i, j ∈ {1, . . . , n} such that CΦ |= Mi(a) ∧Mj(b).

Proof. By definition of CΦ there are i, j ∈ {1, . . . , n} such that Mi(a) and Mj(b). Let F be
the coloured obstruction set for Φ. Since (Bhom

F , 6=) is a model-complete core, there is a pp-

definition ψ1(x) of the orbit of a in (Bhom
F , 6=), and similarly a primitive positive definition

ψ2(x) of the orbit of b in (Bhom
F , 6=). Pick witnesses for the existentially quantified variables

that show that ψ1(a) and ψ2(b) hold, and let ψ′1(x) and ψ′2(x) be the pp-formulas in the
language of Bhom

F that we obtain from ψ1 and ψ2 by

1. dropping the conjuncts that involve the symbol 6=, and

2. adding conjuncts of the form M(x) for every existentially quantified variable, where
M is the colour of the witness that we picked above.

Clearly, the canonical databases of ψ′1 and of ψ′2 satisfy the first-order part φ of Φ. We
claim that the canonical database of ψ′1(x) ∧ ψ′2(x) does not satisfy φ. Then Lemma 5.8
implies that i 6= j and we are done.

To show the claim, suppose for contradiction that ψ′1(x)∧ψ′2(x) is satisfiable. Then the
canonical database of this formula homomorphically maps to Bhom

F , and by the first item

of Theorem 5.9 also injectively homomorphically map to Bhom
F . Hence, the formula ψ1(x)∧

ψ2(x) is satisfiable as well (any injective homomorphism gives a satisfying assignment).
But ψ1(x) ∧ ψ2(x) cannot be satisfiable in (Bhom

F , 6=) because a and b must lie in different

orbits of Bhom
F .

Note that Lemma 5.16 would be false if instead of Bhom
F we would have used Bind

F in
the definition of CΦ, as shown by the following example.

Example 5. Let τ be the signature that only contains the two unary predicates P and
Q. Let Φ be the MMSNP τ -sentence in normal form with an empty coloured obstruction
set F. Then Bind

F would have four orbits, but just one colour, so there are vertices of the

same colour that lie in different orbits. But Bhom
F has only one orbit, since all elements of

Bhom
F must lie both in P and in Q.
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The previous two lemmas jointly imply the following, which will become important in
later sections.

Corollary 5.17. Let Φ be in normal form. Then the colours of Φ denote the orbits of
Aut(CΦ).

The final goal of this section is to prove that for MMSNP sentences Φ in normal form
the structure (CΦ, 6=) is a model-complete core. To this end, we need the following.

Lemma 5.18. Let Φ be an MMSNP τ -sentence in normal form and F be the coloured
obstruction set for Φ. Let ā be a k-tuple of elements of Bhom

F which has an entry ai that

does not satisfy the first conjunct of Φ. Then Bhom
F |= R(ā) for every R ∈ τ of arity k.

Proof. Let B be the structure obtained from Bhom
F by adding ā to R ∈ τ . We claim that B

homomorphically maps to Bhom
F . By ω-categoricity of Bhom

F , it suffices to prove that every

finite substructure B′ of the countable structure B homomorphically maps to Bhom
F . No

structure from F homomorphically maps to B′, since

• coloured obstructions from conjuncts as in item 2 of the definition of normal forms
are satisfied by B since Bhom

F satisfies the conjunct, and Bhom
F and B coincide with

respect to the unary relations;

• all other coloured obstructions cannot map to B since they are fully coloured (item 3
of the definition of normal forms) and the element ai is by assumption not coloured.

Therefore B′ homomorphically maps to Bhom
F by the first item in the definition of Bhom

F

from Theorem 5.9. Since the identity is a homomorphism from Bhom
F to B, and Bhom

F is a

model-complete core, we therefore must have that Bhom
F |= R(ā).

Lemma 5.19. Let Φ be an MMSNP τ -sentence in normal form. Then (CΦ, 6=) is a model-
complete core.

Proof. Let M1, . . . ,Mn be the colours of Φ, and let F be the coloured obstruction set for
Φ. Let e be an endomorphism of CΦ and let b̄ be a tuple of elements of CΦ. We have to
show that there exists an automorphism β of CΦ such that β(b̄) = e(b̄). We extend e to
all elements of Bhom

F by setting e(a) := a for all uncoloured elements a of Bhom
F , and verify

that the resulting map e′ is an endomorphism of Bhom
F . Clearly, e′ preserves Mi for all

i ≤ n. Let R ∈ τ , and let ā be such that Bhom
F |= R(ā). If all entries of ā are elements

of CΦ then Bhom
F |= R(e′(ā)) since e′(ā) = e(ā) and e′ is an endomorphism. On the other

hand, if ā has an entry ai which is not in CΦ, then Bhom
F |= R(e′(ā)) by Lemma 5.18. Since

(Bhom
F , 6=) is a model-complete core there exists an α ∈ Aut(Bhom

F ) such that α(b̄) = e(b̄).
The restriction β of α to CΦ is an automorphism of CΦ with the desired property.

The canonisation property

Finally, we claim that all the templates considered so far can be extended by a linear
order in a way that the resulting expansions have the canonisation property, as defined in
Chapter 4. For this, we use the following result by Bodirsky and Pinsker [36] proving that
every ω-categorical Ramsey structure has the canonisation property, and recent results by
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Hubička and Nešetřil [59] proving that the expansion of our templates by an appropriate
linear order are Ramsey structures. We choose not to delve here into the intricacies of
Ramsey theory, and even the definition of Ramsey structure is omitted here as it is only
a tool for us to connect the results from [36] and [59]. We invite the reader to consult the
excellent papers [12] and [81] for an exposition to the topic.

Theorem 5.20 (Bodirsky, Pinsker [36]). Let B be a countable ω-categorical Ramsey struc-
ture, and let C be ω-categorical. Then for any map h : Bk → C there exists a function in
Aut(C)hAut(B) that is canonical from B to C.

In order to use the results from [59], we first introduce another structure BHN
F . Let F

be a finite set of finite connected τ -structures of size ≤ m. Consider, for every structure
A ∈ Forbhom(F), the expansion A∗ of A by all relations of arity ≤ m that are pp-definable
in A. Let A be the set of all substructures of A∗ for some A ∈ Forbhom(F), and let ρ be
the signature of these structures. It was proved by Hubička and Nešetřil [57] that A is an
amalgamation class, and therefore is has a Fräıssé limit BHN

F by Theorem 2.10. Consider

moreover the class ~A of (ρ ∪ {<})-structures obtained by endowing structures in A by
every possible linear order. This class is again an amalgamation class and its Fräıssé limit
can be viewed as an expansion (BHN

F , <) of BHN
F by a linear order that we call the free

linear order.

Theorem 5.21 (Hubička, Nešetřil [59]). For every finite set F of finite connected τ -
structures, the structure (BHN

F , <) is Ramsey.

Similarly, one can extend Bind
F , Bhom

F , and CΦ by free linear orders. It follows from

general Ramsey-theoretic results [12] that the Ramsey property of (BHN
F , <) transfers to

the structures (Bind
F , <), (Bhom

F , <), and (CΦ, <).

Corollary 5.22. Let Φ be an MMSNP sentence in normal form with coloured obstruc-
tion set F. The structures (Bind

F , <), (Bhom
F , <), and (CΦ, <) are Ramsey and have the

canonisation property.

5.2.3 The strong normal form

Let Φ1 and Φ2 be two MMSNP τ -sentences in normal form with colour sets σ1 and σ2,
respectively. For r : σ1 → σ2 and a (τ ∪ σ1)-structure A we write r(A) for the structure
obtained from A by renaming each predicate P ∈ C1 to r(P ) ∈ C2.

Definition 5.6. A recolouring (from Φ1 to Φ2) is given by a function r : σ1 → σ2 such
that for every (τ ∪σ1)-structure A, if a coloured obstruction of Φ2 homomorphically maps
to r(A), then a coloured obstruction of Φ1 homomorphically maps to A. A recolouring
r : σ1 → σ2 is said to be proper if r is non-injective.

Example 6. Consider the MMSNP sentence Φ given by

∃M1,M2 ∀x
(
(M1(x) ∨M2(x)) ∧ (¬M1(x) ∨ ¬M2(x))

)
and note that this sentence is in normal form. There is a proper recolouring r from Φ to
Φ, e.g., the map given by r(M1) = r(M2) = M1.
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Example 7. Consider the MMSNP {E}-sentence

∃P ∀x, y ¬
(
¬P (x) ∧ E(x, y) ∧ ¬P (y)

)
It is not yet in normal form; an equivalent MMSNP sentence Φ in normal form is

∃M1,M2 ∀x, y
(
¬(¬M1(x) ∧ ¬M2(x)) ∧
¬(M1(x) ∧M2(x)) ∧ ¬(M1(x) ∧ E(x, y) ∧M1(y))

)
A proper recolouring from Φ to Φ is given by r(M1) = r(M2) = M2. To verify that r is
indeed a recolouring, consider the conjunct ¬φ1 = ¬(M1(x) ∧ E(x, y) ∧M1(y)): when B1

is the canonical database of φ1 then there does not exist any (τ ∪ σ1)-structure A such
that r(A) = B1. For the conjunct ¬φ2 = ¬(M1(x) ∧M2(x)), when B2 is the canonical
database of φ2, there is again no (τ ∪ σ1)-structure A such that r(A) = B2.

In contrast, the map given by r(M1) = r(M2) = M1 is not a recolouring: consider the
canonical database A of the formula M1(x)∧E(x, y)∧M2(y). It satisfies the quantifier-free
part of Φ, but r(A) is isomorphic to the canonical database of φ = (M1(x) ∧ E(x, y) ∧
M1(y)), and ¬φ is a conjunct of Φ.

Lemma 5.23. Let Φ1 and Φ2 be MMSNP τ -sentences in normal form. If r is a recolouring
from Φ1 to Φ2, then every τ -structure that satisfies Φ1 also satisfies Φ2.

Proof. Let τ be the signature of Φ1 and Φ2, and let σ1 be the existentially quantified
predicates of Φ1. Let A be a finite model of Φ1. We have to show that A |= Φ2. Let
σ1 be the existentially quantified predicates of Φ1. Let A′ be the (τ ∪ σ1)-expansion of
A witnessing the truth of Φ1 in A. Since r is a recolouring, the structure r(A′) does not
embed any coloured obstruction of Φ2, hence A |= Φ2.

An MMSNP sentence Φ is defined to be in strong normal form if it is in normal form
and there is no proper recolouring from Φ to Φ.

Example 8. The MMSNP sentence Ψ from Example 3 is not only in normal form, but
even in strong normal form.

Example 9. Example 6 was in normal form, but not in strong normal form. An equivalent
formula in strong normal form is

∃M1∀x.¬(¬M1(x)).

Theorem 5.24. For every connected MMSNP sentence Φ there exists an equivalent con-
nected MMSNP Ψ in strong normal form, and Ψ can be effectively computed from Φ.

Proof. By Lemma 5.7, we can assume that Φ is already given in normal form; let σ be the
colours of Φ. To compute a strong normal form for Φ we exhaustively check for proper
recolourings from Φ to Φ.

If there is no such recolouring we are done. Otherwise, let r be such a proper recolour-
ing. Let Ψ be the MMSNP sentence obtained from Φ by performing the following for each
colour M not in the image of r:

1. drop all conjuncts ¬φ of Φ such that M appears positively in φ,
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2. remove the literal in which M appears negatively from the first conjunct of Φ, and

3. remove M from the existential quantifier prefix of Φ.

(Step 1 and 2 amount to replacing M by false.) Since the identity map is clearly a
recolouring from Ψ to Φ, Lemma 5.23 implies that Ψ is equivalent to Φ. We now repeat
the procedure with Ψ instead of Φ. Since Ψ has less existential predicates than Φ this
procedure must eventually terminate with an MMSNP sentence in strong normal form
that is equivalent to the sentence we started with.

Theorem 5.25. Let Φ be an MMSNP sentence in strong normal form and with input
signature τ . Then (CτΦ, 6=) is a model-complete core.

Proof. Let C be the model-complete core of (CτΦ, 6=), and let h be a homomorphism from
(CτΦ, 6=) to C. Since C is isomorphic to a substructure of (CτΦ, 6=) we can assume in the
following that C equals such a substructure. It suffices to show that C and (CτΦ, 6=) satisfy
the same first-order formulas, as this implies that C and (CτΦ, 6=) are isomorphic by ω-
categoricity. By Corollary 5.22, there exists a function

g ∈ {β ◦ h ◦ α | α ∈ Aut(CΦ, <), β ∈ Aut(C)}

that is canonical as a function from (CΦ, <) to C, and an endomorphism of (CτΦ, 6=) (recall
that C is a substructure of (CτΦ, 6=)).

Since g is canonical, it induces a function on the orbits of elements under Aut(CΦ),
which are exactly the colours of Φ by Corollary 5.17. This induced function must be
a permutation, otherwise we would obtain a proper recolouring of Φ, contradicting the
assumption that Φ is in strong normal form. Thus, if n is the number of colours in
Φ, we obtain that gn acts as the identity on the orbits of elements and is therefore an
endomorphism of (CΦ, 6=), which is a model-complete core (Lemma 5.19). Thus, gn ∈
Aut(CΦ, 6=) so that on every finite subset of CΦ, g is invertible by an element of End(CΦ, 6=
) (α ◦ gn−1 is an inverse for an appropriate α ∈ Aut(CΦ, 6=)) and it follows that g ∈
Aut(CΦ, 6=). In particular, g preserves the truth of every first-order formula, so that C and
(CΦ, 6=) are isomorphic.

We give an example that shows that the assumption that Φ is in strong normal form
in Theorem 5.25 is necessary.

Example 10. Consider again the MMSNP sentence

∃P ∀x, y.¬
(
¬P (x) ∧ E(x, y) ∧ ¬P (y)

)
from Example 7; as we have observed, it is not in strong normal form. And indeed, the
domain of (CτΦ, 6=) consists of two countably infinite sets such there are no edges within
the first set, and otherwise all edges are present. Clearly, this structure is not a model-
complete core since there are endomorphisms whose range does not contain any element
from the first set.
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5.3 Precoloured MMSNP

An MMSNP τ -sentence Φ in normal form is called precoloured if, informally, for each colour
of Φ there is a corresponding unary relation symbol in τ that forces elements to have this
colour. In this section we show that every MMSNPsentence is polynomial-time equivalent
to a precoloured MMSNP sentence; this answers a question posed in [73]. We first formally
introduce precoloured MMSNP and state some basic properties in Section 5.3.1. We then
prove a stronger result than the complexity statement above: we show that the Bodirsky-
Pinsker tractability conjecture is true for CSPs in MMSNP if and only if it is true for
CSPs in precoloured MMSNP (Theorem 5.31). In order to prove this stronger result we
relate in Section 5.3.2 the algebraic properties of CτΦ with the algebraic properties of the
expansion of CτΦ by the inequality relation 6=. The main results are stated in Section 5.3.3.
In Section 5.3.4 we complete the proofs of the results in this section.

5.3.1 Basic properties of precoloured MMSNP

Formally, an MMSNP τ -sentence Φ is precoloured if it is in normal form and for every
colour M of Φ there exists a unary symbol PM ∈ τ such that for every colour M ′ of Φ
which is distinct from M the formula Φ contains the conjunct ¬(PM (x) ∧M ′(x)).

Lemma 5.26. Every precoloured MMSNP sentence is in strong normal form.

Proof. Let Φ be a precoloured MMSNP sentence with colour set σ. We will show that
every recolouring r : σ → σ of Φ must be the identity. Let M ∈ σ, and let A be the
canonical database of PM (x) ∧M(x). Note that A does not homomorphically embed any
coloured obstruction of Φ. But if M ′ := r(M) 6= M , then r(A) homomorphically embeds
the canonical database of PM (x) ∧M ′(x), in contradiction to the assumption that r is a
recolouring. Hence, r(M) = M for all M ∈ σ.

Finally, we prove an important property that will be used in Section 5.4: the colours
in a precoloured MMSNP sentence Φ denote (all) the orbits of Aut(CτΦ).

Lemma 5.27. Let Φ be a precoloured MMSNP sentence. Then for each colour M , the
symbol PM and M both interpret the same orbit of Aut(CΦ) = Aut(CτΦ), and each orbit is
denoted by some colour M of Φ.

Proof. By Lemma 5.19 the structure (CΦ; 6=) is a model-complete core. Note that the
ω-categorical structures (CΦ; 6=,M) and (CΦ; 6=, PM ) have the same CSP, and hence they
are homomorphically equivalent. The fact that ω-categorical model-complete cores are up
to isomorphism unique then implies that M and PM have the same interpretation in CΦ.
Since Φ is in particular in normal form, Corollary 5.17 states that M and PM denote an
orbit of Aut(CΦ) = Aut(CτΦ), and that each orbit of Aut(CΦ) is denoted by some color of
CΦ.

5.3.2 Adding inequality

Let Φ be an MMSNP sentence in normal form. We first show that adding the inequality
relation to CτΦ does not increase the complexity of its CSP.

Proposition 5.28. CSP(CτΦ) and CSP(CτΦ, 6=) are polynomial-time equivalent.
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Proof. If a given instance of CSP(CτΦ, 6=), viewed as a pp-sentence, contains conjuncts of the
form x 6= x, then the instance is unsatisfiable. Otherwise, we only consider the constraints
using relations from τ , and letA be the canonical database of those constraints. IfA has no
homomorphism to CτΦ then the instance is unsatisfiable. Otherwise, by Lemma 5.10 there is
an injective homomorphism from A to CτΦ. The injectivity implies that the homomorphism
also satisfies all the inequality constraints, so we have a polynomial-time reduction from
CSP(CτΦ, 6=) to CSP(CτΦ).

We would now like to prove that CτΦ satisfies the Bodirsky-Pinsker conjecture if and only
if (CτΦ, 6=) does. However, we do not know whether (CτΦ, 6=) in general has a pp-construction
in CτΦ. But we can prove the following, which turns out to be sufficient.

Proposition 5.29. There exists a uniformly continuous clonoid homomorphism from
Pol(CτΦ) to P if, and only if, there exists a uniformly continuous clonoid homomorphism
from Pol(CτΦ, 6=) to P.

In the proof of this lemma, we need the following proposition.

Lemma 5.30. Let A be any structure that has a homomorphism g to Bind
F . Then there

exists an injective homomorphism h : A → Bind
F such that for all tuples a from A and all

existential formulas φ without equality literals, if φ(g(a)) holds in Bind
F , then φ(h(a)) also

holds in Bind
F . Moreover, for all injective tuples a, b from A, if g(a) and g(b) lie in the

same orbit in Aut(Bind
F ) then h(a) and h(b) lie in the same orbit in Aut(Bind

F ).

Proof. Assume first that A is finite with domain A. Build a new structure A′ as follows.
For every a in A and existential formula φ(x) := ∃y1, . . . , ys.ψ(x, y) such that Bind

F |=
φ(g(a)) holds, pick elements b1, . . . , bs of Bind

F such that Bind
F |= ψ(g(a), b1, . . . , bs). Let A′

be the set consisting of A as well as new elements a′1, . . . , a
′
s, and define g(a′i) := bi. Let A′

be the (τ ∪ σ)-structure on A′ obtained by pulling back the relations from the structure
induced by g(A′) in Bind

F . We therefore have that g is a homomorphism A′ → Bind
F . It

follows that there exists an embedding h : A′ → Bind
F .

We prove the first part of the statement. Let φ(x) := ∃y1, . . . , ys.ψ(x, y) be an ex-
istential formula not containing equality literals (positive or negative). Assume that
Bind
F |= φ(g(a)). By construction and the fact that φ does not contain equality liter-

als, this is equivalent to A′ |= ψ(a, a′1, . . . , a
′
s) for some elements a′1, . . . , a

′
s ∈ A′. Since h

is an embedding, this implies Bind
F |= ∃y1, . . . , ys.ψ(h(a), y), i.e., φ(h(a)) holds in Bind

F .

We now prove the second part of the statement. Let a, b be injective tuples from A.
Since Bind

F is ω-categorical and by Theorem 2.6, the orbit of the tuple g(a) has a first-order

definition φ(x). Since Bind
F is model-complete and φ defines an orbit, we can assume that

φ is existential without disjunctions, of the form ∃y1, . . . , ys
(
ψ1(x, y)) ∧ ψ2(x)

)
with ψ1

quantifier-free and without equality literals, and ψ2 a conjunction of literals of the form
xi 6= xj . Since h is injective and the tuples a and b are injective, ψ2(h(a)) and ψ2(h(b))
hold. Moreover, since ψ1 is without equality literals, the previous paragraph gives us that
both ∃y1, . . . , ys.ψ1(h(a), y) and ∃y1, . . . , ys.ψ(h(b), y) hold. Therefore, h(a) and h(b) lie
in the same orbit of Aut(Bind

F ).

In case A is infinite, it suffices to apply a compactness argument using the statement
for finite substructures of A.
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Proof of Proposition 5.29. Let K3 be the complete graph on {R,G,B}. It is known that
Pol(K3, R,G,B) = P. Thus, to prove Proposition 5.29, it suffices by Theorem 2.14 to
prove that K3 is pp-constructible in CτΦ if, and only if, it is pp-constructible in (CτΦ, 6=).
Suppose then that K3 is homomorphically equivalent to a pp-power A of (CτΦ, 6=). Let
φE(x1, . . . , xd, y1, . . . , yd) be the defining pp-formula of the edge relation of A. Without
loss of generality, we can suppose that φE does not contain literals of the form xi = xj ,
yi = yj , or xi = yj with i 6= j, as otherwise we can take a smaller d.

Let ψE be the formula φE where all the inequality literals have been removed (note
that a literal x 6= x cannot appear, for otherwise the edge relation of A is empty, and
K3 would not have a homomorphism to A). Let B be the pp-power of CτΦ defined by ψE .
Observe that B contains all the edges of A, so B contains a triangle.

Claim: B does not contain any loop.

Proof. Suppose the contrary, and let a ∈ B be such that CτΦ |= ψE(a, a). Let D =
{b1, . . . , bd, c1, . . . , cd} be a set with at most 2d elements, where bi = ci iff the literal xi = yi
is in φE . Let g : bi, ci 7→ ai for all i ∈ {1, . . . , d}. Let D be the (τ ∪ σ)-structure on D
obtained by pulling back the relations from the structure induced by g(D) in CΦ. Note that
all the elements of D are coloured. By Lemma 5.30, there is an injective homomorphism
g′ : D → Bind

F with the additional property that g′(b) and g′(c) are in the same orbit in

Bind
F , because g(b) and g(c) are in the same orbit (they are actually equal). By composing

with an appropriate α ∈ Aut(Bind
F ), we can assume that g′(b) and g′(c) are in the same

orbit in (Bind
F , <). Compose with an injective homomorphism h : Bind

F → Bhom
F that is

canonical from (Bind
F , <) to (Bhom

F , <) to get an injective homomorphism g′′ : D → Bhom
F

such that g′′(b) and g′′(c) are in the same orbit in (Bhom
F , <). Note that all the elements

of the image of g′′ are coloured, because all the elements of D are coloured. So the image
of g′′ lies in CΦ.

We prove that φE(g′′(b), g′′(c)) holds in CτΦ. Indeed, CτΦ |= ψE(g(b), g(c)). We want to
use Lemma 5.30, except that ψE can contain literals of the form xi = yi. Therefore an
application of Lemma 5.30 only gives us that the tuple (g′(b), g′(c)) satisfies the equality-
free part of ψE . But if xi = yi is in ψE (and in φE), by construction we chose bi =
ci, so that g′(bi) = g′(ci). It follows that Bind

F |= ψE(g′(b), g′(c)). This implies that

Bhom
F |= ψE(g′′(b), g′′(c)) and by injectivity of g′′, the pair (g′′(b), g′′(c)) also satisfies

xi 6= yj whenever xi = yj is not in φE . In particular, if xi 6= yj is in φE , we have
g′′(bi) 6= g′′(cj). Hence, CτΦ |= φE(g′′(b), g′′(c)) holds.

Let now χ : A → K3 be a homomorphism, that we can moreover suppose to be canon-
ical from (CΦ, <) to (K3, R,G,B) by Corollary 5.22. Since χ is canonical, we have that
χ(g′′(b)) = χ(g′′(c)). This contradicts the fact that χ is a homomorphism A → K3.
Therefore, B has no loops. ♦

We now prove that every finite substructure S of B has a homomorphism to K3 (which
proves, by compactness, that B has a homomorphism toK3). Let s1 = (s1

1, . . . , s
1
d), . . . , s

K =
(sK1 , . . . , s

K
d ) be a list of the elements of S. Let θ(x1, . . . , xK) be the formula with Kd

free variables that is a conjunction of the formulas ψE(xi, xj) for all i, j ∈ {1, . . . ,K} such
that CτΦ |= ψE(si, sj). This pp-formula is satisfiable in B (by mapping xij to sij), so it is

also satisfiable in B by an assignment g that satisfies g(xij) 6= g(xkl ) whenever xij = xkl
is not a literal of ψE (and of φE). Let t

i
:= (g(xi1), . . . , g(xid)). Let T be the structure
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induced by {t1, . . . , tK} in B. We have a homomorphism S → T , since T satisfies the

canonical query of S. If CτΦ |= ψE(t
i
, t
j
), then i 6= j because B has no loops. As we have

seen above, CτΦ |= ψE(t
i
, t
j
) ∧
∧
i,j,k,l t

i
j 6= tkl where the conjunction ranges over all indices

i, j, k, l such that the literal xij = xkl is not in φE . Hence, CτΦ |= φE(t
i
, t
j
). Therefore, T is

a weak subgraph of A, which homomorphically maps to K3. We obtain a homomorphism
S → K3.

Thus, K3 is homomorphically equivalent to a pp-power of CτΦ.

5.3.3 The standard precolouration

Let Φ be an MMSNP sentence in strong normal form with colour set σ, and let Ψ be the
following precoloured MMSNP sentence: we obtain Ψ from Φ by adding for each M ∈ σ
a new input predicate PM and adding the conjunct ¬(PM (x) ∧M ′(x)) for each colour
M ′ ∈ σ \ {M}. We call this sentence the standard precolouration of Φ.

Theorem 5.31. Let Φ be an MMSNP sentence in strong normal form with input signature
τ . Let Ψ be the standard precolouration of Φ, and let ρ be the input signature of Ψ.
Then CρΨ is pp-constructible in (CτΦ, 6=), and CτΦ is pp-constructible in CρΨ (in fact, CτΦ is
isomorphic to a reduct of CρΨ). Moreover, there exists a uniformly continuous clonoid

homomorphism Pol(CτΦ)
u.c.c.h.−−−−→ P if, and only if, there exists a uniformly continuous

clonoid homomorphism Pol(CρΨ)
u.c.c.h.−−−−→P.

The proof of this theorem will be given in Section 5.3.4. We first point out an immediate
consequence.

Corollary 5.32. Let Φ be an MMSNP sentence in strong normal form, and let Ψ be its
standard precolouration. Then Φ and Ψ describe polynomial-time equivalent problems.

Proof. It is clear that the problem described by Φ reduces to the problem described by Ψ.

We now prove that there is a polynomial-time reduction in the other direction. Let
τ and ρ be the input signatures of Φ and Ψ. Since CρΨ is pp-constructible in (CτΦ, 6=)
by Theorem 5.31, we have that CSP(CρΨ) reduces in polynomial-time to CSP(CτΦ, 6=), by
Lemma 2.3. Moreover, by Proposition 5.28, there is a polynomial-time reduction from
CSP(CτΦ, 6=) to CSP(CτΦ). Therefore, CSP(CρΨ) reduces to CSP(CτΦ).

5.3.4 Proof of the precolouring theorem

Let A be a properly coloured (τ ∪ σ)-structure, i.e., every element appears in the inter-
pretation of precisely one symbol from σ. For an element a ∈ A, denote by A[a 7→ ∗] the
structure obtained by uncolouring a. For M ∈ σ and a tuple a of elements A, denote by
A[a 7→ M ] the structure obtained by uncolouring the elements of a, and giving them the
colour M . Let C(A, a) be the subset of CΦ containing all elements c such that there exists
a homomorphism

h : A[a 7→ ∗]→ CΦ

that satisfies h(a) = c. Note that C(A, a) is, by 1-homogeneity of CΦ, a union of colours.
So we can also see C(A, a) as the union of MCΦ for M ∈ σ such that A[a 7→M ] is F-free.
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5.3. Precoloured MMSNP

Lemma 5.33. Suppose that Φ is in strong normal form, and let M be a colour of Φ.
Then MCΦ =

⋂
C(F, a) where the intersection ranges over all F ∈ F and a ∈ F such that

MCΦ ⊆ C(F , a).

Proof. The left-to-right inclusion is clear. We prove the other inclusion. To do this, it
suffices to show that for every M ′ ∈ σ \ {M}, there exists G ∈ F and b ∈ G such that
MCΦ ⊆ C(G, b) but (M ′)CΦ 6⊆ C(G, b). Let r : σ → σ be defined by r(M) = M ′ and
r(N) = N for all N ∈ σ \ {M}. Since Φ is in strong normal form and r is not surjective,
it cannot be a recolouring of Φ. This means that there exists a F-free structure A and
F ∈ F such that there exists a homomorphism h : F → r(A). Let a1, . . . , ak be the
elements of F that are mapped to MA by h. In r(A), these elements are in M ′, so since
h is a homomorphism and F is completely coloured, we have that a1, . . . , ak ∈ (M ′)F .
Moreover, since A is F-free, the structure F [a1, . . . , ak 7→ M ] is F-free. Let 0 ≤ j ≤ k
be minimal such that F [a1, . . . , aj 7→ M ] is F-free. Since F ∈ F, we have j ≥ 1. Let
now G ∈ F be such that there exists g : G → F [a1, . . . , aj−1 7→ M ], which exists by
minimality of j. Note that aj is in the image of g, otherwise g would be a homomorphism
g : G → F [a1, . . . , aj 7→M ], in contradiction to the choice of j. Thus, let b ∈ G be such that
g(b) = aj , and note that b ∈ (M ′)G , so that (M ′)CΦ 6⊆ C(G, b). Since g is a homomorphism
G[b 7→ M ] → F [a1, . . . , aj 7→ M ], the structure G[b 7→ M ] is F-free. This implies that
MCΦ ⊆ C(G, b). We therefore found a G ∈ F and b ∈ G such that MCΦ ⊆ C(G, b) but
(M ′)CΦ 6⊆ C(G, b).

If the sets of the form C(F , a) were pp-definable in an expansion of (CΦ, 6=) by finitely
many constants, we would be done for the proof of Theorem 5.31 since the intersection in
Lemma 5.33 is finite. We show how to approximate these sets by pp-definable subsets.

For M ∈ σ, let P (M) be the set of pairs (F , a) such that MCΦ ⊆ C(F , a). Let (F , a) ∈
P (M). Let a1, . . . , ak be the elements of F that are distinct from a. Let φF (a, a1, . . . , ak)
be the canonical query of Fτ . Let M1, . . . ,Mk be the colours of these elements in F . Fix
the formula

ψF ,a(x, U1, . . . , Uk) := ∃y1, . . . , yk

φF (x, y1, . . . , yk) ∧
∧

i∈{1,...,k}

Ui(yi)

 ,

in the language τ ∪{U1, . . . , Uk}. Let χ
(0)
M be M(x). We define χ

(n)
M inductively. For n ≥ 0,

let
χ

(n+1)
M (x) :=

∧
(F ,a)∈P (M)

ψF ,a(x, χ
(n)
M1
, . . . , χ

(n)
Mk

).

Lemma 5.34. For any n ∈ N and M ∈ σ the formula χ
(n)
M (x) defines MCΦ over CΦ.

Proof. We prove the result by induction, the case n = 0 being trivial. Suppose that the re-
sult is proved for some n ≥ 0. From Lemma 5.33 and the induction hypothesis follows that

χ
(n+1)
M (x) defines a subset of MCΦ , so we just have to prove that the formula is satisfiable

(then by 1-homogeneity of CΦ, we get that χ
(n+1)
M defines MCΦ). By Lemma 5.8, if χ

(n+1)
M

is not satisfiable then there must exist (F , a) ∈ P (M) such that ψF ,a(x, χ
(n)
M1
, . . . , χ

(n)
Mk

) is
not satisfiable, i.e.,

φF (x, y1, . . . , yk) ∧
∧

i∈{1,...,k}

χ
(n)
Mi

(yi)
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x

y1 y2

z0 z1 z2 z3

Figure 5.2: Illustration of the formula χ
(2)
M (x), for the MMSNP sentence of Example 11.

All the variables except for x are existentially quantified.

is not satisfiable, where M1, . . . ,Mk are the colours in F of the elements other than
a. By Lemma 5.8 again, and since φF (x, y1, . . . , yk) is clearly satisfiable, there must

exist i ∈ {1, . . . , k} such that χ
(n)
Mi

(yi) is not satisfiable, in contradiction to our induction

hypothesis. Therefore, χ
(n+1)
M is satisfiable.

Example 11. We show in Figure 5.2 the construction of the formula χ
(2)
M in the case of

the MMSNP sentence given by the obstructions in Figure 5.1, where M is represented with
round vertices. Note that if F is the triangle with coloured square vertices in Figure 5.1
and a is a vertex of this triangle then C(F , a) = MCΦ . Note that each yi must be coloured
with a square vertex (otherwise the triangle with coloured round vertices would appear),

so that x necessarily belongs to MCΦ . This shows that χ
(2)
M (x) defines a subset of MCΦ .

Let n > |Φ|. It is a consequence of Lemma 5.34 that for each M ∈ σ, the formula

χ
(n)
M (x) is satisfiable in CΦ. Let A be the canonical query of χ

(n)
M (x) where we additionally

colour the elements of A according to an arbitrary satisfying assignment for χ
(n)
M . Then

A homomorphically maps to CτΦ, so by Lemma 5.10 it also injectively maps to CτΦ. We

deduce from this that χ
(n)
M is satisfiable by an injective assignment h. For every M ′ ∈ σ,

replace in χ
(n)
M each literal M ′(y) (the vertices at the bottom level, in Figure 5.2) by the

literal y = h(y). The resulting formula, χ̃M (x), is then a pp-formula in an expansion of
CτΦ by finitely many constants c.

Lemma 5.35. The formula χ̃M (x) defines a subset of MCΦ in (CτΦ, c̄).

Proof. Immediate from Lemma 5.34 and the definition of χ̃M .

We claim that the formulas χ̃ define a universal substructure of CΦ, in the sense that
any structure A that has a homomorphism to CΦ has a homomorphism h to CΦ such that
CΦ |= χ̃M (h(a)) for every a ∈MA.

Proposition 5.36. Let A be a finite structure that has a homomorphism to CΦ, and let
φA(a1, . . . , ak) be the canonical query of A. Let Mi be the colour of ai in A. Let n > |Φ|.
Then the formula

φA(x1, . . . , xk) ∧
∧

1≤i≤k
χ̃Mi(xi)

is satisfiable in (CΦ, c).
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xj

c1 c2 c3 c4

xi

Figure 5.3: Depiction of the canonical database A′ of the formula ρ in the proof of Propo-
sition 5.36. The vertices on the ellipse are the elements x of A. The vertices at the
bottom are the variables y. The only variables shared between different χ̃ formulas are
the variables y.

See Figure 5.3 for an illustration.

Proof. Let ψ(x)∧θ(x) be a formula describing the orbit of the tuple c in Bind
F where ψ(x) is

a pp-formula in the language of Bind
F and θ(x) is a conjunction of negated atomic formulas

(that such a formula exists is a consequence of Lemma 5.11). Let y be a tuple of fresh
variables with the same length as c. We prove that the formula

ρ(x, y) := φA(x1, . . . , xk) ∧
∧

1≤i≤k
χ̃Mi(xi, y) ∧ ψ(y)

is satisfiable in CΦ, where we modified the formulas χ̃ by replacing every constant symbol
in them by the corresponding y variable.

Suppose that ρ is not satisfiable, and let A′ be its canonical database. Therefore,
there exists F ∈ F and a homomorphism h : F → A′. Since F is connected, the image
of h cannot contain both vertices from x and vertices from y, because the shortest path
between an x variable and a y variable is at least n, which has been chosen to be greater
than the number of elements of F . Suppose that the image of h does not contain any y
variable (in Figure 5.3, this means that the image of h does not touch any node at the
bottom of the picture). Note that if one removes the variables y, each xi becomes an
articulation point (i.e., removing xi disconnects the structure, for any i). By applying
Lemma 5.8 at each xi, we obtain that at least one of φA or the canonical database of some
formula χ̃ cannot be F-free, which is a contradiction because the formulas χ̃ are satisfiable
by Lemma 5.34 and φA is satisfiable as well.

If the image of h does not contain any of x1, . . . , xk, we immediately obtain a contra-
diction because c satisfies

ψ(c) ∧
∧

1≤i≤k
∃xi(χ̃Mi(xi, c)).

Whence, let h be an embedding of A′ into Bind
F . Since h(y) satisfies ψ and h is an

embedding, h(y) satisfies ψ ∧ θ, which implies that c and h(y) are in the same orbit in
Bind
F . Without loss of generality, we can assume that h(y) = c. Let g be any injective

homomorphism Bind
F → CΦ. The restriction of g to CΦ ⊆ Bind

F is an embedding, since
(CΦ, 6=) is a model-complete core. Therefore, (g ◦ h)(y) and c are in the same orbit, and
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without loss of generality we can assume that (g ◦h)(y) = c. In conclusion, (g ◦h)|{x1,...,xk}
is a satisfying assignment to the formula in the statement of the proposition.

Proof of Theorem 5.31. We first show that CρΨ is pp-constructible in (CτΦ, 6=). Let D be
the expansion with signature ρ of the structure CτΦ such that for every color M ∈ σ of Φ
the symbol PM ∈ ρ denotes the relation defined by the formula χ̃M from Lemma 5.35.
Since (CτΦ, 6=) is a model-complete core and D is pp-definable in CτΦ after having added
finitely many constants, we obtain that D is pp-constructible from (CτΦ, 6=). Hence, it
suffices to show that D and CρΨ are homomorphically equivalent. We first show that D
satisfies Ψ. Consider the expansion of D where M ∈ σ denotes MCΦ . This expansion
satisfies for distinct M,M ′ ∈ σ the clause ∀x.¬(PM (x) ∧M ′(x)) of Ψ as a consequence
of Lemma 5.35. The expansion clearly satisfies all other conjuncts of Ψ. Therefore, D
satisfies Ψ and we obtain a homomorphism D → CρΨ. Conversely, Proposition 5.36 gives
that every finite substructure of CρΨ has a homomorphism to D. By the ω-categoricity of
D, we get a homomorphism from CρΨ to D.

To prove that CτΦ is pp-constructible in CρΨ, it suffices to note that the structures CτΦ
and CτΨ are isomorphic (since (CτΦ, 6=) and (CτΨ, 6=) are model-complete cores and have the
same CSP), and that CτΨ is obtained from CρΨ by dropping the relations from ρ \ τ , and is
in particular a pp-power of CρΨ.

These pp-constructions give uniformly continuous clonoid homomorphisms Pol(CρΨ)→
Pol(CτΦ) and Pol(CτΦ, 6=) → Pol(CρΨ) (Theorem 2.14). From the former homomomorphism
we get that if there is a uniformly continuous clonoid homomorphism Pol(CτΦ) → P,
there is also one Pol(CρΨ) → P. The latter homomorphism gives us that if there exists a
uniformly continuous clonoid homomorphism Pol(CρΨ)→P, there is one Pol(CτΦ, 6=)→P.
We conclude by Proposition 5.29.

5.4 An Algebraic Dichotomy for MMSNP

We prove in this section that MMSNP exhibits a complexity dichotomy, that is, that every
problem in MMSNP is in P or NP-complete. Moreover, we show that the tractability border
can be described in terms of clonoid homomorphisms to P, thus confirming Conjecture 1
for the class of constraint satisfaction problems in MMSNP.

Theorem 5.37. Let B be an ω-categorical structure such that CSP(B) is in MMSNP.
Then exactly one of the following holds:

(i) there is no uniformly continuous clonoid homomorphism from Pol(B) to P, and
CSP(B) is solvable in polynomial time,

(ii) there is a uniformly continuous clonoid homomorphism Pol(B)
u.c.c.h.−−−−→ P, and

CSP(B) is NP-complete.

We briefly describe the road to proving Theorem 5.37. In virtue of Theorem 5.31 and
Corollary 5.32, it suffices to focus on the case that CSP(B) is described by a precoloured
MMSNP sentence. For each precoloured sentence Φ, we consider the structure CτΦ whose
CSP is described by Φ. We prove that the complexity of CSP(CτΦ) and the existence of

a clonoid homomorphism Pol(CτΦ)
u.c.c.h.−−−−→ P are determined by the existence of a clone
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homomorphism C → P, where C is the subset of Pol(CτΦ) that contains the functions
that are canonical with respect to (CΦ, <).

From now on, we fix a precoloured MMSNP sentence Φ with coloured obstruction set
F, input signature τ , and colour signature σ.

We finish this section by stating a consequence of assuming that Φ is precoloured and
in normal form on the set C typ

1 .

Proposition 5.38. Let Φ be a precoloured MMSNP sentence in normal form. Let C
be the set of polymorphisms of CτΦ that are canonical with respect to (CΦ, <). Then all
functions in C typ

1 are idempotent.

Proof. The orbits of Aut(CΦ) are in one-to-one correspondence with the colours from Φ
(by Corollary 5.17 since Φ is in normal form). Since Φ is precoloured and by Lemma 5.27,
the symbols PM ∈ τ and M ∈ σ have the same interpretation in CΦ. This implies that
all polymorphisms of CτΦ (and in particular, the ones that are canonical with respect
to (CΦ, <)) preserve the orbits of elements of CτΦ. Therefore, every function in C typ

1 is
idempotent.

5.4.1 The tractable case

In this section, we prove that CSP(CτΦ) is polynomial-time tractable, under the assumption
that CτΦ has a polymorphism that is canonical with respect to (CΦ, <) and whose behaviour
on orbits of elements is Siggers. For that we use Corollary 3.11.

Proposition 5.39. Let C be the clone of functions in Pol(CτΦ) that are canonical with
respect to (CΦ, <). Suppose that C typ

1 does not have a clonoid homomorphism to P. Then
Pol(CΦ) contains an operation that is pseudo-Siggers modulo Aut(CΦ, <) and canonical
with respect to (CΦ, <).

Proof. Since C typ
1 does not have a clonoid homomorphism to P, Theorem 2.17 (1.⇒ 5.)

implies that there exists an f ∈ C such that ξtyp
1 (f) is Siggers in C typ

1 . It will be convenient
to use the notation π(a, b, a, c, b, c) := (b, a, c, a, c, b). Let A be the (τ ∪σ ∪{<})-structure
obtained from (CτΦ)6 as follows.

The colours and precolours. For M0,M1, . . . ,M6 ∈ σ and (a1, . . . , a6) ∈ A
such that ai ∈ MCΦi for all i ∈ {1, . . . , 6} and ξtyp

1 (f)(M1, . . . ,M6) = M0, declare that
(a1, . . . , a6) ∈ A is in MA0 and in PAM0

.

The order. Let B be the domain of BHN
F . Let s : (B,<)6 → (B,<) be an injective map

that is pseudo-Siggers modulo Aut(B,<). Such a map can be constructed by considering
the digraph on B6 with arcs

{((x, y, x, z, y, z), π(x, y, x, z, y, z)) | x, y, z ∈ BHN
F }.

Note that this graph is a disjoint union of arcs and loops. Let < be any linear order
on B6 such that if (u1, v1) and (u2, v2) are arcs then u1 < u2 if and only if v1 < v2 (it
is easy to see that such a linear order exists for any directed graph without cycles and
with outdegree and indegree at most one). This linear order embeds into (B,<) and
gives the desired injective map. Declare that (a1, . . . , a6) < (b1, . . . , b6) holds in A iff
s(a1, . . . , a6) < s(b1, . . . , b6). Since s is injective, this defines a linear order on A.

78



Chapter 5. Proof of the dichotomy conjecture for MMSNP

The structure A is linearly ordered, satisfies Φ, and all its elements are precoloured,
so A embeds into the (τ ∪ σ ∪ {<})-reduct D of BHN

F , via a map e : A ↪→ D. By Corol-

lary 5.22, we can assume that e is canonical from (CΦ, <) to (BHN
F , <). There is an injective

homomorphism h from D to CΦ, and again we can pick h to be canonical from (BHN
F ;<)

to (CΦ, <). It is clear that f ′ := h ◦ e is canonical with respect to (CΦ, <). We claim that
it is pseudo-Siggers modulo Aut(CΦ, <).

We have to show that for allm ∈ N and all a1, . . . , am ∈ A6 them-tuples (f ′(a1), . . . , f ′(am))
and (f ′(πa1), . . . , f ′(πam)) lie in the same orbit of Aut(CΦ, <). Since h is canonical, it
suffices to prove that (e(a1), . . . , e(am)) and (e(πa1), . . . , e(πam)) lie in the same orbit in
(BHN

F , <). By the homogeneity of (BHN
F , <) we have to prove that the two tuples satisfy the

same atomic formulas in (BHN
F , <). Suppose that (BHN

F , <) |= R(e(a1), . . . , e(as)) for an s-
ary relation symbol R ∈ τ∪σ∪{<}. Since e is an embedding this means that R(a1, . . . , as)
also holds in A. If R ∈ τ then the definition of A implies that for all i ∈ {1, . . . , 6}, we
have CΦ |= R(a1

i , . . . , a
s
i ). This immediately implies that A |= R(πa1, . . . , πas), so that by

applying e we obtain (BHN
F , <) |= R(f ′(πa1), . . . , f ′(πas)). Consider now the case that R

is a symbol M ′ from σ (so that s = 1). By the definition of A this implies that the entries
of a1 = (a, b, a, c, b, c) are such that a ∈ M1

CΦ , b ∈ M2
CΦ , c ∈ M3

CΦ for M1,M2,M3 ∈ σ
and

ξtyp
1 (f)(M1,M2,M1,M3,M2,M3) = M ′.

Since ξtyp
1 (f) is Siggers, we also have

ξtyp
1 (f)(M2,M1,M3,M1,M3,M2) = M ′.

Therefore, we also get that πa1 = (b, a, c, a, c, b) belongs to (M ′)A, so that (BHN
F , <) |=

M ′(f ′(πa1)). Finally, if R is the order symbol, it means that a1 < a2 holds in A. By
definition, this is true if and only if s(a1) < s(a2). Since s is pseudo-Siggers modulo
(B,<), we have s(πa1) < s(πa2), so that A |= πa1 < πa2. Finally, composing with e gives
that (BHN

F , <) |= e(πa1) < e(πa2).

In order to use Corollary 3.11, it remains to prove that CτΦ is a reduct of a finitely
bounded homogeneous structure, which we now show in a series of lemmas.

Proposition 5.40. The structure Bhom
F has a homogeneous expansion by finitely many

pp-definable relations. Moreover, the expansion is finitely bounded.

Proof. Let m be the size of the largest structure in F. We show that the expansion of
Bhom
F by all relations with a pp-definition having at most m variables (free or existentially

quantified) is homogeneous. Since we assume that pp-formulas are in prenex normal
form, there is only a bounded number of such formulas. Let t1 and t2 be two n-tuples
of Bhom

F with pairwise distinct entries such that t1 and t2 lie in different orbits. Since

(Bhom
F , 6=) is a model-complete core, the orbits of t1 and of t2 are pp-definable, and hence

there are pp-formulas φ1 and φ2 such that (Bhom
F , 6=) |= φ1(t1) and (Bhom

F , 6=) |= φ2(t2)

but (Bhom
F , 6=) 6|= ∃x1, . . . , xn(φ1(x̄) ∧ φ2(x̄)). So there exists a structure A ∈ F that

homomorphically embeds into the canonical database of φ1(x̄) ∧ φ2(x̄). But then φi(x̄)
must imply for i = 1 and i = 2 a pp-formula ψi with at most m variables such that
Bhom
F 6|= ∃x1, . . . , xn(ψ1(x̄) ∧ ψ2(x̄)). Hence, the orbits of injective tuples are determined
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by pp-definition having at most m variables, showing homogeneity of the expansion by
the relations defined by those formulas.

We finally claim that this expansion is finitely bounded. Clearly, we still have the
bounds F. Additionally, for every pp-formula φ(x1, . . . , xk) with at most m variables and
every k-ary relation symbol R introduced for an inequivalent pp-formula, we have the
canonical database of φ(x1, . . . , xn) ∧ R(x1, . . . , xn) as a new bound. These are finitely
many bounds, and they fully describe the expansion, showing the claim.

Corollary 5.41. The structure CΦ has a homogeneous expansion by finitely many pp-
definable relations. Moreover, the expansion is finitely bounded.

Proof. By Proposition 5.40, Bhom
F has a homogeneous finitely bounded expansion B by

pp-definable relations. The restriction of D to the coloured elements is still homogeneous,
and has the additional bounds excluding all finite one-element structures that are not
coloured, so it is finitely bounded, too.

Theorem 5.42. If there is no clone homomorphism C typ
1 →P, then CSP(CτΦ) is in P.

Proof. Proposition 5.40 gives a finitely bounded homogeneous expansion D of CΦ by pp-
definable relations, so Pol(D) = Pol(CΦ). Proposition 4.13 states that Pol(CτΦ) contains

an operation that is pseudo-Siggers modulo Aut(CΦ) = Aut(D) and that is canonical with
respect to CΦ (and therefore also with respect to D). By Corollary 3.11, CSP(CτΦ) is in
P.

5.4.2 The hard case

Let Φ be a precoloured MMSNP sentence and let C be the clone of polymorphisms of CτΦ
that are canonical with respect to (CΦ, <). In this section, we deal with the case that
there exists a clone homomorphism ξ : C typ

1 →P, and prove that there exists a uniformly

continuous clonoid homomorphism φ : Pol(CτΦ)
u.c.c.h.−−−−→P.

As in Chapter 4, we use the canonisation property for (CΦ, <) in order to give a
candidate for φ. However, we were not able to prove that (CΦ, <) has the mashup property,
so that we need other tools to prove that φ is well-defined. We develop these tools now.

Let ρ be a subset of σ such that ρ is preserved by C typ
1 (we identify the relation symbols

with the domain of C typ
1 ). Let Θ be an equivalence relation on ρ that is preserved by C typ

1

and with two equivalence classes S, T ⊆ ρ. We call {S, T} a subfactor of C typ
1 . The clone

C typ
1 naturally induces a clone on the two-element set {S, T}. If this clone is (isomorphic

to) the projection clone P, then we call {S, T} a trivial subfactor. Proposition 4.1 implies
that C typ

1 has a clone homomorphism to P if, and only if, C typ
1 has a trivial subfactor

{S, T}. Note that if {S, T} is a subfactor of C typ
1 , the subset SCΦ ∪ T CΦ of CΦ is preserved

by every operation in C (where we write SCΦ for
⋃
R∈S R

CΦ and similarly for T CΦ).
Let X be a pp-definable subset of CΦ. A binary symmetric relation N ⊆ X2 defines an

undirected graph on σ: there is an edge between M and M ′ iff there exist x ∈ MCΦ and
y ∈M ′CΦ such that (x, y) ∈ N . If N is pp-definable in CΦ, we call the resulting graph on
σ a definable colour graph over X. In the following technical propositions, we prove that
the existence of a trivial subfactor {S, T} of C typ

1 implies the existence of definable colour
graphs with an edge from S to T and without loops (Proposition 5.45). Refining this even
further, we show the existence of such a graph whose connected components are of three
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R

B

R

B

e1(x)

e1(x′)

e2(x)

e2(x′)

e1(y)

e1(y′)

e2(y)

e2(y′)

Figure 5.4: Illustration of Lemma 5.43. The four pairs shown by directed edges are in the
same orbit under Aut(CΦ, <).

types: contained in S, contained in T , and bipartite with the bipartition being induced
by S and T (Proposition 5.46).

Lemma 5.43. For every pair of colours R,B ∈ σ, there are endomorphisms e1 and e2 of
CΦ such that for all (x1, x2), (y1, y2) ∈ RCΦ×BCΦ, the pairs (e1(x1), e2(x2)), (e1(y1), e2(y2)),
(e2(x1), e1(x2)), and (e2(y1), e1(y2)) are in the same orbit under Aut(CΦ, <).

For an illustration, see Figure 5.4.

Proof. We build the endomorphisms by compactness, showing that partial homomor-
phisms with the given properties exist for every finite substructure F of CΦ. Let G be
the disjoint union of 2 copies of F , with domain F × {1, 2}. We prepare a new structure
H which contains G as a substructure. For all elements x and x′ of G of the same colour,
take a fresh copy G′ of G and add to H this fresh copy, where the vertex corresponding
to x in G′ is glued on top of the vertex corresponding to x′ in the original copy of G.
This way, every two elements of the original G that are in the same colour satisfy the
same pp-formulas in H. It is also clear that H is F-free, since Φ is in normal form. Since
H is F-free, the expansion H∗ of H by all relations with a pp-definition with at most m
variables embeds into BHN

F (where m denotes the size of the largest structure in F).
Let < be any linear order on G such that (x, 1) < (y, 2) and (x, 2) < (y, 1) for all

x ∈ RF and y ∈ BF . Complete < arbitrarily into a linear order on H, so that there exists
an embedding e of (H∗, <) into (BHN

F , <). By the homogeneity of (BHN
F , <), the pairs

(e(x, 1), e(y, 2))

(e(x′, 1), e(y′, 2))

(e(x, 2), e(y, 1))

are all in the same orbit in (BHN
F , <), for all x, x′ ∈ RF and y, y′ ∈ BF . Let e′ : G → Bhom

F

be obtained by composing e with an injective homomorphism of the (τ ∪ σ)-reduct of
BHN
F to Bhom

F that is canonical from (BHN
F , <) to (Bhom

F , <) (we use Theorem 5.21 and
Theorem 5.20). Since all the vertices of G are coloured, the image of e′ is included in
CΦ. We obtain a homomorphism h from G to CΦ such that the given pairs are in the
same orbit under Aut(CΦ, <). For i ∈ {1, 2}, define the partial endomorphisms ei of CΦ

by x 7→ h(x, i). It is easy to check that these partial endomorphisms satisfy the required
properties.
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In the following proof, we need a slightly different notion of canonicity. A function
f : Ak → A is said to be diagonally canonical with respect to A if for all m-tuples t

1
, . . . , t

m

and every automorphism α ∈ Aut(A), there exists β ∈ Aut(A) such that βf(t
1
, . . . , t

m
) =

f(αt
1
, . . . , αt

m
). The results from [36] and the fact that (CΦ, <) is a Ramsey structure

(Corollary 5.22) imply the following.

Theorem 5.44. Let f ∈ Pol(CΦ). There exists a polymorphism g ∈ Pol(CΦ) that is
diagonally canonical with respect to (CΦ, <) and g ∈ {βf(α, . . . , α) | α, β ∈ Aut(CΦ, <)}.

Proposition 5.45. Let Φ be a precoloured MMSNP sentence in strong normal form and
let C be the clone of polymorphisms of CΦ that are canonical with respect to (CΦ, <). Let
{S, T} be a trivial subfactor of C typ

1 . Then for every pp-definable subset X of CΦ such
that X ∩ SCΦ 6= ∅ and X ∩ T CΦ 6= ∅, there exists a loopless definable colour graph over X
containing an edge from S to T .

Proof. Let X ⊆ CΦ be pp-definable and such that X ∩ SCΦ and X ∩ T CΦ are non-empty.
We prove the result by contradiction, assuming that every definable colour graph over X
that contains an edge from S to T also contains a loop. The crux of the proof is to show
that this assumption implies the existence of a canonical polymorphism ĥ of CΦ such that
for all x, y ∈ X the equivalence ĥ(x, y) ∈ SCΦ ⇔ ĥ(y, x) ∈ SCΦ holds. This argument is
similar to the proof of Lemma 4.4 in [4].

First, we show that for every finite subset A of CΦ, there exists a binary polymorphism
f of CΦ such that the following property (†) holds for all a, b ∈ A ∩X:

f(a, b), f(b, a) ∈ SCΦ ∪ T CΦ implies (f(a, b) ∈ SCΦ ⇔ f(b, a) ∈ SCΦ). (†)

For a binary polymorphism f of CΦ, denote by C(f) = {(a, b) ∈ A2 | ∃α ∈ Aut(CΦ) :
f(a, b) = αf(b, a)}. Let f be such that C(f) is maximal. Suppose that f does not satisfy
(†). This means that there exist a, b ∈ A∩X such that f(a, b), f(b, a) ∈ SCΦ∪T CΦ and such
that f(a, b) ∈ SCΦ and f(b, a) ∈ T CΦ . Let N be the smallest binary relation containing
(f(a, b), f(b, a)), (f(b, a), f(a, b)) and being preserved by the polymorphisms of CΦ. Note
that N ⊆ X2, since a and b are in X and X is preserved by all the polymorphisms of CΦ.
Since CΦ is ω-categorical, this relation has a pp-definition in CΦ (Theorem 2.12). Moreover,
it is symmetric and (f(a, b), f(b, a)) ∈ N ∩ (SCΦ × T CΦ). By hypothesis, the colour graph
defined by N contains a loop. This implies that there exist g ∈ Pol(CΦ) and α ∈ Aut(CΦ)
such that g(f(a, b), f(b, a)) = αg(f(b, a), f(a, b)). Define f ′(x, y) := g(f(x, y), f(y, x))
for all x, y ∈ CΦ. It is clear from the above that (a, b) ∈ C(f ′). Moreover, we have
C(f) ⊆ C(f ′). Indeed, let (a′, b′) ∈ C(f). Then f(a′, b′), f(b′, a′) are in the same orbit,
and since Φ is precoloured, this implies that f ′(a′, b′) and f ′(b′, a′) are in the same orbit.
This contradicts the maximality of C(f), so that it must be the case that f satisfies (†).

Using a standard compactness argument (see the proof of Proposition 2.7), we obtain
a binary polymorphism f of CΦ that satisfies (†) for all a, b ∈ X.

Let g be any polymorphism obtained by diagonally canonising f , using Theorem 5.44.
We claim that g still satisfies (†) onX. Indeed, let a, b ∈ X and suppose that g(a, b), g(b, a) ∈
SCΦ ∪ T CΦ . There exist α, β ∈ Aut(CΦ) such that g(a, b) = αf(βa, βb) and g(b, a) =
αf(βb, βa). Since SCΦ and T CΦ are union of colours, they are preserved by automor-
phisms of CΦ. We conclude that f(βa, βb), f(βb, βa) ∈ SCΦ ∪ T CΦ . Since f satisfies
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(†) on X, the equivalence f(βa, βb) ∈ SCΦ ⇔ f(βb, βa) ∈ SCΦ holds. It follows that
g(a, b) ∈ SCΦ ⇔ g(b, a) ∈ SCΦ , so that g also satisfies (†) on X.

Let R ∈ S,B ∈ T be such that RCΦ ⊆ X and BCΦ ⊆ X. Let e1, e2 be the endomor-
phisms of CΦ given by Lemma 5.43. Define h(x, y) := g(e1(x), e2(y)) for all x, y ∈ CΦ. Note
that h is 1-canonical on RCΦ ∪ BCΦ: for (a, b), (a′, b′) ∈ RCΦ × BCΦ , the pairs (e1(a), e2(b))
and (e1(a′), e2(b′)) are in the same orbit of (CΦ, <), according to Lemma 5.43. Since g is
diagonally canonical, this implies that h(a, b) and h(a′, b′) are in the same orbit. Similarly,
for (a, b), (a′, b′) ∈ BCΦ × RCΦ , the pairs (e1(a), e2(b)) and (e1(a′), e2(b′)) are in the same
orbit of (CΦ, <). Moreover, h satisfies (†) on RCΦ ∪ BCΦ . Indeed, let (a, b) ∈ RCΦ × BCΦ
be such that h(a, b) and h(b, a) are in SCΦ ∪ T CΦ . Then g(e1(a), e2(b)) and g(e1(b), e2(a))
are in SCΦ ∪ T CΦ . Since g is diagonally canonical and (e1(b), e2(a)) and (e2(b), e1(a)) are
in the same orbit, we have that also g(e2(b), e1(a)) is in SCΦ ∪ T CΦ . By (†), we have
g(e1(a), e2(b)) ∈ SCΦ if, and only if, g(e2(b), e1(a)) ∈ SCΦ . By definition, this implies that
h(a, b) ∈ SCΦ ⇔ h(b, a) ∈ SCΦ holds. So h satisfies (†) on RCΦ ∪BCΦ .

Let now ĥ be obtained by canonising h with respect to (CΦ, <). Since h was already
1-canonical on RCΦ ∪BCΦ , the restrictions of ξtyp

1 (h) and ξtyp
1 (ĥ) to {R,B} are equal. This

implies that ĥ still satisfies (†) on RCΦ ∪ BCΦ . By assumption, SCφ ∪ T CΦ is preserved by
ĥ. This implies that for all a ∈ RCΦ , b ∈ BCΦ , we have that ĥ(a, b) ∈ SCΦ ⇔ ĥ(b, a) ∈ SCΦ .
Finally, since the partition {S, T} is preserved by ĥ by assumption, for all a, a′ ∈ SCΦ and
b, b′ ∈ T CΦ we must have that ĥ(a, b) ∈ SCΦ iff ĥ(a′, b′) ∈ SCΦ , and similarly for ĥ(b, a) and
ĥ(b′, a′). This finishes the construction of ĥ.

Note that the function induced by ĥ on the subfactor {S, T} is binary and symmetric.
But since {S, T} is a trivial subfactor of C typ

1 , the clone induced by C typ
1 on {S, T} only

contains projections. We have reached the desired contradiction.

Proposition 5.46. Let Φ be a precoloured MMSNP sentence in normal form and let C
be the clone of polymorphisms of CΦ that are canonical with respect to (CΦ, <). Let {S, T}
be a trivial subfactor of C typ

1 . Then there exists a binary symmetric relation N that is
pp-definable in CΦ, defines a colour graph with an edge from S to T , and does not contain
a path of even length between S and T .

Proof. Consider the set S of all triples (S, T,N) such that:

• {S, T} is a trivial subfactor of C typ
1 ;

• N is a binary symmetric relation pp-definable in CΦ whose colour graph is loopless;

• if the colour graph defined by N is bipartite, then N contains an edge between S
and T .

By Proposition 5.45 applied with X := CΦ, the set S is nonempty. Pick a triple (S, T,N) ∈
S such that the support of N (i.e., the set of x ∈ CΦ such that there exists (x, y) ∈ N for
some y) intersects the fewest number of orbits of CΦ. We claim that N then satisfies the
conclusion of the proposition.

We first claim that the colour graph defined by N is bipartite. For the sake of con-
tradiction, suppose that it is not the case. If ` is the smallest length of an odd cycle in
the colour graph defined by N , then the relation N◦(`−2) is again symmetric, pp-definable
in CΦ, and such that the colour graph it defines is loopless and contains a triangle. We
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R

B

G

T ′

S′

Figure 5.5: An illustration of the colour graph defined by N in the proof of Proposi-
tion 5.46. The formula ∃y(G(y) ∧N(x, y)) defines in CΦ a subset that does not intersect
GCΦ and intersects RCΦ and BCΦ , a contradiction to the minimality of (S, T,N) ∈ S.

therefore assume without loss of generality that ` = 3. The set defined by the unary
formula

φ(x) := ∃y, z, x′(N(x, y) ∧N(y, z) ∧N(z, x′) ∧ x ∼ x′)

is preserved by C , where the meaning of x ∼ x′ is that x and x′ are in the same orbit of
Aut(CΦ). The corresponding subset ρ of σ is therefore preserved by C typ

1 , and consists of
the set of colours that belong to a triangle in the colour graph defined by N . In particular,
ρ is not empty. When restricted to ρ, the colour graph is therefore not bipartite and does
not contain a loop. It follows from [42, Theorem 1] that there is a trivial subfactor {S′, T ′}
of C typ

1 such that S′ ∪ T ′ ⊆ ρ. Let now R ∈ S′, and let N ′(x, y) be defined by

N(x, y) ∧ ∃z, z′
(
R(z) ∧R(z′) ∧N◦2(z, x) ∧N◦2(z′, y)

)
,

which is a pp-definition in CΦ. Again, N ′ ⊆ N is symmetric and the colour graph that
it defines is loopless and contains a triangle, so that (S′, T ′, N ′) ∈ S. By minimality of
(S, T,N), the support of N ′ must be equal to the support of N , so that the colour graphs
defined by N ′ and by N are the same. In particular, since every colour in T ′ is in the
support of N , every such B ∈ T ′ has a path of length 2 to R. Pick an arbitrary B ∈ T ′
and let G be the midpoint of a path of length 2 between R and B. The situation is
described in Figure 5.5. Then the formula θ(x) := ∃y(G(y) ∧ N(x, y)) defines a proper
subset Y of the support of N (proper because the colour graph is loopless, which implies
that no element in G satisfies θ), and this subset intersects S′ and T ′. By Proposition 5.45
applied with X := Y , we obtain a new binary symmetric relation M ⊆ Y 2 whose colour
graph is loopless and contains an edge between S′ and T ′. In particular, (S′, T ′,M) ∈ S,
a contradiction to the minimality of (S, T,N).

Therefore, the colour graph defined by N is bipartite. Since (S, T,N) ∈ S, it must
be that N contains an edge between S and T . If N does not satisfy the conclusion of
the proposition, there must be a path of even length 2k between S and T . Let G be the
midpoint of this path. Let Y ⊆ CΦ be the subset consisting of the elements of CΦ that are
reachable by a path of length k from an element in G. This set is pp-definable in CΦ, and
intersects S and T . Moreover, it is a proper subset of the support of N . Indeed, if k is
odd then no element of G belongs to Y , otherwise the colour graph defined by N would
contain a cycle of length k. If k is even, then no direct neighbour of an element in G
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Chapter 5. Proof of the dichotomy conjecture for MMSNP

belongs to Y , for otherwise N would contain a cycle of length k + 1. By Proposition 5.45
applied with X := Y , we obtain a new binary symmetric relation M ⊆ Y 2 whose colour
graph is loopless and contains an edge between S′ and T ′. In particular, (S′, T ′,M) ∈ S,
a contradiction to the minimality of (S, T,N). Thus, it must be that (S, T,N) satisfies
the conclusion of the statement.

Theorem 5.47. Let Φ be a precoloured MMSNP sentence in strong normal form. Let C
be the clone of polymorphisms of CΦ that are canonical with respect to (CΦ, <). If there
is a clone homomorphism C typ

1 → P, then there exists a uniformly continuous clonoid
homomorphism from φ from Pol(CΦ) to P and CSP(CτΦ) is NP-hard. Moreover, φ is

constant on sets of the form Aut(CΦ)f Aut(CΦ) for f ∈ Pol(CΦ).

Proof. As we have mentioned before, if the finite idempotent clone C typ
1 has a homomor-

phism to P, then C typ
1 has a trivial subfactor {S, T} (Proposition 4.1).

Let ξ : C typ
1 → P be the clone homomorphism defined as follows. Let R ∈ S and

B ∈ T be arbitrary. For a k-ary f ∈ C typ
1 , let i ∈ {1, . . . , k} be the unique index such that

f(B, ..., B,R,B, ..., B) ∈ S, where the argument R is in the ith position. Such an i exists
because of the assumption that {S, T} is a trivial subfactor of C typ

1 . Define ξ(f) to be the
ith projection. Note that the definition of ξ does not depend on the choice of R and B,
by the fact that the equivalence relation on S ∪ T whose equivalence classes are S and T
is assumed to be preserved by the operations in C typ

1 . It is straightforward to check that
the map ξ thus defined is a clone homomorphism.

Let X ⊆ CΦ and N ⊆ X2 be the pp-definable relations given by Proposition 5.46. Fix
f ∈ Pol(CΦ) a k-ary operation and g, h two operations in Aut(CΦ, <)f Aut(CΦ, <). As
explained in the beginning of this section, it suffices to prove that ξ(gtyp

1 ) = ξ(htyp
1 ). For

ease of notation, assume that ξ(gtyp
1 ) is the first projection, the general case being treated

in the same way. Since ξ is the clone homomorphism induced by {S, T}, this means that
for all R ∈ S and B ∈ T , we have gtyp

1 (R,B, . . . , B) ∈ S. In order to prove that ξ(htyp
1 )

is also the first projection, it suffices to prove that there exists R ∈ S and B ∈ T such
that htyp

1 (R,B, . . . , B) ∈ S. Let R ∈ S and B ∈ T be adjacent colours in the colour graph
defined by N . Let (a1, . . . , ak) be any tuple in RCΦ×BCΦ×· · ·×BCΦ . Since f interpolates
g and h modulo Aut(CΦ, <), there are automorphisms α, β1, . . . , βk such that

g(a1, . . . , ak) = αf(β1a1, . . . , βkak)

and automorphisms γ, δ1, . . . , δk such that

h(a1, . . . , ak) = γf(δ1a1, . . . , δkak).

Let S be the substructure of CΦ induced by {β1a1, . . . , βkak, δ1a1, . . . , δkak}. Since
(CΦ, 6=) is a model-complete core (Lemma 5.19), by Proposition 2.19 by Proposition 2.19
the orbit of the tuple (β1a1, . . . , βkak, δ1a1, . . . , δkak) has a pp-definition θ(x1, . . . , xk, y1, . . . , yk)
in (CΦ, 6=). Let θ∗ be θ where the atomic conjuncts involving 6= have been removed. Let
φN (x, y) be a pp-formula defining the relation N ⊆ (CΦ)2 in CΦ. Fix an integer ` such that
2` > |Φ|. For every i ∈ {1, . . . , k}, let zi1, . . . , z

i
2`−1 be fresh variables. In the following, we

also write zi0 for xi and zi2` for yi. Let ψ(x1, . . . , xk, y1, . . . , yk) be the pp-formula whose
conjuncts are:

• θ∗(x1, . . . , xk, y1, . . . , yk),
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Figure 5.6: Proof of Theorem 5.47: A depiction of ψ (left) in the case that k = 2 and
2` = 4, and a view of (RCΦ ∪ BCΦ)2 (right). The red edges on the right represent the
relation N ; these edges connect the images of the drawn points under f .

• φN (zij , z
i
j+1), for every i ∈ {1, . . . , k} and j ∈ {0, . . . , 2`− 1},

• R(z1
j ) for even j ∈ {1, . . . , 2`− 1} and B(z1

j ) for odd j ∈ {1, . . . , 2`− 1},

• for i ∈ {2, . . . , k}, the conjunct B(zij) for even j ∈ {1, . . . , 2`− 1} and R(zij) for odd
j ∈ {1, . . . , 2`− 1}.

We claim that ψ is satisfiable in CΦ. We first prove that it is satisfiable in Bind
F ,

where F is the coloured obstruction set of Φ. Let S ′ be the canonical database of ψ (see
Figure 5.6). By Lemma 5.8, ψ is satisfiable if and only if all the biconnected components
of S ′ are F-free. Suppose that there exists an obstruction F ∈ F and a homomorphism
e : F → S ′. By the choice of ` we have that |F| < 2`. Since Φ is in normal form, its
obstructions are biconnected and we can suppose that the image of the homomorphism e
is a biconnected component of S ′. It follows that either the image of e is included in S, or
it is included in the subset induced by the canonical database of some N(zij , z

i
j+1) for some

i ∈ {1, . . . , k} and j ∈ {0, . . . , 2`−1}. But the assumption on N is that there is (a, b) ∈ N
such that a ∈ RCΦ and b ∈ BCΦ . Therefore, the conjunct φN (zij , z

i
j+1) is satisfiable by

an assignment that maps zij and zij+1 to the appropriate colours. We conclude that there

exists an embedding e of S ′ into Bind
F .

Let d : Bind
F → Bhom

F be an injective homomorphism (whose existence follows from

Theorem 5.9). Note that the image of the restriction of d to the substructure CΦ of Bind
F

is in CΦ since d must preserve the colours. Since d ◦ e is injective, the tuple

(e(x1), . . . , e(xk), e(y1), . . . , e(yk))

satisfies θ. This means that d ◦ e : S ′ → CΦ is a satisfying assignment that maps

(x1, . . . , xk, y1, . . . , yk)
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to a tuple that is in the same orbit as (β1a1, . . . , βkak, δ1a1, . . . , δkak). By composing with
an automorphism of CΦ, we can suppose that (x1, . . . , xk, y1, . . . , yk) is exactly this tuple.

It must therefore be the case that f(β1a1, . . . , βkak) and f(δ1a1, . . . , δkak) are con-
nected by an N -path of even length, that is, there are b1, . . . , b2`−1 ∈ CΦ such that

(bj , bj+1) ∈ N for all j ∈ {1, . . . , 2`}
(f(β1a1, . . . , βkak), b1) ∈ N and

(b2`−1, f(δ1a1, . . . , δkak)) ∈ N (see Figure 5.6, right side).

By assumption, such a path of even length cannot connect S and T , so that f(δ1a1, . . . , δkak)
is in a colour Y ∈ S. We obtain that h(R,B, . . . , B) ∈ S, as desired.

Therefore, the map φ : Pol(CΦ) → P defined by φ(f) := ξ(gtyp
1 ) for an arbitrary

g ∈ Aut(CΦ, <)f Aut(CΦ, <) is well-defined. As in Theorem 4.3, φ is readily seen to
be constant on sets of the form Aut(CΦ)f Aut(CΦ) for f ∈ Pol(CΦ). In order to prove
continuity of φ, let (fn)n∈N be a sequence of polymorphisms of CΦ converging to f . Let
hn be canonical and in Aut(CΦ, <)fn Aut(CΦ, <) for all n ∈ N, and let g be canonical and
in Aut(CΦ, <)f Aut(CΦ, <). Since there are only finitely many behaviours of canonical
functions, there is an infinite set I ⊆ N such that ξtyp

1 (hi) = ξtyp
1 (hj) for all i, j ∈ I. Now,

it remains to apply the same as in the third paragraph. Indeed, when a1, . . . , ak are fixed,
for arbitrarily large n ∈ I we obtain automorphisms α, β1, . . . , βk, γ, δ1, . . . , δk ∈ Aut(CΦ)
such that

g(a1, . . . , ak) = αfn(β1a1, . . . , βkak)

and
hn(a1, . . . , ak) = γfn(δ1a1, . . . , δkak).

By the argument in the third paragraph, we then obtain ξ(ξtyp
1 (hn)) = ξ(ξtyp

1 (g)) = φ(f).
Thus, the sequence (φ(fn))n∈N = (ξ(ξtyp

1 (hn)))n∈N converges to ξ(ξtyp
1 (g)) = φ(f) and φ is

continuous. Finally, the fact that φ is uniformly continuous follows from Proposition 6.4
in [6].

5.4.3 The dichotomy: conclusion

Summing up the results of the previous two sections, we obtain the following dichotomy
for precoloured MMSNP sentences.

Theorem 5.48. Let Φ be a precoloured MMSNP sentence. Let C be the clone of poly-
morphisms of CτΦ that are canonical with respect to (CΦ, <). Then one of the following
equivalent statements holds:

(1) there is a clone homomorphism C typ
1 →P;

(2) there is a uniformly continuous clonoid homomorphism Pol(CτΦ)→P that is invariant

under left-composition by Aut(CΦ);

and CSP(CτΦ) is NP-complete, or one of the following equivalent statements holds:

(a) C typ
1 contains a Siggers operation;

(b) C contains a pseudo-Siggers operation modulo Aut(CΦ, <);
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(c) Pol(CτΦ) contains a pseudo-Siggers operation modulo Aut(CΦ, <).

and CSP(CτΦ) is in P.

Proof. The implication from (a) to (b) follows from Proposition 5.39. The implication from
(b) to (c) is trivial. Clearly, (c) implies the negation of (2). The implication ¬(2)⇒ ¬(1)
is Theorem 5.47, and ¬(1) implies (a) by Theorem 2.17.

Note that item (a) is for given Φ clearly algorithmically decidable. Via the facts
about precolourings from Section 5.3, Theorem 5.48 implies a more general result about
MMSNP sentences in normal form, Theorem 5.50 below. In order to show that the two
cases in Theorem 5.50 are disjoint, we need the following transfer for the existence of
pseudo-Siggers polymorphisms of Pol(CτΦ).

Proposition 5.49. The structure CτΦ has a pseudo-Siggers polymorphism modulo Aut(CΦ)

if, and only if, it has an injective polymorphism that is pseudo-Siggers modulo Aut(CΦ, <).

Proof. Let s : (CτΦ)6 → CτΦ be the given pseudo-Siggers. Let B be the (τ ∪ σ)-expansion
of (CτΦ)6 where (a1, . . . , a6) has the same colour as s(a1, . . . , a6) in CΦ. We view CΦ as a
substructure of Bind

F , and consequently s as a homomorphism B → Bind
F . By Lemma 5.30,

we obtain an injective homomorphism t : B → Bind
F such that for all injective tuples a, b in

B, if s(a) and s(b) are in the same orbit in Bind
F then so are t(a) and t(b) (call this property

(†)).
We claim that for every finite substructure A of CτΦ, there exists an injective homomor-

phism tA : A6 → CτΦ that is pseudo-Siggers modulo Aut(CΦ, <). Let a be the tuple whose
entries are of the form (x, y, x, z, y, z) for x, y, z ∈ A (that is, a is a tuple of 6-tuples). Let
b be the tuple whose entries are of the form (y, x, z, x, z, y) (using the same enumeration of
the elements (x, y, z) of A3 as in a). Since s is pseudo-Siggers modulo Aut(CΦ), the tuples
s(a) and s(b) lie in the same orbit of Aut(CΦ), so they lie in the same orbit of Aut(Bind

F )

by Lemma 5.19. By (†), we obtain that t(a) and t(b) lie in the same orbit of Aut(Bind
F ).

Moreover, since t is injective, there exists α ∈ Aut(Bind
F ) such that the tuples (αt)(a) and

(αt)(b) lie in the same orbit of Aut(Bind
F , <). Let h : (Bind

F , 6=)→ (Bhom
F , 6=) be an injective

homomorphism that is canonical from (Bind
F , <) to (Bhom

F , <). We claim that tA := h◦α◦ t
is the desired injective homomorphism.

We first prove that the range of tA is included in the domain of CΦ, that is, that all
the elements that appear in the range are coloured. Let a1, . . . , a6 ∈ A. Since the range
of s is included in the domain of CΦ, there is an M ∈ σ such that s(a1, . . . , a6) ∈ MCΦ .

By Lemma 5.30, the element t(a1, . . . , a6) ∈MBind
N , so that h(α(t(a1, . . . , a6))) ∈MCΦ and

hence lies in CΦ.
We now show that tA : A6 → CτΦ is pseudo-Siggers modulo Aut(CΦ, <). Note that

since (αt)(a) and (αt)(b) lie in the same orbit in Aut(Bind
F , <), the tuples tA(a) and tA(b)

lie in the same orbit in Aut(Bhom
F , <) by the canonicity of h. Therefore, there exists

β ∈ Aut(Bhom
F , <) such that βtA(a) = tA(b). Since the domain of CΦ is preserved by

automorphisms of (Bhom
F , <) the restriction of β to the domain of CΦ is an automorphism

of (CΦ, <). In conclusion, tA is pseudo-Siggers modulo Aut(CΦ, <).
A standard compactness argument now shows that there exists t′ : (CΦ)6 → CΦ that

is on every finite subset pseudo-Siggers modulo Aut(CΦ, <). By Lemma 3.5, t′ is pseudo-
Siggers modulo Aut(CΦ, <).
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Theorem 5.50. Let Φ be an MMSNP sentence in strong normal form. Let C be the clone
of polymorphisms of CτΦ that are canonical with respect to (CΦ, <). Then either

• there is a uniformly continuous clonoid homomorphism Pol(CτΦ)→P and CSP(CτΦ)
is NP-complete, or

• Pol(CτΦ) contains a pseudo-Siggers operation modulo Aut(CΦ) and CSP(CτΦ) is in P.

In particular, Conjecture 1 holds for all CSPs in MMSNP.

Proof. If there is a uniformly continuous clonoid homomorphism Pol(CτΦ)→P, then the
NP-hardness of CSP(CτΦ) follows from Corollary 2.15. Otherwise, let Ψ be the standard
precolouration of Φ with input signature ρ ⊆ τ . By Theorem 5.31 there is no uniformly
continuous clonoid homomorphism from Pol(CρΨ)→P. Then Theorem 5.50 above states

that Pol(CρΨ) contains a pseudo-Siggers operation modulo Aut(CΨ) that is canonical with
respect to CΨ, and CSP(CρΨ) is in P. By Theorem 5.31 the structure CτΦ is isomorphic to a

reduct of CρΨ, so it also has a pseudo-Siggers operation modulo Aut(CΦ) that is canonical
with respect to CΦ, and CSP(CτΦ) is also in P.

To show that the two cases are mutually exclusive, suppose that Pol(B) contains a
pseudo-Siggers operation g. Then Pol(B, 6=) has a pseudo-Siggers by Proposition 5.49.
Since (B, 6=) is a model-complete core, Theorem 2.21 implies that there is no uniformly

continuous clonoid homomorphism from Pol(B, 6=)
u.c.c.h.−−−−→P. By Proposition 5.29, there

is no uniformly continuous clonoid homomorphism Pol(B)
u.c.c.h.−−−−→P.

Finally, we show that the above implies Conjecture 1 for CSPs in MMSNP. Suppose
that B is an ω-categorical structure such that Φ describes CSP(B). Since B and CτΦ are ω-
categorical and have the same CSP, they are homomorphically equivalent. Theorem 2.14

then implies that there are uniformly continuous clonoid homomorphisms Pol(B)
u.c.c.h.−−−−→

Pol(CτΦ) and Pol(CτΦ)
u.c.c.h.−−−−→ Pol(B).

The proof of Theorem 5.50 shows that in order to decide for a given MMSNP sentence
Φ in strong normal form which of the cases holds, it suffices to test whether (CτΨ, <) has
a polymorphism f that is canonical with respect to (CΦ, <) such that ξtyp

1 (f) is a Siggers
operation (see item (a) in Theorem 5.48).

We can finally prove Theorem 5.6 from Section 5.1.3.

Proof. By Proposition 5.1, the sentence Φ is logically equivalent to a finite disjunction
Φ1∨ · · · ∨Φk of connected MMSNP sentences. By Theorem 5.24, we can assume that each
of the Φi is in strong normal form. The sentence Φi describes CSP(CτΦi). Theorem 5.50
above states that either Pol(CτΦi) has a uniformly continuous clonoid homomorphism to
P, and Φi is NP-complete, or Pol(CτΦi) contains a pseudo-Siggers polymorphism. Then
Proposition 5.2 states that Φ is in Pif the second case applies for all i ≤ k, and is NP-hard
otherwise.

Again, it is clear from the proof that given an MMSNP sentence Φ, the two cases
in Theorem 6.5 can be distinguished algorithmically. The reason is that the connected
MMSNP sentences Φ1, . . . ,Φk can be computed from Φ (Proposition 5.1), and also each
of the Φi can be effectively rewritten into strong normal form (Theorem 5.24), and so the
claim follows from our observations above.
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We close with a consequence of Theorem 5.48 concerning the existence of pseudo-
cyclic polymorphisms of CτΦ for precoloured MMSNP sentences Φ. Recall that for finite
structures C, the existence of a Siggers polymorphisms is equivalent to the existence of
a cyclic polymorphism. However, there are ω-categorical structures that have a pseudo-
Siggers polymorphism but no pseudo-cyclic polymorphism, for example the structure (Q;<
, {(x, y, u, v) | x = y ⇒ u = v}). But the CSP for this structure cannot be expressed
by MMSNP (a proof can be found in [9]). So it is natural to ask whether tractability
of MMSNP sentences can also be characterised by pseudo-cyclic polymorphisms. The
proof of Proposition 5.39 cannot be modified straightforwardly to produce a pseudo-cyclic
polymorphism instead of a pseudo-Siggers polymorphism. However, the existence of a
pseudo-cyclic polymorphism of CτΦ can be deduced from Theorem 5.48 and the mentioned
result about the existence of cyclic polymorphisms in the finite.

Theorem 5.51. Let Φ be a precoloured MMSNP sentence. Then Pol(CτΦ) has a pseudo-
Siggers polymorphism if and only if it has a pseudo-cyclic polymorphism.

Proof. By Proposition 5.40 there exists an m ∈ N such that CΦ has a homogeneous ex-
pansion C∗Φ by primitive positive definable relations of maximal arity m. For the forward
implication, the existence of a pseudo-Siggers polymorphism of CτΦ implies by Theorem 5.48

that CτΦ has a pseudo-Siggers operation modulo Aut(CΦ, <) which is canonical with respect
to (CΦ, <), and hence C typ

m has a Siggers polymorphism. By Theorem 2.17 and Proposi-
tion 3.6, it follows that CτΦ has a pseudo-cyclic polymorphism.

Now suppose that CτΦ has a pseudo-cyclic polymorphism. Then C typ
1 has a cyclic

polymorphism, and hence CτΦ has a pseudo-Siggers operation modulo Aut(CΦ, <) by The-
orem 5.48.
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Chapter 6

The Complexity of Discrete Temporal CSPs

A famous CSP over the integers is feasibility of systems of linear inequalities. It is of
great importance in practice and theory of computing, and NP-complete. In order to
obtain a systematic understanding of polynomial-time solvable restrictions and variations
of this computational problem, Jonsson and Lööw [64] proposed to study the class of CSPs
where the constraint language B is definable in Presburger arithmetic; that is, it consists
of relations that have a first-order definition over (Z;≤,+). Equivalently, each relation
R(x1, . . . , xn) in B can be defined by a disjunction of conjunctions of the atomic formulas
of the form p ≥ 0 where p is a linear polynomial with integer coefficients and variables from
{x1, . . . , xn}. Several constraint languages in this class are known where the CSP can be
solved in polynomial time; an example of such a CSP is the problem of deciding whether
a system of linear diophantine equations has a solution (a polynomial-time algorithm is
given in [49]). However, a complete complexity classification for the CSPs of Jonsson-Lööw
languages appears to be a very ambitious goal.

One of the most basic classes of constraint languages that falls into the framework of
Jonsson and Lööw is the class of distance constraint satisfaction problems [15]. A distance
constraint satisfaction problem is a CSP for a constraint language over the integers whose
relations have a first-order definition over (Z; succ) where succ is the successor relation. It
has been shown previously that distance CSPs for locally finite constraint languages, that
is, constraint languages whose relations have bounded Gaifman degree, are NP-complete, in
P, or can be formulated with a constraint language over a finite domain [15]. Another class
of problems which can be expressed as Jonsson-Lööw constraint satisfaction problems is
the class of temporal CSPs [23]. This is the class of problems whose constraint languages
are over the rational numbers with relations definable over (Q;<). While the order of the
rationals is not isomorphic to the order of the integers because of its density, this density is
not witnessed by finite structures (i.e., Age(Q;<) = Age(Z;<)). It follows that for every
structure B whose relations are first-order definable in (Q;<), there exists a structure C
that is definable in (Z;<) and such that B and C have the same CSP. The converse is not
true, since the structure (Z; succ) is a first-order reduct of (Z;<) that does not have the
same CSP as any first-order reduct of (Q;<).

Our main result shows that the class of discrete temporal CSPs exhibits a P/NP-
complete dichotomy. This result properly extends the results mentioned above for locally
finite distance CSPs, since succ is first-order definable over (Z;<). By the comments of
the previous paragraph it also extends the classification of temporal CSPs. A cornerstone
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of our proof is the characterization of those problems that are discrete temporal CSPs but
that are not temporal CSPs; the corresponding constraint languages have an interesting
notion of rank which we use in the following to obtain a strong pre-classification of those
languages up to homomorphic equivalence. The notion of rank is central to reduce the
classification to the natural special case where the binary successor relation is part of the
language.

Our proof relies on a modification of the universal-algebraic approach discovered by
Bodirsky, Hils, and Martin [17]. In this work, the authors pointed out the relevance of the
notion of saturation for the universal-algebraic approach, and one of the ideas developed
in this chapter is that in order to use polymorphisms when the constraint language is not
ω-categorical, we have to pass to the countable saturated model of the first-order theory
of (Z;<). Our classification has a particularly simple form when the constraint language
B not only contains the binary successor relation, but also the relation <: if B has the
polymorphism (x, y) 7→ max(x, y) or (x, y) 7→ min(x, y), then CSP(B) is in P, and CSP(B)
is NP-hard otherwise. The results in this chapter have been published in [27, 28].

6.1 Discrete Temporal Constraint Satisfaction Problems

Definition 6.1 (Discrete Temporal CSP). A discrete temporal CSP is a constraint satis-
faction problem where the constraint language is a first-order reduct of (Z;<) with finite
signature.

Example 11. We present some concrete examples first-order reducts of (Z;<); some of
the relations from these examples will re-appear in later sections to illustrate important
phenomena for reducts of (Z;<).

1. (Z; succp), where succp = {(x, y) ∈ Z2 | y = x + p} for p ∈ Z. Note that this
structure is not connected, and that it has the same CSP as (Z; succ). This example
and example (3) will be considered again in Example 14.

2. (Z; DiffS), where DiffS := {(x, y) ∈ Z2 | y − x ∈ S} for a finite set S ⊂ Z.

3. (Z; succ2,Diff{−2,−1,0,1,2}).

4. (Z;F ) where F is the 4-ary relation {(x, y, u, v) : y = x+1⇔ v = u+1}. This exam-
ple and the following example have unbounded Gaifman degree (see Section 6.4.1),
so they do not fall into the scope of [15].

5. (Z; 6=,Disti) where i ∈ N and Disti := {(x, y) : |x− y| = i}.

6. (Z; {(x, y, z) ∈ Z3 | z + 1 ≤ max(x, y)}). This structure is not a first-order reduct
of (Z; succ). Neither does it have the same CSP as a first-order reduct of (Q;<),
so we have a discrete temporal CSP that is not a temporal CSP and does not fall
into the scope of [23]. The CSP for this structure is closely related to the so-called
Max-Atom problem; the connection is explained in Section 6.7.

The structure (Z;<) admits quantifier elimination in the language consisting of the
binary relations Rc = {(x, y) ∈ Z2 | y ≤ x+c} for c ∈ Z. This means that every first-order
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formula φ(x1, . . . , xn) in the expanded language {Rc | c ∈ Z} is equivalent to a quantifier-
free formula in the same language. To see this, note that it suffices to prove that one can
eliminate the quantifiers in existential formulas rather than in general first-order formulas;
in fact, by de Morgan and the equivalence between ¬y < x+c and x < y+(1−c) it suffices
to prove that one can eliminate the quantifiers in pp-formulas. Seeing a pp-formula as
a system of inequalities, one then performs Gaussian elimination to remove the variables
that are existentially quantified. The result of this is a system of inequalities that can
be translated back into a quantifier-free formula. Similarly, (Z; succ) admits quantifier
elimination in the language consisting of the binary relations given by y = x+ c for c ∈ Z.
Whenever we write that φ is a quantifier-free formula, we mean that φ is written in one of
those two languages; which one will always be clear from the context. The empty relation,
Z2, and the binary relations defined by y = x+ c for c ∈ Z are called basic relations. The
following is easy to see.

Proposition 6.1. All discrete temporal CSPs are in NP.

Proof. Let q be the size of the biggest integer that appears in the quantifier-free formulas
that define the relations in B over (Z;<); that is, for any atomic formula x ≤ y + k in
those formulas, k ∈ Z, we have |k| ≤ q. For an instance Φ of CSP(B) with n variables,
it is clear that B |= Φ if and only if Φ is true on B[{1, . . . , (q + 1)n}]. We may guess a
satisfying assignment of values from {1, . . . , (q + 1)n} to the variables of Φ, and verify in
polynomial time that all the constraints are satisfied.

The main result of this chapter (Theorem 6.5) immediately implies the following.

Theorem 6.2. Every discrete temporal CSP is in P or NP-complete.

6.2 Model-Theoretic Considerations

The structures that we consider in this chapter will in general not be ω-categorical; how-
ever, following the philosophy in [17], one can refine the universal-algebraic approach to
apply it also in our situation. We will describe these refinements in the rest of this section.

The (first-order) theory of a structure B, denoted by Th(B), is the set of all first-order
sentences that are true in B. We define some notation to conveniently work with models
of Th(B) and their first-order reducts.

Definition 6.2 (κ.Z). Let κ be a linearly ordered set. We write κ.Z for κ copies of
Z indexed by the elements of κ; formally, κ.Z is the set {(p, z) : p ∈ κ, z ∈ Z}. Then
(κ.Z;<) is the structure where < denotes the lexicographic order on κ.Z, that is, we
define (p, z) < (p′, z′) if p < p′ holds or if p = p′ and z < z′. If p ∈ κ, we write p.Z to
denote the copy of Z indexed by p, instead of {p} × Z.

It is well known and easy to see that the models of Th(Z;<) are precisely the structures
isomorphic to (κ.Z;<), for some linear order κ. When k ∈ Z and u = (p, z) ∈ κ.Z, we
write u+ k for (p, z + k).

Definition 6.3 (κ.B). Let B be a first-order reduct of (Z;<) with signature τ . Then
κ.B denotes the ‘corresponding’ first-order reduct of (κ.Z;<) with signature τ . Formally,
when R ∈ τ and φR is a formula that defines RB, then Rκ.B is the relation defined by φR
over (κ.Z;<).
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In the following, we identify Z with the copy of Z induced by 0.Z in Q.Z. That is,
we view (Z;<) as a substructure of (Q.Z;<), and consequently B as a substructure of
Q.B for each first-order reduct B of (Z;<). The structures B and Q.B have the same
first-order theory; in particular, they satisfy the same pp-sentences. It follows that B and
Q.B have the same CSP. Let φ(x1, . . . , xk) be a first-order formula in the language of B.
This formula defines a relation R ⊆ Zk in B and a relation R′ ⊆ (Q.Z)k. One sees (for
example using quantifier elimination) that R = R′ ∩ Zk, i.e., the relations definable in
B are precisely the intersections of Z with relations defined in Q.B. The link between
endomorphisms of B and of Q.B is more complicated, and is covered in Section 5.

A partial type of a structure C is a set p of formulas with free variables x1, . . . , xn such
that p ∪ Th(C) is satisfiable (that is, {φ(c1, . . . , cn) : φ ∈ p} ∪ Th(C), for new constant
symbols c1, . . . , cn, has a model). A countable τ -structure B is saturated if for all choices
of finitely many elements a1, . . . , an in B, and every unary partial type p of (B, a1, . . . , an),
there exists an element b of B such that (B, a1, . . . , an) |= φ(b) for all φ ∈ p. When B and
C are two countable saturated structures with the same first-order theory, then B and C
are isomorphic [56, Theorem 8.1.8]. Note that (Q.Z;<) is saturated. More generally, Q.B
is saturated for every first-order reduct B of (Z;<).

We define the function − : (κ.Z)2 → (Z ∪ {∞}) for a, b ∈ κ.Z by

a− b := k ∈ Z if a = b+ k

a− b :=∞ otherwise.

Lemma 6.3 (See Lemma 2.1 in [17]). Let B be a countable saturated structure, let C be
countable, let d1, . . . , dk be elements of C, and let c1, . . . , ck be elements of B. Suppose that
for all pp-formulas φ such that C |= φ(d1, . . . , dk) we have B |= φ(c1, . . . , ck). Then there
exists a homomorphism from C to B that maps di to ci for all i ≤ k.

To classify the computational complexity of the CSP for all first-order reducts of a
structure B, it often turns out to be important to study the possible endomorphisms of
those reducts first, before studying the polymorphisms. This has for instance been the
case for the first-order reducts of (Q;<) in [23] and the first-order reducts of the countably
infinite random graph in [34].

We are now in the position to state a general fact, Theorem 6.4, whose proof might
explain the importance of saturated models for the universal-algebraic approach. Let B
be a structure with domain D. A relation R ⊆ Dk is said to be n-generated under End(B)
if there exist tuples t1, . . . , tn ∈ R such that for every t ∈ R, there exist e ∈ End(B) and
i ∈ {1, . . . , n} such that e(ti) = t. A universal negative formula is a first-order formula
without existential quantifiers where the negation symbol only appears before an atom,
and where all the atoms are negated.

Theorem 6.4. Let B be a countable saturated structure, let C be a first-order reduct of B,
and R a relation with a first-order definition in B. Then

• R has a first-order definition in C if and only if R is preserved by the automorphisms
of C;

• R has an existential positive definition in C if and only if R is preserved by all the
endomorphisms of C;
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• if R is n-generated under End(C), then R has a pp-definition in C if and only if R
is preserved by all polymorphisms of C of arity n.

Proof. Suppose that R is k-ary, and let φ be the first-order definition of R in B. We know
from Lemma 2.11 that first-order formulas are preserved by automorphisms of C, that
existential positive formulas are preserved by endomorphisms of C, and that pp-formulas
are preserved by polymorphisms of C. Therefore, only one implication is to be proved for
every item.

Suppose first that R is preserved by all automorphisms of C. Let φ be a first-order
definition of R in B. Let Ψ be the set of all first-order formulas in the language of C that
are consequences of R. Formally,

Ψ = {ψ(x1, . . . , xk) | ∀(a1, . . . , ak) ∈ R, C |= ψ(a1, . . . , ak)}.

We prove that if a tuple a satisfies every formula in Ψ then a is in R. Let a be such a tuple.
Let p be the type of a in C. By replacing in p every relation symbol of the signature of C
by a first-order definition of the corresponding relation in B, we obtain a set q of formulas
in the language of B. If we can find some tuple b that satisfies {φ} ∪ q in B, then we are
done. Indeed, we have that b is in R, and b has the same type as a in C. The fact that
a and b have the same type is equivalent to the fact that the structures (C, a) and (C, b)
have the same first-order theory. We stated above that two countable saturated structures
with the same first-order theory are isomorphic. Therefore, there exists an isomorphism
α : (C, b)→ (C, a). This isomorphism is an automorphism of C that maps b to a, so that a
is in R. So let us assume that {φ} ∪ q is not satisfiable in B. Since B is saturated, the set
{φ} ∪ q cannot possibly be a type. It follows that Th(B) ∪ q ∪ {φ} is not satisfiable. By
the compactness theorem of first-order logic, there exists a finite subset q′ of q such that
Th(B)∪ q′∪{φ} is not satisfiable. Note that q is closed under conjunctions of formulas, so
that the conjunction of all the formulas of q′ is a formula ψ in q. Therefore, Th(B)∪{φ, ψ}
is not satisfiable, i.e., we have Th(B) |= ∀x1, . . . , xk(φ(x1, . . . , xk) ⇒ ¬ψ(x1, . . . , xk)). By
construction, the formula ψ corresponds to a formula θ in the language of C. We obtain
that ¬θ is in Ψ, so ¬θ is in p. But θ ∈ p, a contradiction.

Suppose now that R is preserved by all endomorphisms of C. In particular R is pre-
served by all the automorphisms of C, so that there exists a first-order definition φ of R
in C. Let Ψ be the set of all universal negative consequences of R in C. Formally,

Ψ = {ψ(x1, . . . , xk) universal negative formula | ∀(a1, . . . , ak) ∈ R, C |= ψ(a1, . . . , ak)}.

As above, we aim to prove that if a satisfies all the formulas in Ψ, then a is in R. Let a be
such a tuple, and let now p be the ep-type of a, that is, the set of all the existential positive
formulas ψ such that C |= ψ(a). If p∪{φ} is satisfiable in C, then we are done: there exists
a tuple b ∈ R that has the same ep-type as a. Lemma 6.3 implies that there exists an
endomorphism of C that maps b to a, so that a is in R. If p∪{φ} is not satisfiable in C, there
exists a single formula ψ ∈ p such that B |= ∀x1, . . . , xk(φ(x1, . . . , xk)⇒ ¬ψ(x1, . . . , xk)).
To ψ corresponds an existential positive formula θ in the language of C. We obtain that
¬θ is equivalent to a formula in Ψ, so that a must satisfy ¬θ, contradicting the fact that
a already satisfies θ.

Finally, suppose that R is n-generated under End(C), and that R is preserved by all
polymorphisms of C of arity n. Let (b11, . . . , b

1
k), . . . , (b

n
1 , . . . , b

n
k) be n tuples of length k
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generating the relation R under End(C). Let Ψ be the set of all pp-formulas with free
variables x1, . . . , xk that hold on all these tuples, i.e.

Ψ = {ψ(x1, . . . , xk) pp-formula | ∀i ∈ {1, . . . , n}, C |= ψ(b̄i)}.

If a is in R, there exists by assumption an endomorphism e of C and an i ∈ {1, . . . , n}
such that e(b̄i) = a. Since pp-formulas are preserved by endomorphisms, the tuple
a satisfies every pp-formula that b̄i satisfies, so that in particular a satisfies Ψ. We
now prove the converse. If a satisfies Ψ, we have that every pp-formula that holds on
(b11, . . . , b

1
k), . . . , (b

n
1 , . . . , b

n
k) in Cn also holds on a. By Lemma 6.3 and saturation of C, there

exists a homomorphism from Cn to C that maps (b1i , . . . , b
n
i ) to ai for all i ∈ {1, . . . , k}.

This map is a polymorphism of C, and since R is preserved by polymorphisms of arity
n, (a1, . . . , ak) ∈ R. Therefore, a satisfies Ψ if and only if a ∈ R. Similarly as before, a
compactness argument for first-order logic over B shows that Ψ is equivalent to a single
pp-formula that is equivalent to φ.

6.3 Detailed Statement of the Results

In this section, we describe the border between the NP-complete and the polynomial-time
tractable discrete temporal CSPs.

Definition 6.4. Let d be a positive integer. The d-modular max, maxd : Z2 → Z, is
defined by maxd(x, y) := max(x, y) if x = y mod d and maxd(x, y) := x otherwise. The
d-modular min is defined analogously, with mind(x, y) = min(x, y) if x = y mod d and
mind(x, y) = x otherwise.

Note that maxd and mind are not commutative when d > 1. Also note that max1 =
max and min1 = min are the usual maximum and minimum operations. Examples of
relations which are preserved by max and which are definable over (Z;<) are the relations
appearing in the last item of Example 11. An example of a relation which is preserved by
maxd is the ternary relation containing the triples of the form

(a+ d, a, a), (a+ d, a+ d, a), (a, a+ d, a)

for all a ∈ Z. Note that for a fixed d, this relation is preserved by maxd but not by maxd′

for any other d′.

Theorem 6.5. Let B be a first-order reduct of (Z;<) with finite signature. Then there
exists a structure C such that CSP(C) equals CSP(B) and at least one of the following
cases applies.

1. C has a finite domain, and the CSP for B is in P or NP-complete (Theorem 2.5).

2. C is a reduct of (Q;<), and the complexity of CSP(C) has been classified in [23].

3. C is a reduct of (Z;<) and preserved by max or by min. In this case, CSP(C) is in
P.

4. C is a reduct of (Z; succ) such that C is preserved by a modular max or a modular
min, or such that Q.C is preserved by a binary injective function preserving succ. In
this case, CSP(C) is in P.
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5. CSP(B) is NP-complete.

As an illustration of the algorithmic consequences of our main result, we give examples
of computational problems that can be formulated as discrete temporal CSPs and are in
P.

Example 12. Fix positive integers d,C ≥ 1.
Input: A system of constraints of the form (x = y mod d and a ≤ x− y ≤ b)

where a, b ∈ Z are such that |a|, |b| ≤ C.
Question: Is the system satisfiable in Zn?

This problem can be seen as CSP(Z; DiffS1 , . . . ,DiffSk) where S1, . . . , Sk are all the sets
of the form {a, a + d, . . . , b} for a, b ∈ Z, |a|, |b| ≤ C, and d|(b − a). All the relations are
preserved by the d-modular maximum function, and thus Theorem 6.5 implies that this
CSP is in P.

Example 13. Consider the reduct (Z;R, succ) of (Z;<) where

R := {(x, y, z) ∈ Z | x ≤ max(y, z)}

The relations R and succ are preserved by the (regular) maximum function, and thus
Theorem 6.5 implies that this CSP is in P. The problem CSP(Z;R, succ) is easily seen
to be equivalent to the so-called Max-Atom problem [8] where numbers are represented in
unary, which is known to be in P; see Section 6.7.

6.4 Definability of Successor and Order

The goal of this section is a proof that the CSPs for first-order reducts of (Z;<) fall into
five classes. This will allow us to focus in later sections on first-order reducts of (Z;<)
where succ is pp-definable.

Theorem 6.6. Let B be a first-order reduct of (Z;<) with finite signature. Then CSP(B)
equals CSP(C) where C is one of the following:

1. a finite structure;

2. a first-order reduct of (Q;<);

3. a first-order reduct of (Z;<) where Distk is pp-definable for all k ≥ 1;

4. a first-order reduct of (Z;<) where succ and < are pp-definable;

5. a first-order reduct of (Z; succ) where succ is pp-definable.

The proof of this result requires some effort and spreads over the following subsections.
Before we go into this, we explain the significance of the five classes for the CSP.

The first class is known to exhibit a complexity dichotomy (Theorem 2.5). The CSPs
for first-order reducts of (Q;<) have been studied by Bodirsky and Kára [23]; they are
either in P or NP-complete. Hence, we are done if there exists a first-order reduct C of
(Q;<) such that CSP(C) = CSP(B). Several equivalent characterisations of those first-
order reducts B will be given in Section 6.4.4. This is essential for proving Theorem 6.6.

When B is a first-order reduct of (Z;<) where for all k ≥ 1 the relation Distk is pp-
definable, then CSP(B) is NP-complete; this is a consequence of Proposition 27 from [15],
restated here.
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Proposition 6.7. Suppose that the relations Dist1 and Dist5 are pp-definable in B. Then
CSP(B) is NP-hard.

The previous paragraphs explain why Theorem 6.6 indeed reduces the complexity
classification of CSPs for finite-signature first-order reducts B of (Z;<) to the case where
succ is pp-definable in B, which corresponds to the classes (4) and (5) of Theorem 6.6.

6.4.1 Degrees

We consider three notions of degree for relations R that are first-order definable in (Z;<):

• For x ∈ Z, we consider the number of y ∈ Z that appear together with x in a tuple
from R; this number is the same for all x ∈ Z, and called the Gaifman-degree of R
(it is the degree of the Gaifman graph of (Z;R)).

• The distance degree of R is the supremum of d such that there are x, y ∈ Z that
occur together in a tuple of R and |x− y| = d.

• The quantifier-elimination degree (qe-degree) of R is the minimal q so that there is
a quantifier-free definition φ of R, such that for every literal x ≤ y+ c in φ, we have
|c| ≤ q.

The degree of a first-order reduct of (Z;<) is the supremum of the degrees of its relations,
for any of the three notions of degree. The article [15] considered first-order reducts of
(Z; succ) with finite Gaifman-degree. Note that the Gaifman-degree is finite if and only if
the distance degree is finite. In this chapter, qe-degree will play the central role, as any
first-order reduct of (Z;<) with finite relational signature has finite qe-degree.

6.4.2 Compactness

In this section we present some results, based on applications of König’s tree lemma,
that show how properties of finite substructures of finite-signature first-order reducts B of
(Z;<) correspond to the existence of certain homomorphisms from B to Q.B.

Let (κ.Z;<) be a model of Th(Z;<), let S be any set, let s ∈ N, and f : S → κ.Z. We
say that x, y ∈ S are (f, s)-connected if there is a sequence x = u1, . . . , uk = y ∈ S so that
0 ≤ |f(ui) − f(ui+1)| ≤ s for all i ∈ {1, . . . , k − 1}. Note that this notion of connectivity
defines an equivalence relation on S whose equivalence classes are naturally ordered. We
define an equivalence relation ∼s on functions f, g : S → κ.Z as follows: f ∼s g when the
following conditions are met:

• x, y ∈ S are (f, s)-connected if and only if they are (g, s)-connected,

• if x, y ∈ S are (f, s)-connected (and therefore (g, s)-connected) then f(x) − f(y) =
g(x)− g(y),

• if x, y ∈ S are not (f, s)-connected then f(x) < f(y)⇔ g(x) < g(y).

In other words, f ∼s g iff the equivalence relations defined by (f, s)-connectivity and (g, s)-
connectivity have the same equivalence classes, are such that within each equivalence class
the pairwise distances are the same, and the order of the equivalence classes is the same.
This implies that if S is a finite set, there are only finitely many ∼s-equivalence classes of
functions S → κ.Z. Note that if f ∼s g and s′ ≤ s then we also have f ∼s′ g.
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Lemma 6.8 (Substitution Lemma). Let B be a first-order reduct of (Z;<) with qe-degree
q, and let C be a structure with the same signature as B and domain D. Let κ be a linearly
ordered set. Let f, g : D → κ.Z be such that f ∼q g. Then f is a homomorphism from C
to κ.B if and only if g is such a homomorphism.

Proof. Suppose that f is a homomorphism from C to κ.B. To prove that g is a homo-
morphism, it suffices to prove that g(a) < g(b) + c if and only if f(a) ≤ f(b) + c for all
a, b ∈ D and |c| ≤ q. This follows from the fact that every relation of B can be defined
from literals of the form x ≤ y + c with |c| ≤ q using conjunctions and disjunctions.
Let a, b ∈ D and suppose that f(a) ≤ f(b) + c. If a, b are (f, q)-connected, we have
g(b)− g(a) = f(b)− f(a) ≥ c whence g(a) ≤ g(b) + c. If a, b are not (f, q)-connected, we
have in particular |f(a)− f(b)| > q and |g(a)− g(b)| > q. This implies that if f(a) < f(b)
then g(a) < g(b) − q ≤ g(b) − |c| ≤ g(b) + c, so g(a) ≤ g(b) + c. On the other hand, if
f(b) < f(a) then f(b) + q < f(a). This gives q < f(a) − f(b) ≤ c, a contradiction to
|c| ≤ q.

Lemma 6.9. Let S be a subset of Q.Z and let (ai)i∈N be an enumeration of S. Let (Fi)i∈N
be a sequence of ∼s-equivalence classes of functions from {a0, . . . , ai} → Q.Z, for some
s ∈ N, such that g ∈ Fj and i < j imply that g|{a0,...,ai} ∈ Fi. Then there exists a function
h : S → Q.Z such that h|{a0,...,ai} ∈ Fi for all i and if x, y ∈ S are not (g, s)-connected for
any g ∈

⋃
i Fi, then h(x)− h(y) =∞.

Proof. We first outline the strategy of the proof. We build the function h as a set-theoretic
union of functions hi : {a0, . . . , ai} → Q.Z. We force that at each step i, the function hi is
in Fi and satisfies hi(ak)− hi(al) <∞ if and only if (ak, al) are (g, s)-connected for some
j ≥ i and some g ∈ Fj . The technicality of the proof comes from the fact that although
we build the functions hi by induction, we have to look ahead before choosing whether
two points have to be mapped to different copies of Z in Q.Z and to which copy they can
be mapped.

We define the function h by induction. We require that at each step, the function
hi : {a0, . . . , ai} → Q.Z that we define is in Fi and

• whenever a, b ∈ {a0, . . . , ai} are not (g, s)-connected for any function g in some Fj ,
then hi(a)− hi(b) =∞, and

• if a, b ∈ {a0, . . . , ai} are (g, s)-connected for some function g ∈ Fj , then hi(a) −
hi(b) = g(a)− g(b).

For i = 0, let h0 be any function in F0. Suppose now that hi has been defined, and
let hi+1(ak) := hi(ak) for k ∈ {0, . . . , i}. Let g ∈ Fj be such that for every pair ak, al ∈
{a0, . . . , ai+1}, if there exist j′ ≥ 0 and g′ ∈ Fj′ such that (ak, al) are (g′, s)-connected, then
(ak, al) are (g, s)-connected: such a function exists, by taking j sufficiently large so that
{a0, . . . , aj} contains all the elements that witness that ak, al are (g′, s)-connected for some
g′. From the induction hypothesis and the assumptions, we know that hi ∼s g|{a0,...,ai}.
Define hi+1(ai+1) as follows:

1. If there exists k ∈ {0, . . . , i} such that ai+1 and ak are (g, s)-connected. Define
hi+1(ai+1) := hi(ak)− g(ak) + g(ai+1). This first case is depicted in Figure 6.1.
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h8

h9

a1 a2 a3 a4 a5 a6 a7 a8 a9

Figure 6.1: Illustration for item (1) of the proof of Lemma 6.9. We consider the case
i = 8. The domain of h8 is depicted above, and the copies of Z intersecting the image
of h8 are depicted below. Here, the image of h8 intersects two copies of Z. The colours
represent equivalence classes of (g, s)-connectedness, where g is a function of some Fj that
connects all the points of {a1, . . . , a9} that eventually become connected. Since a9 is in
the same class as some previous point, we are in case (1) of the construction. Supposing
that g(a9) = g(a8) + 3, we build h9 by setting h9(a9) = h9(a8) + 3.

2. Otherwise consider the sets

U := {u ∈ Q | ∃k ∈ {0, . . . , i} : g(ak) < g(ai+1) and hi(ak) ∈ u.Z}

and
V := {v ∈ Q | ∃k ∈ {0, . . . , i} : g(ai+1) < g(ak) and hi(ak) ∈ v.Z} .

We have U < V . Indeed, let u ∈ U , v ∈ V , and let k, l ∈ {0, . . . , i} be such that
hi(ak) ∈ u.Z with g(ak) < g(ai+1) and hi(al) ∈ v.Z with g(ai+1) < g(al). Since ai+1

is not (g, s)-connected to some element of {a0, . . . , ai}, we have that ak and al are
not (g, s)-connected. By construction, we therefore have that hi(ak) − hi(al) = ∞.
Since ak and al are not (g, s)-connected and since g(ak) < g(al), we have that
hi(ak) < hi(al). It follows that u < v. Thus, there exists r ∈ Q such that U < r < V .
Define hi+1(ai+1) := (r, 0). The situation is depicted in Figure 6.2.

We now prove that the induction hypothesis remains true for hi+1. We claim that hi+1 ∼s
g|{a0,...,ai+1}. Remember that we already know that hi ∼s g|{a0,...,ai} since hi ∈ Fi by
induction and g ∈ Fj for j > i. Let aj ∈ {a0, . . . , ai}. If hi+1(ai+1) is at finite distance
from hi+1(aj), then by definition aj , ai+1 are (g, s)-connected. Let k ∈ {0, . . . , i} be the
index used in the definition of hi+1. We then have

hi+1(ai+1)− hi+1(aj)

= hi(ak)− g(ak) + g(ai+1)− hi(aj)
= g(ak)− g(aj)− g(ak) + g(ai+1) (since hi(ak)− hi(aj) = g(ak)− g(aj))

= g(ai+1)− g(aj).

It follows that ai+1, aj are (hi+1, s)-connected iff they are (g|{a0,...,ai+1}, s)-connected.
If hi+1(ai+1) and hi+1(aj) are at infinite distance, then ai+1, aj are neither (hi+1, s)-
connected nor (g, s)-connected. Then hi+1(ai+1) < hi+1(aj) ⇔ g(ai+1) < g(aj) from

102



Chapter 6. The Complexity of Discrete Temporal CSPs

the construction of U and V . It follows that hi+1 ∼s g|{a0,...,ai+1}. Moreover, hi+1

indeed separates integers that are never (g, s)-connected for any g ∈ Fj . Finally, if
g′ ∈ Fj′ is such that a, b are (g′, s)-connected then a and b are also (g, s)-connected and
g′(a)− g′(b) = g(a)− g(b). This proves that hi+1 satisfies the induction hypothesis. Then
h :=

⋃
i≥0 hi satisfies the conclusion of the statement.

The two previous lemmas will be applied frequently; one application is in the proof of
the following proposition. Note that this makes essential use of the saturated model.

Proposition 6.10. Let B be a finite-signature first-order reduct of (Z;<). Then for all
a1, a2 ∈ Z either

• there is an r ≥ 0 and a finite S ⊆ Z that contains {a1, a2} such that for all homo-
morphisms f from B[S] to B we have |f(a1)− f(a2)| ≤ r, or

• there is a homomorphism h from B to Q.B such that h(a1)− h(a2) =∞.

Proof. Let a1, a2 ∈ Z be arbitrary. Suppose that for all r ≥ 0 and all finite S ⊂ Z
containing {a1, a2} there is a homomorphism f from B[S] to B such that |f(a1)−f(a2)| > r.
We will describe how to construct the desired homomorphism h.

Let a1, a2, a3, . . . be an enumeration of Z, and let q be the qe-degree of B. Consider
the following infinite tree T whose vertices lie on levels 1, 2, . . . The vertices at the n-th
level are the ∼q-equivalence classes of homomorphisms f from B[{a1, . . . , an+1}] → Q.B
such that a1, a2 are not (f, q)-connected (note that by Lemma 6.8, every element in the
equivalence class of such a homomorphism is also a homomorphism). We have an arc in
T from an equivalence class F on level n to an equivalence class G on level n+ 1 if there
are f ∈ F , g ∈ G such that f is the restriction of g. By assumption, T has vertices on
each level n: indeed, at level n it suffices to take an f such that |f(a1)− f(a2)| > qn, and

h8

h9

a1 a2 a3 a4 a5 a6 a7 a8 a9

Figure 6.2: Illustration for item (2) of the proof of Lemma 6.9. Here, a9 is not in the same
equivalence class as any of the previous points. Assume that g(a8) < g(a9) < g(a4). We
then find a copy of Z between the copies containing h8(a8) and h8(a4) and not containing
any points of the image of h8. We set h9(a8) to be an arbitrary point in this new copy.
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such an f exists by assumption. The tree T has finitely many vertices on each level, since
the number of ∼q-equivalence classes of homomorphisms from B[{a1, . . . , an}] → Q.B is
finite.

It follows by König’s lemma that there is an infinite branch B of T . By Lemma 6.9
applied with S := Z and ` := q and using the elements of B for the sequence (Fi)i∈N,
there exists a function h : Z→ Q.Z such that h|{a1,...,ai} is in the branch B for every i ∈ N,
and h(a1)− h(a2) =∞ (since a1, a2 are not connected by any function in the branch B).
Finally, h is a homomorphism B → Q.B by Lemma 6.8.

Definition 6.5. A mapping h : κ1.Z→ κ2.Z is called isometric if |h(x)− h(y)| = |x− y|
for all x, y ∈ κ1.Z.

The following proposition can be shown by straightforward modifications of the proof
of Proposition 6.10.

Proposition 6.11. Let B be a finite-signature first-order reduct of (Z;<). Then either

• for every r ∈ N there is a finite S ⊆ Z containing {0, r} such that for all homomor-
phisms f from B[S] to B we have |f(0)− f(r)| = r, or

• there is a homomorphism h from B to Q.B which is not isometric.

6.4.3 Finite-range Endomorphisms

In this section we present a lemma that gives a useful sufficient condition for B to have
endomorphisms with finite range. Note that B has a finite-range endomorphism if and
only if there exists a finite structure C such that CSP(B) = CSP(C). We need the following
combinatorial definitions and lemmas about the integers.

We say that T ⊆ Z contains arbitrarily long intervals when for every m ∈ N there
exists z ∈ Z so that [z, z +m] ⊂ T . A sequence u1, . . . , ur is called a (≤m)-progression if
1 ≤ ui+1 − ui ≤ m for all i < r. We say that T has arbitrarily long (≤m)-progressions if
for every r ∈ N the set T contains a (≤m)-progression u1, . . . , ur. Clearly, if Z \ T does
not have arbitrarily long intervals then there exists an m ∈ N so that T has arbitrarily
long (≤m)-progressions.

Lemma 6.12. Let T ⊆ Z contain arbitrarily long (≤m)-progressions, and let T = T1 ∪
· · · ∪ Tk be a partition of T into finitely many sets. Then there exists an i ≤ k and an
m′ ∈ N such that Ti contains arbitrarily long (≤m′)-progressions.

Proof. If there exists an m′ ∈ N such that T1 contains arbitrarily long (≤m′)-progressions,
then there is nothing to show. So suppose that this is not the case.

We will show that T ′ := T \ T1 contains arbitrarily long (≤m)-progressions; the state-
ment then follows by induction. Let s ∈ N be arbitrary. We want to find a (≤m)-
progression u1, . . . , us in T ′. By the above assumption, T1 does not contain arbitrarily
long (≤ms)-progressions, and hence there exists an r such that T1 does not contain a
(≤ms)-progression of length r.

Since T contains arbitrarily long (≤m)-progressions, it contains in particular an (≤m)-
progression ρ of length msr. Consider the first s elements of ρ. If all those elements are
in T ′ we have found the desired (≤m)-progression of length s, and are done. So suppose
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otherwise; that is, at least one of those first s elements must be from T1. We apply the
same argument to the next s elements of ρ, and can again assume that at least one of those
elements must be from T1. Continuing like this, we find a subsequence of ρ of elements
of T1 which form a (≤ms)-progression. The length of this subsequence is msr/ms = r.
But this contradicts our assumption that T1 does not contain (≤ms)-progression of length
r.

Lemma 6.13. Let m ∈ N and let T ⊆ Z be with arbitrarily long (≤m)-progressions.
Then for all S ⊂ Z of cardinality m + 1 there are x1, x2 ∈ S and y1, y2 ∈ T such that
x1 − x2 = y1 − y2.

Proof. Let r be greater than max(S) − min(S). Then there exists an (≤m)-progression
w1, . . . , wr in T . Define Ti := {z−w1 + min(S) + i | z ∈ T}. Then T0∪· · ·∪Tm−1 includes
the entire interval [min(S),max(S)]. By the pigeon-hole principle there is an i such that
|Ti ∩ S| ≥ 2, which clearly implies the statement.

Lemma 6.14. Let B be a finite-signature first-order reduct of (Z;<) and h a homomor-
phism from B → Q.B. Let S ⊆ Z be finite and z0 ∈ Z. If (Z \ h−1(S)) ∩ {z ∈ Z : z ≥ z0}
does not contain arbitrarily long intervals then B has a finite-range endomorphism.

Proof. Since (Z \ h−1(S)) ∩ {z ∈ Z : z ≥ z0} does not contain arbitrarily long intervals,
there exists an m′ ∈ N such that T := h−1(S) contains arbitrarily long (≤m′)-progressions.
Suppose that S = {s1, . . . , sk}, and define Ti := h−1(si) for i ∈ {1, . . . , k}. Then by
Lemma 6.12 there exists an m ∈ N and an i ≤ k such that Ti contains arbitrarily long
(≤m)-progressions.

Our argument is based on König’s tree lemma, involving the finitely branching infi-
nite tree T defined similarly as in the proof of Proposition 6.10. Let a0, a1, . . . be an
enumeration of Z, and let q be the qe-degree of B. The vertices of T on the n-th level
are the ∼q-equivalence classes of homomorphisms g from B[{a0, . . . , an}] to B such that
|g({a0, . . . , an})| ≤ m. Adjacency is defined by restriction, and T is finitely branching, as
in the proof of Proposition 6.10.

We show that T has vertices on all levels n by induction on n. We prove that for any
finite X ⊂ Z there exists a homomorphism g : B[X]→ B whose range has size at most m.
For |X| ≤ m, this is witnessed by the restriction of the identity function to X. Now let
|X| = n + 1 for n ≥ m. By Lemma 6.13, there are x1, x2 ∈ X and y1, y2 ∈ Ti such that
x1 − x2 = y1 − y2. We therefore have that f : x 7→ h(x − x1 + y1) is a homomorphism
B[X] → Q.B whose range has size at most n. Indeed, we have f(x1) = h(y1) = h(y2) =
h(x2 − x1 + y1) = f(x2). Let g be given by the induction hypothesis applied to the image
of f . We then have that g ◦ f is a homomorphism B[X]→ B whose range has size at most
m, and the claim is proved.

Hence, T has vertices on all levels, and therefore an infinite branch B by König’s
lemma. By Proposition 6.9 applied to this infinite branch, S := Z, and ` := q there exists
a function h : Z→ Q.Z such that h|{a0,...,ai} ∈ B for all i ∈ N. In particular, the range of h
has size at most m. Up to ∼q-equivalence, we can assume that the image of h lies in one
copy of Z in Q.Z, say in Z. Then Lemma 6.8 implies that h is a homomorphism e : B → B
whose range has cardinality at most m, concluding the proof.

The next lemma is an important consequence of Lemma 6.14.
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Lemma 6.15. Let B be a finite-signature first-order reduct of (Z;<) without finite-range
endomorphisms, ` ∈ N, and h a homomorphism from B to Q.B. Then there exists an
e ∈ End(Q.B) such that for all x, y ∈ Q.Z with x− y =∞ we have e(x)− e(y) =∞, and
such that h ∼` e|Z.

Proof. We first give an idea about the proof. Since B does not have finite-range endomor-
phisms, we know from the previous lemma that the preimage of any finite subset of Q.Z
under h leaves arbitrarily large gaps in Z. It follows that for every finite subset S of Q.Z,
there exists a homomorphism p : Q.B[S] → B such that h ◦ p does not connect any pair
of integers that sit in different copies. Since we have such homomorphisms for arbitrarily
large finite subsets S ⊂ Q.Z, an application of König’s lemma and Lemma 6.9 give the
desired endomorphism of Q.B.

We now give the detailed argument. Note that if h ∼`′ g and ` < `′, then h ∼` g. It
follows that without loss of generality, we can assume that ` is greater than the qe-degree
of B. As in the proof of Proposition 6.10, we build e through an argument involving
König’s lemma and an infinite tree T . Let a1, a2, . . . be an enumeration of Q.Z. For the
n-th level of T we will consider ∼`-classes of homomorphisms f from Q.B[{a1, . . . , an}] to
Q.B with the property that

• for all x, y ∈ {a1, . . . , an} with x− y =∞ the elements x, y are not (f, `)-connected,
and

• f |{a1,...,an} ∼` h|{a1,...,an}.

Adjacency is defined by restriction as in the proof of Proposition 6.10.
The only difficulty of the proof is to show that T has vertices on all levels n. We

will first construct a homomorphism p from Q.B[{a1, . . . , an}] to B with the property
that p(ai) = ai for ai in the domain of h, and if ai − aj = ∞ for i, j ≤ n, then p(ai)
and p(aj) are not (h, `)-connected. Let S be the set of points that are at distance at
most ` from some a1, . . . , an. Let S1 ∪ · · · ∪ Sk be the partition of S induced by the
copies of Z in Q.Z, that is, S1, . . . , Sk are pairwise disjoint and each Si only contains
points that lie in the same copy of Z in Q.Z. Suppose without loss of generality that
S1 < · · · < Sm−1 < Sm < Sm+1 < · · · < Sk and that Sm ⊂ Z, the standard copy in Q.Z.
For every i ∈ {1, . . . , k}, let si and ti be the minimal and the maximal element of Si,
respectively. The situation is represented in Figure 6.3.

For the elements x ∈ Sm we set p(x) := x. Let Qm = {z ∈ Q.Z | ∃z′ ∈ Sm :
|h(z′) − z| ≤ `}. Write S′m for h−1(Qm). If Z \ S′m ∩ {z | z > tm} does not contain
arbitrarily long intervals, then B has a finite-range endomorphism by Lemma 6.14, contrary
to our assumptions. So there exists a zm ∈ Z greater than tm such that [zm, zm + tm+1 −
sm+1 + 2`] ∩ S′m = ∅. For x ∈ Sm+1, we set p(x) := x − sm+1 + zm + `. The mapping
is illustrated in Figure 6.4. As above, set Qm+1 to be the set of points that are at
distance at most ` from a point in h(p(Sm ∪Sm+1)). Now, set S′m+1 := h−1(Qm+1). Then
there exists a zm+1 ∈ Z such that [zm+1, zm+1 + tm+2 − sm+2 + 2`] ∩ S′m+1 = ∅. For
x ∈ Sm+2, we set p(x) := x − sm+2 + zm+1 + `. Continuing in this way, we define p
for all x ∈ {a1, . . . , an} (the construction for i < m is symmetric). We have that p is a
homomorphism Q.B[{a1, . . . , an}] → B since it is ∼`-equivalent to the identity function
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s3 t3

s2 t2

s1 t1

Figure 6.3: Illustration of the proof of Lemma 6.15. Here, k = 3, ` = 1 and m = 2. The
nodes coloured in red (light grey) are the integers in S1, S2, S3. The nodes coloured in
blue (dark grey) are the integers in S′2 \ S2, that is, the integers that are mapped under h
to integers near h(S2). The assumption that B does not have finite-range endomorphisms
guarantees that there are arbitrarily long intervals of white nodes in the middle line, both
on the left of s2 and the right of t2.

on Q.Z[{a1, . . . , an}]. Observe that by construction of p, when ai − aj = ∞, then ai, aj
are not (h ◦ p, `)-connected. Therefore the ∼q-equivalence class of h ◦ p is a vertex of T on
level n.

s3 t3

s2 t2

s1 t1

p

Figure 6.4: Illustration of the proof of Lemma 6.15, after the first step of the construction.
The blue nodes (light grey) are now the integers in S′3 that are not in S2 or in p(S3), that
is, the integers that are mapped by h to integers near h(S2 ∪ p(S3)).

The tree T is finitely branching, and by König’s lemma it contains an infinite branch B.
By Lemma 6.9 applied to this branch, S := Q.Z, and ` as in the statement of Lemma 6.15
there exists a function e : Q.Z→ Q.Z such that e|{a1,...,ai} ∈ B for all i ∈ N and if x−y =∞
then e(x) − e(y) = ∞. By Lemma 6.8, e is an endomorphism of Q.B. We also have that
e|Z ∼` h and hence e has the required properties.

6.4.4 Petrus

The following theorem is the rock upon which we build our church.
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Theorem 6.16 (Petrus ordinis). Let B be a first-order reduct of (Z;<) with finite re-
lational signature and without an endomorphism of finite range. Then the following are
equivalent:

(1) there exists a first-order reduct C of (Q;<) such that CSP(C) equals CSP(B);

(2) for all t ≥ 1, there is an e ∈ End(Q.B) and z ∈ Q.Z such that |e(z + t)− e(z)| > t;

(3) all binary relations with a pp-definition in Q.B are either empty, the equality relation,
or have unbounded distance degree;

(4) for all distinct z1, z2 ∈ Z there is a homomorphism h : B → Q.B such that h(z1) −
h(z2) =∞;

(5) for all distinct z1, z2 ∈ Z there is an e ∈ End(Q.B) such that e(z1)− e(z2) =∞; and
for all z′1, z

′
2 ∈ Q.Z with z′1 − z′2 =∞ we have e(z′1)− e(z′2) =∞;

(6) there exists an e ∈ End(Q.B) with infinite range such that e(x)− e(y) =∞ or e(x) =
e(y) for any two distinct x, y ∈ Q.B.

Proof. Throughout the proof, let q be the qe-degree of B, which is finite since B has a
finite signature.

(1)⇒ (2). Since C has the same CSP as B, and C is ω-categorical, Lemma 3.1.5 in [11])
states that there is a homomorphism f from the countable structure Q.B to C. Lemma 6.3
asserts the existence of a homomorphism g from C to Q.B, because every pp-sentence that
is true in C is also true in Q.B, and Q.B is saturated.

Let t ≥ 1. It is not possible that f(z) = f(z+ t) for all z ∈ Q.Z, for otherwise B would
have a finite-range endomorphism. Indeed, we can restrict g ◦ f to a homomorphism B →
Q.B whose range is finite. We can then construct a function e : Z→ Q.Z such that g◦f ∼q e
and such that the range of e is contained in Z. This e would then be an endomorphism
of B by Lemma 6.8, a contradiction. Pick a z ∈ Q.Z such that f(z) 6= f(z + t). The
range of g is infinite, for otherwise the range of g ◦ f would be finite. Thus, there are two
rationals p 6= p′ such that |g(p) − g(p′)| > t. Let α be an automorphism of C that maps
{f(z), f(z+t)} to {p, p′}. We now have |(g◦α◦f)(z+t)−(g◦α◦f)(z)| = |g(p)−g(p′)| > t.

(2) ⇒ (3). Let R be a binary relation with a pp-definition in Q.B. Suppose that R
is not empty and is not the equality relation. Let k be the supremum of the integers t
such that there exists (z1, z2) ∈ R with |z1 − z2| = t. Since R is neither empty nor the
equality relation, it follows that k is positive. If k is∞, then R has infinite distance degree.
Otherwise let (z1, z2) be a pair in R such that |z1 − z2| = k. Let e be an endomorphism
of Q.B and z be such that |e(z + k) − e(z)| > k. Let α be an automorphism of Q.B
that maps {z1, z2} to {z, z + k}. Then (e ◦ α)(z1, z2) is in R since R is preserved by the
endomorphisms of Q.B and by construction |(e ◦α)(z1)− (e ◦α)(z2)| > k, a contradiction
to the choice of k.

(3) ⇒ (4). Suppose that (4) does not hold, that is, there are distinct a1, a2 ∈ Z such
that for all homomorphisms h from B to Q.B we have that h(a1)− h(a2) < ∞. Then by
Proposition 6.10 there is an r ≥ 0 and a finite S ⊆ Z containing {a1, a2} such that for all
homomorphisms f : B[S] → B we have |f(a1) − f(a2)| ≤ r. Now consider the following
pp-formula φ: the variables of φ are the elements of S, all existentially quantified except
a1 and a2, which are free. The formula φ contains the conjunct R(x1, . . . , xn) for a relation

108



Chapter 6. The Complexity of Discrete Temporal CSPs

R from B if and only if B[S] |= R(x1, . . . , xn). Then φ defines a binary relation, which has
bounded distance degree by the previous discussion, and which is not the equality relation
since it contains the pair (a1, a2).

(4) ⇒ (5). Let z1, z2 ∈ Z be distinct, let h be given by item (4), and let e be given
by Lemma 6.15 applied to h for ` := q. Pick any function p : e(Q.Z) → Q.Z such that
if x, y ∈ Q.Z are not (e, q)-connected then (p ◦ e)(x) − (p ◦ e)(y) = ∞ and such that
p ∼q id. It is clear that such a function exists because (Q;<) embeds all countable linear
orders. Indeed, consider the equivalence relation on e(Q.Z) where x ∼ y if there are
x := u1, . . . , uk =: y ∈ e(Q.Z) such that |ui − ui+1| ≤ q for all i ∈ {1, . . . , k − 1}. The
equivalence classes induced by this relation are naturally ordered by setting ρ < π if for
all x ∈ ρ, y ∈ π, we have x < y. There are at most countably many equivalence classes,
hence there exists an increasing function f from the set of equivalence classes to Q. We let
p(a, z) := (f(ρ), z) where ρ is the equivalence class of (a, z). Then we have that p ∼q id,
and this implies that p◦e ∼q e so that p◦e is an endomorphism of Q.B by the substitution
lemma. Moreover, p is such that x− y =∞⇒ (p ◦ e)(x)− (p ◦ e)(y) =∞. Finally, z1 and
z2 are not (e, q)-connected because e|Z ∼q h, so that (p ◦ e)(z1)− (p ◦ e)(z2) =∞.

(5) ⇒ (6). Again an argument based on König’s tree lemma. Let a1, a2, . . . be an
enumeration of Q.Z. Let T be a tree whose vertices on the n-th level are the ∼q-equivalence
classes of homomorphisms g from Q.B[{a1, . . . , an}] to Q.B such that for all i, j ≤ n either
ai and aj are not (g, q)-connected or g(ai) = g(aj). Adjacency of vertices is defined
by restriction between representatives. We have to show that the tree has vertices on all
levels. Let {u1, v1}, . . . , {uk, vk} be an enumeration of all 2-element subsets of {a1, . . . , an}.
We will show by induction on i ≥ 0 that there exists an endomorphism fi such that
fj(uj) − fj(vj) = ∞ or fj(uj) = fj(vj) for all j ≤ i. The statement is trivial for i =
0. So suppose we have already found fi for some i ≥ 0, and want to find fi+1. If
fi(ui+1)− fi(vi+1) = ∞ or fi(ui+1) = fi(vi+1) then there is nothing to show. Otherwise,
let α be an automorphism of Q.B that maps fi(ui+1) and fi(vi+1) to Z. By (5), there
exists an e ∈ End(Q.B) such that e(α(fi(ui+1)))− e(α(fi(vi+1))) =∞, and such that for
all x, y ∈ Q.Z with x− y =∞ we have that e(x)− e(y) =∞. Hence, fi+1 := e ◦α ◦ fi has
the desired property. The tree T has finitely many vertices on each level and hence must
contain an infinite branch, which gives rise to an endomorphism of Q.B by Lemmas 6.9
and 6.8.

(6)⇒ (1). Let C be the structure induced by Q.B on the image of the endomorphism
e whose existence has been asserted in (6). The structures C and B have the same CSP.
Note that a literal x ≤ y+k for k ∈ Z is true in C iff x ≤ y is true. Therefore the relations
of C are definable with quantifier-free formulas using only x < y and x = y. It follows that
C has the same CSP as a first-order reduct of (Q;<).

6.4.5 Boundedness and rank

Let B be a finite-signature first-order reduct of (Z;<) without a finite-range endomor-
phism. Theorem 6.16 (Petrus) characterized the “degenerate case” when CSP(B) is the
CSP for a first-order reduct of (Q;<). For such B, as we have mentioned before, the com-
plexity of the CSP has already been classified. In the following we will therefore assume
that the equivalent items of Theorem 6.16, and in particular, item (2), do not apply. To
make the best use of those findings, we introduce the following terminology.
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Definition 6.6. Let k ∈ N+, c ∈ N. A function e : κ1.Z→ κ2.Z is (k, c)-bounded if for all
u ∈ κ1.Z we have |e(u+ k)− e(u)| ≤ c .

We say that e is tightly-k-bounded if it is (k, k)-bounded, and k-bounded if it is (k, c)-
bounded for some c ∈ N. For given k, c, we say that κ.B is (k, c)-bounded (resp. k-bounded,
tightly-k-bounded) if all its endomorphisms are. We call the smallest t such that κ.B is
tightly-t-bounded the tight rank of κ.B. Similarly, we call the smallest r such that κ.B is
r-bounded the rank of κ.B.

The negation of item (2) in Theorem 6.16 says that there exists a t ∈ N such that Q.B
is tightly-t-bounded. Clearly, being tightly-t-bounded implies being t-bounded. Hence,
the negation of item (2) in Theorem 6.16 also implies that Q.B has finite rank r ≤ t.
Example 14. For p > 0, the structure (Z; succp) of Example 11 (1) has rank and tight
rank equal to p. The structure (Z; succ2,Diff{−2,−1,0,1,2}) of Example 11 (3) is an example
whose rank is 1 and whose tight rank is greater (it is equal to 2).

Sections 6.4.5 and 6.4.5 are devoted to proving that one can replace B by another
first-order reduct C of (Z;<) which has the same CSP and such that Q.C has both rank
one and tight rank one.

Example 15. There are rank one first-order reducts of (Z;<) which do have non-injective
endomorphisms, but no finite-range endomorphisms. Consider the third structure in Ex-
ample 11:

B := (Z; succ2,Diff{−2,−1,0,1,2}) .

Note that B has rank one: as every endomorphism e preserves the relation Diff{−2,−1,0,1,2}
we have |e(x + 1) − e(x)| ≤ 2. Also note that B has the non-injective endomorphism e
defined by e(x) = x for even x, and e(x) = x+ 1 for odd x.

Corollary 6.17. Let B be a finite-signature reduct of (Z;<) without finite-range endo-
morphisms. Then Q.B has finite rank if and only if Q.B has finite tight rank.

Proof. We have just seen that having finite tight rank implies having finite rank. Con-
versely, when Q.B has finite rank, then item (5) in Theorem 6.16 is false. Then The-
orem 6.16 implies that item (2) is false, too, which is to say that Q.B has finite tight
rank.

We also make the following important observation.

Lemma 6.18. Let B be a finite-signature reduct of (Z;<) without finite-range endomor-
phisms and such that Q.B has finite rank r. Then there exists a c ≥ 0 such that every
e ∈ End(B) is (r, c)-bounded.

Proof. Let a1 < a2 be two integers at distance r. We know from the negation of item
(4) in Theorem 6.16 that every homomorphism h : B → Q.B satisfies h(a1)− h(a2) <∞.
Proposition 6.10 gives a c ≥ 0 and a finite S ⊂ Z containing a1, a2 such that every homo-
morphism f : B[S]→ B satisfies |f(a1)− f(a2)| ≤ c. In particular, every endomorphism f
of B also satisfies this.

To prove that every endomorphism of B is (r, c)-bounded, let now f ∈ End(B) and
a ∈ Z. Let α be the automorphism of (Z;<) that maps a1 to a. By the paragraph
above applied to the endomorphism f ◦ α, we have |(f ◦ α)(a1) − (f ◦ α)(a2)| ≤ c, i.e.,
|f(a)− f(a+ r)| ≤ c. This proves that f is (r, c)-bounded.
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The next lemma connects the rank and the tight rank of a structure and its countable
saturated extension.

Lemma 6.19. Let B be a first-order reduct of (Z;<) with finite relational signature such
that Q.B has rank r and tight rank t. Then B has rank r′ ≤ r and tight rank t′ ≤ t.

Proof. Let f be an endomorphism of B, and let a ∈ Z. Let ` = max{|f(a+ r)− f(a)|, q}.
We view f as a homomorphism B → Q.B and find an endomorphism e of Q.B such that
e|Z ∼` f by Lemma 6.15. There exists a c > 0 such that the endomorphism e is (r, c)-
bounded, by assumption on Q.B. This gives |f(a+ r)− f(a)| = |e(a+ r)− e(a)| ≤ c, i.e.,
f is (r, c)-bounded. Therefore, every endomorphism of B is r-bounded and B has finite
rank r′ ≤ r. We prove similarly that every endomorphism of B is tightly-t-bounded, which
implies that B has finite tight rank t′ ≤ t.

The rank one case

The main result of this section, Theorem 6.28, implies that for each rank one first-order
reduct B of (Z;<) without finite range endomorphisms there exists a first-order reduct
C of (Z;<) which has the same CSP as B and where succ is pp-definable, or for all
k ≥ 1 the relation Distk is pp-definable. By Theorem 6.4, it suffices to show that the
endomorphisms of Q.C preserve succ, or that the endomorphisms of Q.C preserve Distk and
Distk is 1-generated under End(Q.C). The endomorphisms of B are better behaved than
the endomorphisms of Q.B, as the latter endomorphisms can exhibit different behaviours
in each copy of Z, and can collapse copies, whereas the former endomorphisms are more
uniform, as we will show below. Theorem 6.27 is the first milestone in our strategy, as it
allows us to replace B with a first-order reduct C of (Z;<) such that Q.C has tight rank
one.

Lemma 6.20. Let e : Z → Z be tightly-t-bounded and (1, c)-bounded for some c, t ∈ N.
Then for all n ∈ N, and z ∈ Z, |e(z + n)− e(z)| ≤ n+ ct .

Proof. Let n = pt + k for 0 ≤ k < t. We have |e(z + pt + k) − e(z + pt)| ≤ kc by k
applications of (1, c)-boundedness, and |e(z + pt) − e(z)| ≤ pt by p applications of tight
rank t. We obtain

|e(z + n)− e(z)| ≤ |e(z + pt+ k)− e(z + pt)|+ |e(z + pt)− e(z)|
≤ kc+ pt = n+ c(k − 1) ≤ n+ ct

by the triangle inequality.

The following can be shown by the same proof as the proof of Lemma 6 in [15]; since
our statement is more general, and since we use rank and tight rank instead of bounded
distance degree, we still give the proof here for the convenience of the reader.

Lemma 6.21. Let e : Z → Z be tightly-t-bounded and (1, c)-bounded. Then either {e} ∪
Aut(Z;<) locally generates a function with finite range, or there exists k > ct + 1 such
that for all x, y ∈ Z with |x− y| = k we have |e(x)− e(y)| ≥ k.
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Proof. Assume for all k > ct+ 1 there are x, y ∈ Z with |x− y| = k and |e(x)− e(y)| < k.
We will prove that e locally generates a function with range of size at most 2ct + 1. We
again use an argument based on König’s tree lemma, albeit with a different flavour than
in the previous proofs. Enumerate Z as a1, a2, . . . . The vertices of the tree on level n are
the functions h : {a1, . . . , an} → Z generated by {e}∪Aut(Z;<) such that the diameter of
the image of h is bounded above by 2ct+ 1 and such that h(a1) = 0. The edges of the tree
between the levels n and n + 1 are defined by function restriction. The condition on the
diameter of the image of h implies that the tree is finitely branching, and we now prove
that the tree is infinite.

LetA ⊆ Z be a finite set. Enumerate the pairs (x, y) ∈ A2 with x < y by (x1, y1), . . . , (xr, yr).
Let m be the smallest number with the property that F := {e} ∪ Aut(Z;<) generates a
function h1 such that |h1(x1) − h1(y1)| = m. We claim that m ≤ ct + 1. Otherwise, by
assumption there are x, y ∈ Z with |x − y| = m and |e(x) − e(y)| < m. Let a be the
automorphism of (Z;<) such that a({h1(x), h1(y)}) = {x1, y1}. Then F also generates
h′1 := e◦a◦h1, but |h′1(x1)−h′1(y1)| < m in contradiction to the choice of m. We conclude
that F generates a function h1 such that |h1(x1)− h1(y1)| ≤ ct+ 1.

Similarly, there exists h2 generated by F such that |h2(h1(x2))− h2(h1(y2))| ≤ ct+ 1.
Continuing like this we arrive at a function hr generated by F such that

|hrhr−1 · · ·h1(xr)− hrhr−1 · · ·h1(yr)| ≤ ct+ 1.

Now consider h := hr ◦ · · · ◦ h1. Set fj := hr ◦ · · · ◦ hj+1 and gj := hj ◦ · · · ◦ h1, for all
1 ≤ j ≤ r; so h = fj ◦ gj . Then, since by construction |gj(xj)− gj(yj)| ≤ ct+ 1, we have
that for all j ∈ Z with 1 ≤ j ≤ r,

|h(xj)− h(yj)| = |fj(gj(xj))− fj(gj(yj))|
≤ |gj(xj)− gj(yj)|+ ct (by Lemma 6.20)

≤ 2ct+ 1 ,

and our claim follows.

Definition 6.7. For e : κ1.Z → κ2.Z, we call s ∈ N+ stable for e if for every p ∈ κ1, one
of the following applies:

• e(z + s) = e(z) + s for all z ∈ p.Z,

• e(z + s) = e(z)− s for all z ∈ p.Z.

Note that if a function e has a stable number, it does not generate a function with finite
range. Indeed, it follows from the definition that for all k ∈ Z we have |e(z+kt)−e(z)| = kt.

Lemma 6.22. Let e : Z → Z be tightly-t-bounded and 1-bounded. Then t is stable for e,
or {e} ∪Aut(Z;<) locally generates a function with finite range.

Proof. Let c ∈ N be such that e is (1, c)-bounded, and assume that e does not locally
generate a function with finite range. By Lemma 6.21, there exists k > ct + 1 such
that for all z we have |e(z + k) − e(z)| ≥ k, and hence either e(z + k) ≥ e(z) + k or
e(z + k) ≤ e(z)− k for each z ∈ Z. We will first show that either e(z + k) ≥ e(z) + k for
all z ∈ Z, or e(z+ k) ≤ e(k)− k for all z ∈ Z. Suppose otherwise that there are z1, z2 ∈ Z
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such that e(z1 + k) ≥ e(z1) + k and e(z2 + k) ≤ e(z2) − k. Clearly, we can choose z1, z2

such that |z1 − z2| = 1. We only treat the case that z2 = z1 + 1, since the other case is
symmetric. Then

e(z2)− e(z2 + k) ≥ k by assumption,

−e(z2) + e(z1) ≥ −c by 1-boundedness,

e(z2 + k)− e(z1 + k) ≥ −c by 1-boundedness,

e(z1 + k)− e(z1) ≥ k by assumption.

Summing over those inequalities yields 0 ≥ 2k − 2c , a contradiction since k > c.
In the following we assume without loss of generality that e(z + k) ≥ e(z) + k for all

z ∈ Z. Recall that |e(z + t) − e(z)| ≤ t for all z ∈ Z because e is tightly-t-bounded. We
next claim that e(z + kt) = e(z) + kt for all z ∈ Z. Since points at distance t cannot be
mapped to points at larger distance, we get that e(z+kt)−e(z) ≤ kt. On the other hand,
since e(z + k) ≥ e(z) + k for all z ∈ Z, we obtain that e(z + kt) ≥ e(z) + kt, proving the
claim.

We now show that e(z + t) ≥ e(z) + t for all z ∈ Z. Note that

e(z) + kt = e(z + kt)

= e(z + t+ (k − 1)t)

≤ e(z + t) + (k − 1)t

the latter inequality holding since e(z + mt) − e(z) ≤ mt for each m ∈ N. Subtracting
(k − 1)t + e(z) on both sides, our claim follows. Since |e(z + t) − e(z)| ≤ t for all z ∈ Z,
we obtain that e(z + t) = e(z) + t and have proved the lemma.

Corollary 6.23. Let B be a finite-signature reduct of (Z;<) without finite range endo-
morphism such that Q.B has rank one. Then B has finite tight rank t and t is stable for
every e ∈ End(Q.B).

Proof. By Corollary 6.17, Q.B has finite tight rank t′, and by Lemma 6.19, B has tight rank
t ≤ t′ and rank one. Let e ∈ End(Q.B). Since Q.B has rank one, we have e(z+k)−e(z) <∞
for all z ∈ Q.Z and k ∈ Z. As a consequence, for any p ∈ Q, the function e induces an
endomorphism e′ : B → B by restricting e to p.Z. By Lemma 6.22, t is stable for e′, and
we conclude that t is stable for e.

Lemma 6.24. Every stable number of a function e : Z → Z is divisible by the smallest
stable number of e.

Proof. Suppose that p is stable but not divisible by s. Write p = ms + r where m, r
are positive integers and 0 < r < s. Since r is not stable there exists z ∈ Z such that
e(z + r)− e(z) 6= r. But this is impossible since

e(z + r)− e(z) = e(z + p−ms)− e(z)
= e(z −ms) + p− e(z)
= e(z)−ms+ p− e(z) = r .
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Lemma 6.25. Let B be a finite-signature reduct of (Z;<) without finite-range endomor-
phisms and such that Q.B has rank one. Let e be an endomorphism of B, and let s be
the smallest stable number for e. Then {e} ∪ Aut(Z;<) generates a function f such that
f(Z) = {s · z : z ∈ Z}.

Proof. We prove by induction on i ∈ {0, . . . , s−1} that there exists a function fi, generated
by {e} ∪ Aut(Z;<), such that fi(j) ∈ {s · z : z ∈ Z} for all j ∈ {0, . . . , i}, and fi(0) = 0.
Without loss of generality, assume that e(0) = 0. The base case i = 0 is trivial: the
identity function on Z satisfies the requirements. Let fi−1 be given. If fi−1(i) is a multiple
of s there is nothing to do. Otherwise, fi−1(i) is not stable for e by Lemma 6.24. Since e
has a stable number, it does not generate a function with finite range, so by Lemma 6.22 it
is not tightly-fi−1(i)-bounded. It follows that there exist x0, y0 ∈ Z with x0− y0 = fi−1(i)
and |e(x0)− e(y0)| > |fi−1(i)|. Write r1 := |e(x0)− e(y0)|. If r1 is a multiple of s, then we
are done: let α0 be the automorphism of (Z;<) that maps {0, fi−1(i)} to {x0, y0}, let β be
the automorphism of (Z;<) that maps (e ◦α0 ◦ fi−1)(0) to 0, and let fi = β ◦ e ◦α0 ◦ fi−1.
Since s is stable for e and α0, we have that fi(j) ∈ {s · z : z ∈ Z} for j ∈ {0, . . . , i − 1}
and |fi(i)| = |e(y0) − e(x0)| is a multiple of s by hypothesis. Otherwise, using again
Lemma 6.22 and Lemma 6.24, we know that e is not tightly-r1-bounded. Therefore there
exist x1, y1 ∈ Z with |x1 − y1| = r1 and |e(x1) − e(y1)| =: r2 > r1. Continuing this way,
we obtain a sequence of pairs (x0, y0), (x1, y1), . . . such that rj = |xj − yj |, and rj+1 > rj .
Up to exchanging xj and yj , we can assume that e(xj) < e(yj) iff xj+1 < yj+1. Since
Q.B has rank one, Lemma 6.18 gives a c ≥ 0 such that every endomorphism of B is (1, c)-
bounded. This implies that the sequence built above must stop in at most c steps. By
construction, this can only happen when rk is a multiple of s. For j ∈ {1, . . . , k−1}, set αj
an automorphism of (Z;<) such that αj+1(e(xj)) = xj+1 and αj+1(e(yj)) = yj+1. Let β be
the translation that maps xk to 0. Finally, set fi := β◦αk◦e◦αk−1◦e◦· · ·◦α1◦e◦α0◦fi−1.
Since s is stable for e and automorphisms of (Z;<), we have that fi(j) is a multiple of s
for every j ∈ {0, . . . , i − 1}. Finally we have fi(i) = yk − xk which is a multiple of s by
construction. This finishes the inductive proof.

The function f whose existence is claimed in the statement is then fs−1. Indeed, s
is stable for f as f is obtained as the composition of e and automorphisms of (Z;<).
Therefore f(Z) contains the set {s · z : z ∈ Z}. For the other inclusion, let v ∈ Z be
arbitrary, and write v = s · z + r, where z ∈ Z and 0 ≤ r < s. Then f(s · z + r)− f(r) is
a multiple of s since s is stable for f . By construction, f(r) is a multiple of s as well, so
that f(v) ∈ {s · z | z ∈ Z}.

The following definition arises naturally from the statement of Lemma 6.25.

Definition 6.8. Let B be a structure over Z and let k ∈ N+. Then we write B/k for the
substructure of B induced by the set {z ∈ Z : z = 0 mod k}.

Lemma 6.26. For all first-order reducts B of (Z;<) and k ∈ N+, the structure B/k is
isomorphic to a first-order reduct of (Z;<), the isomorphism being the function x 7→ x/k.

Proof. Let R be an n-ary relation of B, and let φ be a quantifier-free formula defining
R. Construct a formula φ′ as follows: For all i ∈ Z, replace every atomic formula of
the form x ≤ y + i by x ≤ y + bi/kc. We prove by structural induction on φ that for
all z1, . . . , zn ∈ B/k we have (Z, <) |= φ(z1, . . . , zn) ⇔ (Z;<) |= φ′(z1/k, . . . , zn/k). If
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φ is x ≤ y + i for some i ∈ Z, then B/k |= φ(x, y) iff x ≤ y + i iff x/k ≤ y/k + bi/kc.
The cases of conjunction, disjunction, and negation follow immediately from the induction
hypothesis.

For instance, in Example 15 the structure B/2 is isomorphic to (Z; succ, {(x, y) : |x−
y| ≤ 1}) which has tight rank one.

Theorem 6.27. Let B be a finite-signature first-order reduct of (Z;<) without finite range
endomorphisms and such that Q.B has rank one. Then B has an endomorphism that maps
B to B/k for some k ∈ N+, which is isomorphic to a reduct C of (Z;<) such that Q.C has
tight rank one.

Proof. Let t be the tight rank of Q.B, and let c be such that Q.B is (1, c)-bounded (which
exists by Corollary 6.17). By Lemma 6.19, B has tight rank t′, with t′ ≤ t. By Corol-
lary 6.23, every endomorphism of Q.B has a stable number, and in particular each endo-
morphism has a minimal one. If the minimal stable number of every endomorphism is
1, then Q.B has tight rank one and we are done, choosing k = 1. Otherwise there exists
an e ∈ End(Q.B) such that 1 is not stable for e. So there exists a copy of Z and some
integer s > 1 such that s is stable for the restriction of e to that copy, which we call ê,
and so that no s′ with s′ < s is stable for ê. Since Q.B has rank one, e sends copies of Z
to copies of Z. By composing ê with an automorphism of (Q.Z;<) we can assume that
ê ∈ End(B). By Lemma 6.25, there exists a function f generated by {ê}∪Aut(Z;<) such
that f(Z) = {s · z | z ∈ Z}. By Lemma 6.22, t′ is stable for f , and t′ is divisible by s since
|f(z + t′)− f(z)| = t′ and f(z + t′), f(z) ∈ {s · z | z ∈ Z}. Also note that s is stable for f
since f is generated by ê.

Observe that B/s cannot have a finite range endomorphism: if g were such an en-
domorphism, then g ◦ f would be a finite range endomorphism for B, contrary to our
assumption. By Lemma 6.26, B/s is isomorphic to a first-order reduct C of (Z;<) via the
function x 7→ x/s. It is also clear that the function (a, z) 7→ (a, sz) from Q.Z to Q.Z is a
homomorphism from Q.C to Q.B. We claim that Q.C has rank one and tight rank at most
t′/s.

Let e ∈ End(Q.C). Let x ∈ Z ⊂ Q.Z. Define e′(z) = s · e(f(z)/s) which is a homo-
morphism B → Q.B. Note that every homomorphism from B to Q.B is (1, c)-bounded,
since otherwise by Lemma 6.15 we can find an endomorphism of Q.B which is not (1, c)-
bounded. Since f is surjective as a function Z → {s · z | z ∈ Z}, there exists y ∈ Z
such that f(y)/s = x. Since s is stable for f , we have either f(y + s) = f(y) + s or

f(y − s) = f(y) + s. If f(y + s) = s + f(y), then e(f(y)+s
s ) = 1

s · e
′(y + s). In the other

case, e(f(y)+s
s ) = 1

s · e
′(y − s). In any case, by applying s times the (1, c)-boundedness of

e′, we obtain that

|e(x+ 1)− e(x)| =
∣∣∣∣e(f(y)

s
+ 1

)
− e

(
f(y)

s

)∣∣∣∣ ≤ c.
The same argument works for all x ∈ Q.Z, so all the endomorphisms of Q.C are (1, c)-
bounded and Q.C has rank one. Similarly, we have∣∣∣∣e(x+

t′

s

)
− e(x)

∣∣∣∣ =

∣∣∣∣e(f(y)

s
+
t′

s

)
− e

(
f(y)

s

)∣∣∣∣ ≤ t′

s
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i.e., e is tightly-t′/s-bounded and Q.C has tight rank at most t′/s.

Since C satisfies all the assumptions that we had on B, we may repeat the argument.
If Q.C has tight rank 1, then we are done. This process terminates, since the tight rank of
Q.C is bounded above by t′/s, which is strictly smaller than the tight rank of Q.B. Observe
furthermore that if C′ is the first-order reduct of (Z;<) that is isomorphic to C/s′, then C′
is isomorphic to B/ss′ by the obvious composition of isomorphisms, so that the resulting
structure at termination is indeed of the form B/k for some k ∈ N.

Theorem 6.28. Let B be a finite-signature first-order reduct of (Z;<) such that Q.B has
rank one. Then CSP(B) equals CSP(C) where C is one of the following:

1. a finite structure;

2. a first-order reduct of (Z;<) where Distk is pp-definable for all k ≥ 1;

3. a first-order reduct of (Z;<) where succ is pp-definable.

Proof. If B has a finite-range endomorphism f , then the image of the endomorphism in-
duces a finite structure with the same CSP as B, thus we are in case (1) of the statement
and done. So assume that this is not the case. Then by Theorem 6.27, B has an endomor-
phism g that maps B to B/k which is isomorphic to a reduct C of (Z;<) such that Q.C has
tight rank one. Lemma 6.19 implies that C has tight rank one, too. The structure B/k
cannot have finite-range endomorphisms f since otherwise f ◦ g would be a finite-range
endomorphism for B. Hence, C does not have finite-range endomorphisms. Since Q.C has
rank one, Corollary 6.23 is applicable, and implies that 1 is stable for every endomorphism
of Q.C. Hence all endomorphisms of Q.C are isometries and the relation Distk is preserved
by the endomorphisms of Q.C.

If succ is preserved by all the endomorphisms of Q.C, then Theorem 6.4 implies that
succ is pp-definable in Q.C since succ is 1-generated under End(Q.C). In this case, succ is
pp-definable in C, too, and we are in case (3) of the statement.

Otherwise, there exists an endomorphism e of Q.C that does not preserve succ. There-
fore, there exists an x ∈ Q.Z such that e(x+k) = e(x)−k for all k ≥ 1. For each k ≥ 1, the
relation Distk is then 1-generated under End(Q.C), the pair (x, x+ k) being a generator.
Since Distk is preserved by all endomorphisms of Q.C, it follows from Theorem 6.4 that
Distk is pp-definable in Q.C for all k ≥ 1. Finally, this implies that Distk is pp-definable
in C for all k ≥ 1 and we are in case (2) of the statement.

Arbitrary rank

In this section we study first-order reducts of (Z;<) of arbitrary finite rank. The goal
is to reduce this to the rank one situation (in Proposition 6.32). For this, we need the
following proposition, which is quite similar, but formally unrelated, to the implication
from item (2) to item (4) in Theorem 6.16.

Lemma 6.29. Let B be a finite-signature first-order reduct of (Z;<) and k ∈ N such
that Q.B is not k-bounded. Then for all x, y ∈ Z such that x − y = k there exists an
endomorphism h of Q.B such that h(x) − h(y) = ∞ and for all z, z′ with z − z′ = ∞ we
have h(z)− h(z′) =∞.
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Proof. Since Q.B is not k-bounded, for any r ≥ 0 there exist x0, y0 ∈ Q.Z with |x0−y0| = k
and an endomorphism e : Q.B → Q.B such that e(x0) − e(y0) > r. Composing e with
an automorphism we can take {x0, y0} = {x, y}. For every finite set S ⊂ Z, we then
have a homomorphism e : Q.B[S] → Q.B such that e(x) − e(y) > r. It follows from an
analog of Proposition 6.10 that there exists a homomorphism h : Q.B → Q.B such that
h(x)− h(y) =∞ and for all z, z′ with z − z′ =∞ we have h(z)− h(z′) =∞.

Proposition 6.30. Let B be a finite-signature first-order reduct of (Z;<) such that Q.B
has rank r, and let e be an endomorphism of Q.B. Then e(z1) = e(z2) mod r for all
z1, z2 ∈ Q.Z such that z1 = z2 mod r.

Proof. Suppose that e ∈ End(Q.B) is (r, c)-bounded and z1, z2 ∈ Q.Z contradict the
statement of the proposition. Choose z1, z2 such that z1 > z2 and z1 − z2 is minimal.

Claim 1. z1 − z2 = r.

Suppose otherwise; then there are p1, . . . , pk for k > 2 such that p1 = z1, pk = z2,
and pi − pi+1 = r for all i ∈ {1, . . . , k − 1} because r divides z1 − z2. By the choice of
z1, z2 we have e(pi) = e(pj) mod r. But then e(p1) = e(pk) mod r, a contradiction to the
assumption that e(z1) 6= e(z2) mod r.

Let w, v ∈ N be such that |e(z1) − e(z2)| = wr + v and v < r. Note that v > 0
because e(z1) 6= e(z2) mod r. Assume that e(z1) > e(z2); the proof when e(z2) > e(z1)
is analogous. Let e′ ∈ End(Q.B) be arbitrary, and u1, u2 ∈ Z be arbitrary such that
u1 − u2 = v.

Claim 2. |e′(u1)− e′(u2)| ≤ (w + 1)c+ 1.

To prove the claim, suppose the contrary. Let α ∈ Aut(Z;<) be such that α(e(z1)) =
u1. Note that α(e(z2) + wr) = u2. Set e′′ := e′ ◦ α ◦ e. Then

|e′′(z1)− e′′(z2))| ≥ |e′′(z1)− e′(u2)| − |e′(u2)− e′′(z2))|
= |e′(u1)− e′(u2)| − |e′(α(e(z2) + wr))− e′(α(e(z2)))|
≥ (w + 1)c+ 1− wc = c+ 1

where the first inequality is the triangle inequality, and the second inequality is by as-
sumption and (r, c)-boundedness. But |e′′(z1)) − e′′(z2))| > c contradicts the assumption
that Q.B is (r, c)-bounded, and this finishes the proof of Claim 2.

Since e′ was chosen arbitrarily, we obtain that Q.B is (v, w(c + 1) + 1)-bounded, and
hence has rank v < r, a contradiction.

Lemma 6.31. Let B be a finite-signature first-order reduct of (Z;<) such that Q.B has
rank r ∈ N. Then there exists an endomorphism e of Q.B with the property that for all
x, y ∈ Q.Z,

either e(y)− e(x) =∞
or e(y)− e(x) = 0 mod r.

Proof. We construct e by an application of König’s tree lemma as follows. Let a1, a2, . . . be
an enumeration of the elements of Q.Z. Given a partial function f : {a1, . . . , an} → Q.Z,
we say that f has property (†) if for all x, y ∈ {a1, . . . , an}, either f(y) − f(x) = ∞ or
f(x) = f(y) mod r. The vertices on level n of the tree are ∼q-equivalence classes of
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homomorphisms h from Q.B[{a1, . . . , an}] to Q.B that satisfy property (†). Adjacency
between vertices is defined by restriction of representatives.

The interesting part of the proof is to show that the tree has vertices on all levels. Let
g be a homomorphism from Q.B[{a1, . . . , an}] to Q.B such that the number m of pairs
i, j ∈ {1, . . . , n} with g(ai) − g(aj) = ∞ or g(ai) = g(aj) mod r is maximal. If m =

(
n
2

)
then we are done; so suppose that there are p, q ∈ {1, . . . , n} such that g(ap)− g(aq) ∈ Z
is not divisible by r. Let k ∈ {1, . . . , r− 1} and l ∈ Z be such that g(ap)− g(aq) = lr+ k,
0 < k < r. Since Q.B is not k-bounded, by Lemma 6.29 there exists an endomorphism f
of Q.B such that f(g(ap) + lr)− f(g(aq)) = ∞. By Proposition 6.30 we have f(g(ap)) =
f(g(ap) + lr) mod r, and hence f(g(ap)) − f(g(aq)) = ∞. We claim that the number
m′ of pairs i, j ∈ {1, . . . , n} such that f(g(ai)) − f(g(aj)) = ∞ or f(g(ai)) = f(g(aj))
mod r is larger than m. If g(ai) − g(aj) = ∞ then f(g(ai)) − f(g(aj)) = ∞; if g(ai) =
g(aj) mod r then f(g(ai)) = f(g(aj)) mod r. Therefore, m′ ≥ m. Moreover, we have
f(g(ap)) − f(g(aq)) = ∞, and hence m′ > m. Then f ◦ g is a homomorphism from
Q.B[a1, . . . , an]→ Q.B, contradicting the maximality of m.

By Lemma 6.9, we obtain an endomorphism e : Q.Z → Q.Z such that for every n,
e|{a1,...,an} is ∼q-equivalent to some function gn satisfying (†). Let x, y ∈ Q.Z. If x, y
are (e, q)-connected, then they are (e|{a1,...,an}, q)-connected for some n, so that they are
(gn, q)-connected. It follows that e(x) − e(y) = gn(x) − gn(y) = 0 mod r. If x, y are not
(e, q)-connected, they are not (gn, q)-connected for any function gn in the tree, and we
have e(x)− e(y) =∞ by Lemma 6.9. Therefore, e satisfies (†).

Proposition 6.32. Let B be a finite-signature reduct of (Z;<) without finite-range en-
domorphism and such that Q.B has rank r ∈ N and tight rank t ∈ N. Then B/r has the
same CSP as B, and is isomorphic to a first-order reduct C of (Z;<) such that Q.C has
tight rank at most t/r.

Proof. By Lemma 6.26, there is a first-order reduct C of (Z;<) such that x 7→ r · x is
an isomorphism between C and B/r. Let e be the endomorphism of Q.B constructed in
Lemma 6.31. Replacing e by α ◦ e for an appropriate automorphism α of (Q.Z;<), we
can assume that the range of e lies within S := {r · z : z ∈ Q.Z}. Since x 7→ r · x is an
isomorphism between Q.C and the structure induced by S in Q.B, we obtain that B, Q.B,
Q.C, and C all have the same CSP.

It remains to be shown that Q.C has rank at most t/r. For an arbitrary e ∈ End(Q.B),
the quantity δ(e) := maxz∈Q.Z |e(z + t) − e(z)| is well-defined and finite, since Q.B has
tight-rank t. Let e be an endomorphism of Q.B as in Lemma 6.31 such that δ(e) is maximal
among all endomorphisms satisfying the conclusion of Lemma 6.31. Let z0 ∈ Q.B be a
witness for the maximum taken in δ(e). If e(z0 + t) = e(z0), then for all z ∈ Q.Z we
have e(z + t) = e(z). As in the proof of (1) ⇒ (2) in Theorem 6.16, this would imply
that B has a finite-range endomorphism, a contradiction to the assumption. So we have
e(z0 + t) 6= e(z0). Suppose that e(z0 + t) > e(z0), the other case being treated similarly.
Since e satisfies the property of Lemma 6.31, the distance e(z0 + t) − e(z0) is equal to
kr for some k ≤ t/r. We prove that Q.C has tight rank k. Let f be an endomorphism
of Q.C, and suppose that there exists a y ∈ Q.C such that |f(y + k) − f(y)| > k. Up

to composition of f with an automorphism of Q.C, we can assume that y = e(z0)
r . Note

that y + k = e(z0)
r + k = e(z0)+kr

r = e(z0+t)
r . Let e′ : Q.B → Q.B be defined by e′(x) =

r · f( e(x)
r ). Note that e′ satisfies the property of Lemma 6.31. We have furthermore
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|e′(z0 + t)− e′(z0)| = r · |f(y+k)−f(y)| > kr. This contradicts the fact that e was chosen
to maximise the distance |e(z0 + t)− e(z0)|.

Iterating the previous proposition, we finally obtain a reduction to the rank one case.

Corollary 6.33. Let B be a finite-signature reduct of (Z;<) such that Q.B has rank r ∈ N.
Then there exists a k ∈ N such that B/k has the same CSP as B, and is isomorphic to a
reduct C of (Z;<) such that Q.C has rank one.

Proof. If Q.B has rank one there is nothing to prove, so assume that r > 1. By Propo-
sition 6.32, B/r has the same CSP as B, is isomorphic to a reduct C1 of (Z;<), and the
tight rank t1 of Q.C1 is strictly smaller than that of Q.B. Write C0 := B. We iterate this
construction, obtaining reducts C0, C1, . . . , Cn+1 of (Z;<) with ranks r0, r1, . . . , rn+1 and
tight ranks t0 > t1 > · · · > tn = tn+1 until the sequence of tight ranks stabilises, which can
only happen if the rank of Q.Cn is one. The structure Cn is isomorphic to B/(r0 . . . rn−1),
which proves the corollary.

6.4.6 Defining succ and <

In the remainder of this section, we prove the following dichotomy: a first-order reduct of
(Z;<) that pp-defines succ either pp-defines <, or is a first-order reduct of (Z; succ). Call
a binary relation R with a first-order definition over (Z;<) one-sided infinite if there exist
c, d ∈ Z with c ≤ d so that

• R(x, x+ z) holds for no z < c,

• R(x, x+ z) holds for all z ≥ d.

Note that this definition does not depend on x ∈ Z, since R is first-order definable over
(Z;<).

Lemma 6.34. Let B be a first-order reduct of (Q.Z;<) such that succ is pp-definable in
B. Then < is pp-definable in B if and only if some one-sided infinite binary relation is
pp-definable in B.

Proof. Since < is one-sided infinite we only have to show the reverse implication. Choose
a binary one-sided infinite relation R with a pp-definition in B such d − c is minimal,
where c and d are as in the definition of one-sided infinity of R. If c = d then R is a
relation of the form x < y + k for k ∈ Z, and using succ we can pp-define < in B. We
now show that c 6= d is impossible. Replace R by the relation T defined by the formula
R(x, y)∧R(x, y+ d− c− 1), which is equivalent to a pp-formula over B. Then (0, z) is in
T for all z ≥ d. On the other hand, for z < c+ 1, we have (0, z) 6∈ T . Indeed, if z < c then
(0, z) is not in R, so not in T . If z = c, then (0, d− 1) is not in R by the minimality of d,
so that (0, c) is not in T . Therefore, the integers c′, d′ as defined for T in place of R have a
smaller difference than d− c, contradicting the choice of R such that d− c is minimal.

If R is a relation of arity n, and i1, . . . , ik ∈ {1, . . . , n} are distinct indices, the projec-
tion of R onto {i1, . . . , ik}, denoted by πi1,...,ik(R), is the relation defined by

∃xj1 , . . . , xjn−k .R(x1, . . . , xn)

over (Z;R) where {j1, . . . , jn−k} = {1, . . . , n} \ {i1, . . . , ik}. A binary projection of R is a
projection of R onto a set of size 2.
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Lemma 6.35. Let B be a first-order reduct of (Z;<) in which succ is pp-definable. Then,
either B pp-defines < or B is a first-order reduct of (Z; succ).

Proof. Let R be a relation of B of arity k. If E = {a − b | (a, b) ∈ πi,j(R)}, for distinct
i, j ∈ {1, . . . , k}, is a finite or cofinite set, there is a definition of R(x1, . . . , xk) over
(Z;<) without literals of the form xi < xj + k. Indeed, such a literal can be replaced
by a disjunction of literals succp(xi, xj) for suitable integers p if E is finite, or a by
a conjunction of literals ¬succp(xi, xj) if E is cofinite. Therefore, if B is not a first-
order reduct of (Z; succ) there exists a relation R of B and integers i, j such that the set
{a− b | (a, b) ∈ R′} for R′ := πi,j(R) is neither finite nor cofinite. Let q be the quantifier-
elimination degree of R′. It is clear that if (a, b) ∈ R′ with a − b > q, then (a′, b′) ∈ R′
whenever a′ − b′ > q. It follows that R′ or {(b, a) ∈ Z2 | (a, b) ∈ R′} is one-sided infinite.
From Lemma 6.34 and the fact that R′ is pp-definable in B follows that < is pp-definable
in B.

Combining the results of the preceding subsections, we can finally prove Theorem 6.6,
which we restate here for the convenience of the reader.

Theorem 6.6. Let B be a first-order reduct of (Z;<) with finite signature. Then CSP(B)
equals CSP(C) where C is one of the following:

1. a finite structure;

2. a first-order reduct of (Q;<);

3. a first-order reduct of (Z;<) where Distk is pp-definable for all k ≥ 1;

4. a first-order reduct of (Z;<) where succ and < are pp-definable;

5. a first-order reduct of (Z; succ) where succ is pp-definable.

Proof. Let B be a first-order reduct of (Z;<) with finite signature. If B has an endomor-
phism with finite range, then B is homomorphically equivalent to a finite structure; hence
item (1) of Theorem 6.6 holds and we are done. So suppose that this is not the case. If
there exists a first-order reduct of (Q;<) with the same CSP, then item (2) of Theorem 6.6
holds and we are done. Otherwise, the equivalence of (2) and (1) in Theorem 6.16 implies
that Q.B has bounded tight rank t and bounded rank r. If r > 1, then by Proposition 6.32
we have that B has the same CSP as a first-order reduct C of (Z;<) such that Q.C has
rank 1. It follows from Theorem 6.28 that there exists a first-order reduct C′ of (Z;<)
that has the same CSP as B and such that Distk is pp-definable in C′ for all k ≥ 1 or succ
is pp-definable in C′. In the former case, item (3) of Theorem 6.6 holds. In the latter case,
we finally have by Lemma 6.35 that < has a pp-definition in C′, in which case item (4)
holds, or that C′ is a first-order reduct of (Z; succ), in which case item (5) holds.

6.5 Tractable Classes

We treat the algorithmic part of our main result, that is, we prove that if B is a first-
order reduct of (Z;<) that is preserved by maxd or mind, or if B is a first-order reduct of
(Z; succ) such that Q.B is preserved by a binary injective operation preserving succ, then
CSP(B) is in P(items (3) and (4) in Theorem 6.5).

120



Chapter 6. The Complexity of Discrete Temporal CSPs

6.5.1 The Horn case

The two structures (Q.Z, succ)2 and (Q.Z, succ) are isomorphic. Let si be an isomorphism
from (Q.Z, succ)2 to (Q.Z, succ). In the following we will also consider si as a binary op-
eration on Q.Z that preserves succ. Remember that relations that are first-order definable
over (Z; succ) are also definable by quantifier-free formulas with (positive or negative) lit-
erals of the form succp(x, y) for p ∈ Z (see items (1)-(5) in Example 11). A quantifier-free
formula in conjunctive normal form (CNF) is called Horn if each clause of the formula
contains at most one positive literal. A relation is said to be Horn-definable if there exists
a Horn formula that defines the relation.

We use the following characterisation of Horn definability, which is Proposition 5.9
in [17]: if C is a structure with an embedding e of C2 into C (such as for instance C =
(Q.Z; succ)) then a relation R with a quantifier-free definition in C is Horn-definable over
C if and only if R is preserved by e. Applied to our situation, we obtain the following.

Proposition 6.36. Let B be a first-order reduct of (Z; succ). Then the following are
equivalent.

• every relation of B is Horn-definable over (Z; succ);

• Q.B is preserved by si;

• Q.B has a binary injective polymorphism that preserves succ.

Proposition 6.37. Let B be a finite-signature first-order reduct of (Z; succ) such that si
is a polymorphism of Q.B. Then CSP(B) is in P.

Proof. From Proposition 6.36 we know that the relations of B are definable with quantifier-
free Horn formulas over (Z; succ). It is easy to see that there is a polynomial-time algorithm
that decides whether a set of constraints of the form succpi(xi, yi) is satisfiable. Moreover,
we can also efficiently decide whether it implies another constraint of this form. Indeed,
to see if the set of constraints is satisfiable, consider the graph whose vertices are the
variables, and whose arcs consists of those pairs (xi, yi), labelled by pi, such that there
is a constraint succpi(xi, yi) in the input. For each variable x, using a graph traversal we
can check whether all the directed paths going from x to some other variable y have the
same weight (which is given by the sum of the labels over the arcs); If this is not the
case, the constraints are unsatisfiable. Otherwise, to decide whether the constraints imply
succp(x, y), check whether there is a directed path from x to y where the sum of the labels
equals p.

We view the instance of CSP(B) as a set of Horn-clauses over (Z; succ). We iterate
the following algorithm: form the set U of clauses that consist of only one positive literal
(these clauses are called positive unit clauses). For each negative literal ¬` appearing in
the instance, we can use the algorithm above to test whether U is consistent and whether
it implies `. If U is inconsistent, we reject the instance. If ` is implied by U , we remove
every occurrence of ¬` in the input. If we derive the empty clause, we reject the input.
Otherwise, the resolution stabilises in a polynomial number of steps with a set of Horn
clauses; in this case, accept the input. Since the resulting clauses are Horn, they are
preserved by si. We apply si to show that in this case indeed there exists a solution. By
assumption, for each Horn clause

∧
i succpi(xi, yi)⇒ succp(x, y) there exists an assignment
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that falsifies some literal succpi(xi, yi) and additionally satisfies all the positive unit clauses:
otherwise the literal would have been removed by the resolution procedure. Let s1, . . . , sr
be those assignments for the r clauses. Since si is an isomorphism, the assignment s :=
si(s1, . . . , si(sr−1, sr) . . .) simultaneously breaks all the equalities in the premises of all
the clauses. Moreover, since si preserves succ, the resulting assignment s preserves the
positive unit clauses, and hence is a valid assignment for the input.

6.5.2 Modular minimum and modular maximum

Theorem 6.38. Let B be a finite-signature first-order reduct of (Z;<) that admits a
modular max or modular min polymorphism. Then CSP(B) is in P.

Proof. Suppose that B is preserved by max, the regular maximum operation. Then
CSP(B) is solvable in polynomial time as follows. Let q be the qe-degree of B. Let φ
be an instance of CSP(B) with n variables. We already noted in the proof of Proposi-
tion 6.1 that φ is satisfiable in B iff it is satisfiable in B[{0, . . . , (q + 1)n}], and the latter
structure can be constructed in polynomial time, and is preserved by the maximum func-
tion on {0, . . . , (q + 1)n}. We can then decide whether B[{0, . . . , (q + 1)n}] |= φ using the
arc-consistency algorithm, noting that the arc-consistency procedure can be implemented
in such a way that the running time is polynomial in both the size of the formula and of
the structure [74].

Suppose now that B is preserved by maxd for d ≥ 2. It follows that < is not pp-
definable in B, as maxd does not preserve <. We can suppose that B pp-defines succ,
because this only increases the complexity of CSP(B) and succ is preserved by maxd. By
Lemma 6.35, B is a first-order reduct of (Z; succ). In [15], the authors prove that the
CSP of a first-order reduct of (Z; succ) with finite distance degree and which is preserved
by a modular maximum or minimum is decidable in polynomial time. An inspection of
the proof shows that the finite distance degree hypothesis is not necessary. Indeed, the
critical idea of the algorithm is that if B is preserved by the d-modular maximum, then
CSP(B) reduces in polynomial time to CSP(C), where C is a reduct of (Z; succ) which is
preserved by the usual maximum or minimum. Then, arc-consistency can be used to solve
CSP(C) in polynomial time (for the details, we have to refer to [15]). The reduction and
the algorithm for CSP(C) do not rely on the distance degree of B being finite to work.

6.6 The Classification

In this section we prove our complexity classification result, Theorem 6.5. By Theorem 6.6
and the comments before and after Proposition 6.7, we are left with the task to classify
the CSP for finite-signature reducts B of (Z;<) where the binary relation succ is among
the relations of B (that is, when we are in case (4) or (5) of Theorem 6.6).

An important case distinction in this section is whether the order relation < is pp-
definable in B. The situation when this is the case is treated in Section 6.6.1. Otherwise,
if succ is pp-definable in B, but < is not, then B is a first-order reduct of (Z; succ) by
Lemma 6.35. In this case, we further distinguish whether B is positive in the sense that
each of its relations can be defined over (Z; succ) with a positive quantifier-free formula,
that is, a first-order formula without negation symbols. Positivity of reducts of (Z; succ)
has several natural different characterisations, which is the topic of Section 6.6.2. We
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first treat the case of non-positive reducts of (Z; succ) in Section 6.6.3, and then the case
of positive reducts of (Z; succ) in Section 6.6.4. All the formulas considered here are
quantifier-free unless stated otherwise.

6.6.1 First-order expansions of (Z; succ, <)

We have already seen that the CSP for first-order reducts of (Z;<) preserved by max or
by min is in P. The following lemma provides the matching hardness result for first-order
expansions of (Z;<, succ).

Definition 6.9. A d-progression is a set of the form [a, b | d] := {a, a+ d, a+ 2d, . . . , b},
for a ≤ b with b− a divisible by d. A d-progression is trivial if it has cardinality one.

We need the following, which is Proposition 47 from [15]. Remember that a structure
definable over (Z; succ) is locally finite if every relation has finite distance degree.

Proposition 6.39. Let B be a locally finite first-order expansion of (Z; succ) such that
DiffS is pp-definable in B for a non-trivial 1-progression S. If B is neither preserved by
max nor min then CSP(B) is NP-hard.

Lemma 6.40. Let B be a first-order expansion of (Z;<, succ). If B is preserved by neither
max nor min, then CSP(B) is NP-hard.

Proof. Let R be a relation of B which is not preserved by max, and let T be a relation of
B which is not preserved by min. Then there are tuples a, b in R such that max(a, b) 6∈ R.
Let m be maxi,j(|ai − aj |, |bi − bj |). Since the binary relation defined by x ≤ y +m has a
pp-definition in B, the relation R∗ defined by

R(x1, . . . , xn) ∧
∧
i,j

xi ≤ xj +m

is pp-definable in B, too. Note that a and b are in R∗, and that max(a, b) /∈ R∗. Also note
that R∗ is first-order definable over succ and has finite distance degree. Dually, we find a
pp-definition over B of a relation T ∗ which is not preserved by min, first-order definable
over succ and with finite distance degree. The pp-formula ∃u(u = succ3(x)∧x < y∧y < u)
defines Diff{1,2}. It then follows from Proposition 6.39 that CSP(Z; succ, R∗, T ∗) is NP-
hard, and hence CSP(B) is NP-hard, too.

6.6.2 Endomorphisms of and Definability in positive reducts

Positivity of reducts B of (Z; succ) can be characterised via the endomorphisms of Q.B, but
also via the non-definability of certain binary relations with pp-formulas (Lemma 6.41).
These binary relations then play an important role in the complexity classification of the
non-positive reducts of (Z; succ).

Binary relations R with a first-order definition in (Z; succ) come in two flavours. In-
deed, the set {x − y | (x, y) ∈ R} is either finite or cofinite. This easily follows from the
quantifier elimination in (Z; succ). Remember that a binary relation R that is first-order
definable over (Z; succ) (or over (Q.Z; succ)) is called basic if it is empty, Z2, or defined
by the formula y = x+ c for some c ∈ Z, and non-basic otherwise.
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In the following, we use expressions of the form succp(x, y) (see Example 11) as if
they were atomic symbols of the language. Since they are pp-definable in a first-order
expansion of (Z; succ), this is without loss of generality. Recall that a formula over succ is
positive if it only includes literals of the form succp(x, y). A formula over the signature of
(Z; succ) in disjunctive normal form (DNF) is called reduced when every formula obtained
by removing literals or conjunctive clauses is not logically equivalent over (Z; succ). It is
clear that every first-order formula on (Z; succ) is equivalent to a reduced formula in DNF.

Lemma 6.41. For a first-order expansion B of (Z; succ), the following are equivalent:

1. Every formula in reduced DNF that defines a relation of B is positive;

2. Q.B has an endomorphism that violates the binary relation given by x− y =∞;

3. B does not pp-define a non-basic binary relation with infinite distance degree.

Proof. (2) implies (1). Let e be an endomorphism of Q.B that violates x− y =∞, and let
a, b be such that a− b =∞ and e(a)− e(b) <∞. Using automorphisms of (Q.Z; succ), we
may assume that e(a) = e(b) = b without loss of generality. For contradiction, suppose
that B has a relation with a reduced DNF definition φ(x1, . . . , xn) which is not positive.

We now show that we can choose s : {x1, . . . , xn} → Z such that s is a satisfying
assignment for φ but e ◦ s is not. For this, let us write one of the non-positive disjuncts ψ
of φ as ¬succp(z2, z1) ∧ φ′ where φ′ is a conjunction of literals, z1, z2 ∈ {x1, . . . , xn}, and
p ∈ Z. Moreover, let ψ2, . . . , ψm be the other disjuncts of φ. Suppose that all assignments
that satisfy φ′∧succp(z2, z1) also satisfy

∨
2≤i≤m ψi. Then we could rewrite φ as φ′∨

∨
i≥2 ψi,

which is impossible since φ is reduced. Hence, there exists t : {x1, . . . , xn} → Z such that t
is a satisfying assignment for φ′∧ succp(z2, z1) but not for ψi for every i ≥ 2; in particular,
t does not satisfy φ. Using an automorphism of (Q.Z; succ), we can assume that t(z1) = b.
Moreover, we can assume that the image S of t lies in only one copy of Z. To see this,
let g : S → Q.Z be any function that maps S to the first copy of Z in such a way that if
t(xi) and t(xj) are in different copies, then g(t(xi)) and g(t(xj)) are at distance at least
q + 1, where q is the qe-degree of φ. We have that g is ∼q-equivalent to an embedding of
S into the first copy of Z in Q.Z. Therefore, by the substitution lemma (Lemma 6.8), the
function g ◦ t is a satisfying assignment to the variables of φ that only occupies one copy
of Z.

We now derive from t an assignment s that satisfies ¬succp(z2, z1), that gives the same
truth value as t to all the other literals of ψ, and such that e ◦ s = t. If we consider φ′

as a graph on {z1, . . . , zk} where edges represent positive literals, then z1 and z2 are in
different connected components. Indeed, if there were a path from z1 to z2 in this graph we
would have that φ′ implies a statement of the form succq(z2, z1). But then the conjunction
¬succp(z2, z1)∧ succq(z2, z1) is either contradictory or is equivalent to succq(z2, z1), which
is in contradiction to φ being reduced. Let V be the variables in the connected component
of z1. Define s on V by s(v) := a − t(z1) + t(v) (in particular s(z1) = a) and define
s(v) := t(v) on the variables v that are not in V . We have that s satisfies ¬succp(z2, z1)
and that the other literals in φ′ are satisfied by s, too:

• The truth of positive literals is preserved since we performed a translation on vari-
ables that are connected by positive literals.
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• Negative literals between the variables in V and the other variables are also true,
since for v ∈ V and v′ /∈ V we have that s(v) − s(v′) = ∞ (s(v) lies in the same
component as a and s(v′) lies in the same component as b.)

• Finally, negative literals between variables not in V are preserved: they are satisfied
by t, and for v 6∈ V we have s(v) = t(v) by definition.

Hence, s is a satisfying assignment of φ. We have e ◦ s = t: If v is a variable in V ,
then e(s(v)) = e(a − t(z1) + t(v)) = e(a) − t(z1) + t(v) = t(v) since e preserves succ and
e(a) = b = t(z1), and if v 6∈ V we defined s(v) to be t(v), so that e(s(v)) = e(t(v)) = t(v).
Since t does not satisfy φ, this contradicts the assumption that e is an endomorphism of
Q.B.

(1) implies (3). Let R be a binary relation with a pp-definition φ(x, y) in B of the form
∃z
∧
i φi where φi is for each i an atomic formula over B. Let us replace φi by its definition

ψi over (Z; succ) in quantifier-free reduced DNF. By assumption, all the literals in ψi are
positive. The formula φ(x, y) is therefore equivalent to a formula ψ(x, y) :=

∨
j ∃z.ψj

where ψj is a conjunction of positive literals of the form succk(u, v). If one of the disjuncts
of ψ is vacuously true, then ψ defines a basic binary relation. So let us assume that this is
not the case. Since all the literals in ψj are positive, the relations defined by the disjuncts
have finite distance degree. Their disjunction therefore also defines a binary relation of
finite distance degree. In either case, ψ does not define a non-basic binary relation of
infinite distance degree.

(3) implies (2). Suppose that all the endomorphisms of Q.B preserve the binary relation
defined by x−y =∞. Then all the endomorphisms preserve the relation defined by x 6= y.
Indeed, if x − y < ∞ then e(x) − e(y) = x − y since e preserves succ, and hence x 6= y
implies e(x) 6= e(y). On the other hand, if x−y =∞, then e(x)−e(y) =∞ by assumption.
It follows from Theorem 6.4 that x 6= y has an existential positive definition in Q.B and in
B. Let

∨
φi(x, y) be such a definition, where each φi is a pp-formula over B. Since 6= has

infinite distance degree, one of the φi must define a binary relation with infinite distance
degree. This relation is also distinct from (Q.Z)2 because it is contained in the relation
defined by x 6= y, so the infinite distance degree implies that it is non-basic. Thus, item
(3) does not hold.

6.6.3 The non-positive case

Let B be a non-positive reduct of (Z; succ) such that Q.B is not preserved by si. Our aim
in this section is to show that B has an NP-hard CSP. Together with Proposition 6.37, this
completes the complexity classification for the CSP of non-positive reducts of (Z; succ).
Note that si is an arbitrary isomorphism (Q.Z; succ)2 → (Q.Z; succ), but the discussion
below does not depend on which function we take for si. Indeed, given two isomorphisms
si, si′ as above, there exists an automorphism α of (Q.Z; succ) such that si = α ◦ si′.

In order to show that CSP(B) is NP-hard, we show in Proposition 6.44 that when Q.B
is not preserved by si then there is a non-basic binary relation with finite distance degree
that is pp-definable in B. This binary relation will serve to define the set of vertices of a
certain finite undirected graph. The edge relation of that graph comes from the binary
relation of Lemma 6.41 which provided an alternative characterisation of non-positivity
of B. We finally use the classification of the CSPs for finite undirected graphs [55] to
conclude that CSP(B) is NP-hard.
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A formula φ in CNF is called reduced when removing any literal in a clause yields a
formula that is not equivalent to φ. This is equivalent to saying that for any literal ` in
a clause ψ of φ, there exists an assignment that satisfies φ and that satisfies only ` in
ψ. This assignment witnesses the fact that the given literal cannot be removed from the
formula without changing the set of satisfying assignments.

Lemma 6.42. Let φ be a quantifier-free formula over (Z; succ), and suppose that φ is
equivalent to a Horn formula over (Z; succ). If φ is reduced, then it is Horn.

Proof. Note that φ is equivalent to a Horn formula over (Z; succ) if and only if it is
equivalent to a Horn formula over (Q.Z; succ), since both structures have the same first-
order theory. By Proposition 6.36 the formula φ is preserved by si.

Suppose for contradiction that φ is not Horn, that is, it contains a clause ψ of the form
(succp(y, x)∨ succq(v, u)∨ . . . ). Since this formula is reduced, there exist satisfying assign-
ments s, t of φ such that s satisfies only succp(y, x) in ψ, and t satisfies only succq(v, u) in
ψ. The assignment (s, t) that maps a variable xi of φ to the pair (s(xi), t(xi)) in (Q.Z)2

is not a satisfying assignment for φ. Since si is an isomorphism between (Q.Z; succ)2 and
(Q.Z; succ), we have that the assignment si(s, t) does not satisfy ψ, which contradicts the
fact that φ is preserved by si.

Clearly, every formula φ in CNF is equivalent to a reduced one, since we can repeatedly
remove logically redundant literals until we obtain a reduced formula φ′: in this case we
say that we obtain φ′ from reducing φ.

Lemma 6.43. A binary relation R ⊆ Z2 is Horn definable over (Z; succ) if and only if it
is basic or has infinite distance-degree.

Proof. The backward implication is clear, since a binary relation with infinite distance-
degree and different from Z2 can be defined by a conjunction of literals of the form
¬succp(x, y). Basic relations can be defined by a formula of the form succ(x, x), x = x, or
succc(x, y), which are all Horn formulas.

Let us prove the forward implication. Let φ(x, y) be a reduced Horn quantifier-free
formula. In every clause of φ, there is at most one positive literal. Note that two negative
literals cannot appear in the same clause of φ, for the disjunction ¬succc(x, y)∨¬succd(x, y)
is either trivial if c 6= d or equivalent to a single literal if c = d, and φ is assumed to be
reduced. Similarly, a positive literal and a negative literal cannot appear in the same
clause, because succc(x, y) ∨ ¬succd(x, y) is equivalent to ¬succd(x, y) if c 6= d, and is
vacuously true if c = d. Therefore every clause of φ contains exactly one literal, so that φ
is a conjunction of literals. If one of those literals is positive, φ is equivalent to succc(x, y)
for some c or defines the empty relation, so that the relation that φ defines is basic.
Otherwise all the literals in φ are negative, and φ has infinite distance-degree.

Proposition 6.44. Let B be a first-order expansion of (Z; succ), and suppose that B pp-
defines a relation that is not Horn-definable over (Z; succ). Then B also pp-defines a
binary relation that is not Horn-definable over (Z; succ).

Proof. Let R be a relation with a pp-definition in B that is not Horn-definable over
(Z; succ), and whose arity n is minimal among all the relations with the same prop-
erty. We claim that for all i, j ≤ n and p ∈ Z the relation defined by the formula

126



Chapter 6. The Complexity of Discrete Temporal CSPs

R(x1, . . . , xn)∧ succp(xj , xi) is Horn-definable over (Z; succ). Otherwise, any reduced def-
inition φ of this relation over (Z; succ) has a clause ψ with at least two positive literals `1
and `2. Hence, there are satisfying assignment s1 and s2 for φ such that s1 only satisfies `1
in ψ and s2 only satisfies `2 in ψ. Let φ′ be the formula obtained from φ by replacing lit-
erals of the form succp

′
(xj , xk) or succ−p

′
(xk, xj), for p′ ∈ Z, by succp

′−p(xi, xk). Then the
variable xj no longer occurs in φ′, and φ′ is equivalent to ∃xj(R(x1, . . . , xn)∧succp(xj , xi)).
In particular, the restrictions of s1 and s2 to {x1, . . . , xn}\{xj} are satisfying assignments
for φ′, and they witness that the literals `1 and `2 of φ (or the literals that correspond
to those literals in φ′) cannot be removed from φ′. Lemma 6.42 implies that φ′ is not
equivalent to a Horn formula. Note that φ′ defines a relation of arity n − 1 that is not
Horn and that is pp-definable in B, a contradiction to the choice of R.

If a binary projection of R is non-basic and has finite distance-degree, then it is not
Horn by Lemma 6.43 and we are done. If a binary projection of R is basic, then we have
a contradiction to the minimality of n as we have seen above. So we can assume that the
binary projections of R have infinite distance degree.

Suppose for contradiction that n > 2. Let φ(x1, . . . , xn) be a reduced quantifier-free
formula that defines R in (Z; succ) whose number of non-Horn clauses is minimal. We first
prove that every non-Horn clause of φ is positive, i.e., consists of positive literals only. Pick
a non-Horn clause ψ of φ with two positive literals `1, `2, and suppose ψ also contains the
negative literal ¬succp(xj , xi) for some i, j ∈ {1, . . . , n} and p ∈ Z. Since φ is reduced,
there are satisfying assignment s1 and s2 for φ such that s1 only satisfies `1 in ψ and s2

only satisfies `2 in ψ; in particular, both s1 and s2 satisfy succp(xj , xi). Then these two
assignments show that both `1 and `2 cannot be removed when reducing φ∧ succp(xj , xi);
by Lemma 6.42, this contradicts the fact that φ ∧ succp(xj , xi) is equivalent to a Horn
formula, which was established in the first paragraph of the proof.

Therefore, there exists a positive non-Horn clause ψ in φ. Let φ′ denote the rest of φ,
and define

Ei,j := {s(xj)− s(xi) | s : {x1, . . . , xn} → Z satisfies φ′ ∧ ¬ψ}.

If Ei,j is empty for some i, j ∈ {1, . . . , n}, then the formulas φ and φ′ are equivalent. But
φ′ contains fewer non-Horn clauses than φ, contradicting the choice of φ. By the first
paragraph, for all distinct i, j and p ∈ Ei,j , the formula φ ∧ succp(xi, xj) is equivalent to
a Horn formula, and by Lemma 6.42, it even reduces to a Horn formula. Note that since
ψ is a positive clause, the only way to reduce φ ∧ succp(xi, xj) to a Horn formula is to
remove all literals in ψ but one. Also note that at least one literal of ψ must remain when
reducing φ ∧ succp(xi, xj) because we chose p from Ei,j . This means that there exists a

literal `i,jp of ψ such that

φ ∧ succp(xi, xj) |= `i,jp .

Let q be the qe-degree of φ. If p ∈ Ei,j is greater than nq, then we may take `i,jp to be

`i,jnq+1, by the substitution lemma.
First consider the case that there are distinct i, j such that Ei,j is finite. Then φ is

equivalent over (Z; succ) to the formula

χ := φ′ ∧
∧

p∈Ei,j

(succp(xi, xj)⇒ `i,jp ).
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Indeed, φ implies χ directly from the hypotheses we have. Conversely, if s satisfies χ one
of two cases occur. Either some `i,jp , for p ∈ Ei,j , is satisfied by s, and then s satisfies ψ
and φ. Or we must have s(xj) 6= s(xi) + p for every p ∈ Ei,j , i.e., s(xj) − s(xi) 6∈ Ei,j .
Since s is known to satisfy φ′, by definition of Ei,j it must also satisfy ψ, whence we get
that s satisfies φ. Note that χ contains fewer non-Horn clauses than φ, which contradicts
the choice of φ.

Therefore, Ei,j is not finite, and thus cofinite for all distinct i, j ≤ n. We claim
that φ has a satisfying assignment s such that |s(xi) − s(xj)| > 2(n + 1)q for all distinct
i, j ∈ {1, . . . , n−1}. The binary projections of R all have infinite distance degree, so by the
substitution lemma we find for each pair (i, j) such that 1 ≤ i < j ≤ n a satisfying assign-
ment si,j : {x1, . . . , xn} → Q.Z for φ such that si,j(xi)− si,j(xj) =∞. Also note that the
(n−1)-projection R′ of R onto {1, . . . , n−1} is Horn, and hence preserved by si. Then for
s′ : {x1, . . . , xn−1} → Q.Z defined by s′(x) := si(s1,2(x), . . . si(sn−3,n−1(x), sn−2,n−1(x)) . . . )
we have that s′(xi)− s′(xj) =∞ for all distinct i, j, and that (s′(x1), . . . , s′(xn−1)) ∈ R′.
Since R′ is a projection of R, we can extend s′ to a satisfying assignment s′′ for φ. Again us-
ing the substitution lemma, we obtain from s′′ a satisfying assignment s : {x1, . . . , xn} → Z
for φ such that |s(xi)−s(xj)| > 2(n+1)q for distinct i, j ∈ {1, . . . , n−1}, and this concludes
the proof of the claim.

For ψ to be satisfied by s, there must exist an i ∈ {1, . . . , n − 1} such that |s(xi) −
s(xn)| ≤ q, since ψ only contains positive literals of degree at most q. Let k ∈ {1, . . . , n−1}
be different from i. Note that |s(xk) − s(xi)| > nq and |s(xk) − s(xn)| > nq. Also note

that s satisfies the literals `k,inq+1 and `k,nnq+1 by the definition of `k,inq+1 and `k,nnq+1. Then the

literal `k,inq+1 relates xi and xn, and so does the literal `k,nnq+1, because xi and xn are with
respect to s the only variables that are able to satisfy a positive literal. Since all binary
projections of R have infinite distance degree, there is a satisfying assignment t of φ such
that |t(xi)− t(xn)| > 2(n+ 1)q. Either |t(xk)− t(xi)| > nq or |t(xk)− t(xn)| > nq. In the

first case, `k,inq+1 must be satisfied by t. But `k,inq+1 is a literal of the form succp1(xn, xi) for

|p1| ≤ q, and |t(xi)− t(xn)| > nq, so t cannot satisfy `k,inq+1. Similarly, in the second case,

t must satisfy `k,nnq+1, which is impossible since this literal is of the form succp2(xn, xi) for
|p2| ≤ q. We have reached a contradiction. Therefore, we must have n = 2, and R is the
desired binary non-Horn relation with a pp-definition over B.

We can finally conclude the complexity classification for non-positive first-order ex-
pansions of (Z; succ).

Proposition 6.45. Let B be a non-positive first-order expansion of (Z; succ). Then Q.B
is preserved by si and CSP(B) is in P, or CSP(B) is NP-hard.

Proof. If Q.B is preserved by si then CSP(B) is in Pby Proposition 6.37. Otherwise,
Proposition 6.36 implies that B has a non-Horn relation. By Proposition 6.44, a binary
non-Horn relation is pp-definable in B. A binary relation which is definable over (Z; succ)
but not Horn is non-basic and has finite distance degree, by Lemma 6.43. Hence, a non-
basic binary relation T of finite distance degree is pp-definable in B.

By Lemma 6.41, there exists a non-basic binary relation N pp-definable in B and
which has infinite distance degree. The relation defined by N(x, y) ∧ N(y, x) in B is
symmetric and has infinite distance degree, and is again pp-definable in B, so we will
assume that N is already symmetric. Let a be the smallest positive integer such that
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(0, b) is in N for all b ≥ a. With succ and pp-definition, we may assume that T contains
(0, 0) and that N does not contain (0, 0). Then by repeatedly replacing T by the pp-
definable relation {(x, y) ∈ Z2 | ∃z ∈ Z : (x, z) ∈ T ∧ (z, y) ∈ T} we may assume that
(0, b), (0, 2b) ∈ T with b ≥ a. Let G be the undirected graph whose vertices are the integers
v such that (0, v) ∈ T , and where v and w are adjacent if (v, w) ∈ N . This graph has
no loop and contains the triangle {0, b}, {b, 2b}, {0, 2b}, so that G is not bipartite and
CSP(G) is NP-hard [55]. Furthermore, CSP(G) is polynomial-time reducible to CSP(B):
if ∃x1, . . . , xn.φ is an instance of CSP(G), create an instance of CSP(B) by adding an
existentially quantified variable z, and by adding the constraints T (z, xi) for all i. This
instance is satisfiable if and only if the original instance is satisfiable in G, using the fact
that the automorphism group of B is transitive. This proves that CSP(B) is NP-hard.

6.6.4 The positive case

We prove in this section that a positive first-order expansion B of (Z; succ) which is not
preserved by any d-modular maximum or minimum has an NP-hard CSP. As in the non-
positive case, an important step of the classification is to show that there exists a non-basic
binary relation with a pp-definition in B.

Let R be a relation of arity n with a first-order definition φ over B. We say that R is
r-decomposable if φ(x1, . . . , xn) is equivalent over B to∧

1≤i1<···<in−r≤n
∃xi1 , . . . , xin−r .φ(x1, . . . , xn) .

The following lemma states that a positive first-order expansion of (Z; succ) which is not
preserved by a modular maximum or minimum pp-defines a non-basic binary relation. It
is a positive variant of Lemma 38 in [15], and its proof is essentially the same. Intuitively
this is because in both cases the binary relations that are pp-definable in B have either
finite distance degree or are Z2 (if B has finite distance degree this is immediate, and when
B is positively definable in (Z; succ) this is the content of Lemma 6.41). For the sake of
completeness, we reproduce the proof with the necessary adjustments.

Lemma 6.46. Let B be a positive first-order expansion of (Z; succ) without a modular max
or a modular min as polymorphism. Then there is a non-basic binary relation pp-definable
in B which has a finite distance degree.

Proof. The binary relations pp-definable in B are either basic, or non-basic and of finite
distance degree, by the fact that B is positive and Lemma 6.41. Suppose for contradiction
that all the binary relations with a pp-definition in B are basic.

If every relation S of B were 2-decomposable then B would be invariant under max:
indeed, we assumed that the binary relations pp-definable in B are already pp-definable in
(Z; succ), so that a 2-decomposable relation S already has a pp-definition in (Z; succ), and
is thus preserved by max. Therefore, B contains a relation that is not 2-decomposable.
This implies that, by projecting out coordinates from S, we can obtain a relation R of
arity r ≥ 3 which is not (r − 1)-decomposable.

This implies, in particular, that there exists a tuple (a1, . . . , ar) /∈ R such that for all
i ∈ {1, . . . , r}, there exists some integer pi such that (a1, . . . , pi, . . . , ar) ∈ R. By replacing
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R by the relation with the pp-definition

∃y1, . . . , yr
( ∧
i∈[r]

(yi = xi + ai) ∧R(y1, . . . , yr)
)

we can further assume that ai = 0 for all i ∈ [r]. We can also assume, w.l.o.g., that
p1 6= −p2 because r ≥ 3.

Suppose that the arity of R is greater than 3, and consider the ternary relation
T (x1, x2, x3) defined by R(x1, x2, x3, . . . , x3). If there is a z ∈ Z so that R(0, 0, z, . . . , z),
then T would not be 2-decomposable, since (0, 0, 0) 6∈ T , although (p1, 0, 0), (0, p2, 0), and
(0, 0, z) are all in T . This contradicts the minimality of the arity of R. If there is no such
z then ∃x3.R(x1, x2, x3, . . . , x3) defines a binary relation omitting (0, 0) and containing
(0,−p1) and (0, p2). This relation is binary, pp-definable in B, and non-basic, contradic-
tion.

Suppose now that r = 3. We claim that every binary projection of R is Z2. Suppose
otherwise that one such binary projection, say the one defined by ∃x1.R(x1, x2, x3), is not
of this form. By assumption, all binary relations with a pp-definition in B are basic, so
this formula is equivalent to x3 = x2 + p for some p ∈ Z. Let (a, b, c) ∈ Z3 be such that

• (a, b) is in the projection of R onto {1, 2},

• (a, c) is in the projection of R onto {1, 3}, and

• (b, c) is in the projection of R onto {2, 3} (i.e., c = b+ p).

Since (a, b) is in the projection of R onto {1, 2}, there exists d ∈ Z such that (a, b, d) ∈ R.
Since the projection of R onto {2, 3} is basic we have d = b+ p = c, so that (a, b, c) is in
R. Hence, R is 2-decomposable, contradicting our assumptions. This shows the claim.

Let φ(x1, x2, x3) be a positive formula in reduced DNF defining R over (Z; succ). This
formula has at least two disjuncts, otherwise R would be pp-definable over (Z; succ). Each
disjunct contains at most two literals, because it suffices to describe only two distances
between three variables to determine the type of a triple of integers. We claim that there
is a disjunct in φ that consists of only one literal. If that was not the case, every disjunct
would have two literals and would be equivalent to succpi(x2, x1)∧ succqi(x3, x1) for some
pi, qi ∈ Z. In this case, the formula ∃x2.φ(x1, x2, x3) defines a binary relation with finite
distance degree, contradicting the claim established in the previous paragraph. Further-
more, there are at least two such disjuncts: if there were only one, say succp(x2, x1), the
relation defined by ∃x3.φ(x1, x2, x3) is binary and has a finite distance degree, a contra-
diction. Hence, there are at least two disjuncts in φ that contain only one literal. One
of x1, x2, x3 must appear twice in those literals, and we may assume by permuting the
variables that it is x1. Let us write these literals as succp(x2, x1) and succq(x3, x1), for
p, q ∈ Z. Then the formula ∃x3

(
φ(x1, x2, x3)∧ succp−q+1(x2, x3)

)
is equivalent to a binary

DNF which is reduced and contains the two disjuncts succp(x2, x1) and succp+1(x2, x1).
The relation defined by this formula has finite distance degree, again contradicting our
assumptions.

It follows that there exists a non-basic binary relation pp-definable in B, and this
relation has finite distance degree by positivity of B.

The following is Lemma 43 in [15].
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Lemma 6.47. Let S ⊂ Z be finite with |S| > 1, and let d be the greatest common divisor
of all a− a′ for a, a′ ∈ S. Then for any d-progression T , the relation DiffT is pp-definable
in (Z; succ,DiffS).

Proposition 6.48. Let B be a first-order expansion of (Z; succ), and S ⊂ Z a 1-progression
with |S| > 1, such that DiffS is pp-definable in B. Then B is preserved by max or min; or
CSP(B) is NP-hard.

Proof. Suppose that B is not preserved by max nor min. Therefore, there exist in B a
relation R ⊆ Zn that is not preserved by max and a relation T ⊆ Zm which is not preserved
by min. This means that there are tuples a, b in R such that max(a, b) is not in R and
similarly for T . By hypothesis and Lemma 6.47, all the 1-progressions are definable in
B. Let M be maxi,j{|ai − aj |, |bi − bj |}, and let φ be the pp-definition of Dist[0,M |1] in B.
Define the relation R∗ by R(x1, . . . , xn) ∧

∧
i,j≤n φ(xi, xj) and analogously define T ∗ from

T . We have that a, b ∈ R∗ by construction, and still max(a, b) 6∈ R∗ since R∗ ⊆ R. Also
note that R∗ has finite distance degree. Analogously, S∗ is not preserved by min and has
finite distance degree. It follows from Proposition 6.39 that CSP(Z; succ,DiffS , R

∗, T ∗) is
NP-hard. Therefore, CSP(B) is also NP-hard.

We can now prove the complexity classification for positive first-order expansions of
(Z; succ).

Proposition 6.49. Let B be a positive first-order expansion of (Z; succ). Then B is
preserved by a modular max or a modular min, and CSP(B) is in P, or CSP(B) is NP-
hard.

Proof. If B is preserved by a modular max or a modular min, then CSP(B) is in P
by Theorem 6.38, so assume that this is not the case. Lemma 6.46 implies there ex-
ists a non-basic binary relation R with finite distance degree and a pp-definition in B.
Lemma 44 in [15] states that if S ⊂ Z is finite, but not a d-progression, for any d > 0,
then CSP(Z; succ,DiffS) is NP-hard. Hence, if R is not a d-progression for any d ≥ 1,
then CSP(B) is NP-hard. So let us assume that R is a d-progression for some d ≥ 1.

Since B is not preserved by maxd, it contains a relation T1 containing tuples (a1, . . . , an)
and (b1, . . . , bn) such that (maxd(a1, b1), . . . ,maxd(an, bn)) /∈ T1. Since B is positive, the
binary projections of T1 have finite distance degree by Lemma 6.41. By the same argu-
ment as above, we can suppose that these binary projections are arithmetic progressions
unless CSP(B) is NP-hard. Lemma 45 in [15] establishes that CSP(B) is NP-hard un-
less all these arithmetic progressions are d-progressions. Using succ, we easily see that
T1 pp-defines a relation T ′1 that is not preserved by maxd and such that all the dif-
ferences ai − aj , for (a1, . . . , an) ∈ T ′1, are divisible by d. Therefore we can pick two
tuples (a1, . . . , an) and (b1, . . . , bn) in T ′1 whose entries are divisible by d, and such that
(maxd(a1, b1), . . . ,maxd(an, bn)) 6∈ T ′1. Similarly, we obtain a relation T ′2 which has a
pp-definition in B and which contains tuples (c1, . . . , cm), (d1, . . . , dm) whose entries are
all divisible by d and such that (mind(c1, d1), . . . ,mind(cm, dm)) is not in T ′2. Let B′ be
(Z; succd, R, T ′1, T

′
2). It follows from our construction that B′/d is not preserved by max

nor by min. Moreover B′ contains the non-basic d-progression R, so that B′/d contains a
non-basic 1-progression. By Proposition 6.48, we obtain that CSP(B′/d) is NP-hard.

Now we reduce CSP(B′/d) to CSP(B) to prove that the latter is also NP-hard. By
Lemma 43 in [15], the relation Dist[0,d|d] has a pp-definition in B. Let q be the qe-degree
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of B and note that an instance of B on n variables has a solution iff it has a solution on
the interval [0, qn]. From an instance Φ of CSP(B′/d) we build an instance Ψ of CSP(B).
The variables of Ψ consist of the variables of Φ and additionally qn − 1 new variables
x1, . . . , xqn−1 for each extant variable x of Φ, and finally an additional new variable z.
The constraints of Ψ are as follows:

• for each constraint of Φ using the relations succd, R, T ′1, and T ′2, we add a constraint
to Ψ using the pp-definitions of these relations in B,

• for each variable x of Φ, Ψ contains the constraint Dist[0,qdn|d](x, z), that we define
by the conjunction Dist[0,d|d](x, x1) ∧Dist[0,d|d](x1, x2) ∧ . . . ∧Dist[0,d|d](xqn−1, z).

It is straightforward to see that B/d |= Φ iff B |= Ψ and the result follows.

6.6.5 Concluding the classification

We can finally combine the structural classification of first-order reducts of (Z;<) (Theo-
rem 6.6) with the complexity classification of the previous sections.

Theorem 6.5. Let B be a reduct of (Z;<) with finite signature. Then there exists a
structure C such that CSP(C) equals CSP(B) and one of the following cases applies.

1. C has a finite domain, and the CSP for B is in P or NP-complete.

2. C is a reduct of (Q;<) and CSP(C) is in P or NP-complete.

3. C is a reduct of (Z;<) and preserved by max or by min. In this case, CSP(C) is in
P.

4. C is a reduct of (Z; succ) such that C is preserved by a modular max or min, or Q.C
is preserved by a binary injective function preserving succ. In this case, CSP(C) is
in P.

5. CSP(B) is NP-complete.

Proof. Let B be a finite signature reduct of (Z;<). By Proposition 6.1, CSP(B) is in
NP. If B is homomorphically equivalent to a finite structure, we are in case (1) of the
statement and there is nothing to be shown. Otherwise, Theorem 6.6 implies that there
exists a reduct C of (Z;<) such that CSP(B) equals CSP(C), and one of the following cases
applies.

(a) C is a reduct of (Q;<). We are in case (2) of the statement; the complexity of
CSP(C) has been classified in Theorem 50 in [23].

(b) For all k ≥ 1, the relation Dist{k} is pp-definable; in this case, CSP(B) and CSP(C)
are NP-hard by Proposition 6.7. Hence, we are in case (5) of the statement.

(c) The relation succ is pp-definable in C. If < is pp-definable in C, then Lemma 6.40
and Theorem 6.38 imply that we are in case (3) or (5) of the statement. Otherwise
C is a reduct of (Z; succ), by Lemma 6.35. If C is non-positive then the statement
follows from Proposition 6.45, if it is positive then the statement follows from Propo-
sition 6.49.

132



Chapter 6. The Complexity of Discrete Temporal CSPs

6.7 Conclusion

In this chapter, we proved that for finitely many relations R1, . . . , Rk that are first-order
definable over (Z;<), the constraint satisfaction problem for B = (Z;R1, . . . , Rk) satisfies
a complexity dichotomy. In the case that B contains the successor relation (we showed
that the complexity classification can be reduced to this situation), the dichotomy has an
elegant algebraic formulation using the ω-saturated expansion Q.B of B:

• Q.B has a modular maximum/minimum polymorphism or a binary injective poly-
morphism and the CSP of B is in P, or

• Q.B omits these polymorphisms and the CSP of B is NP-complete.

These results are important foundations for the investigation of the complexity of CSPs
for constraint languages that are definable in Presburger arithmetic, i.e., definable over
(Z; +, <). In the next chapter, we continue this investigation with constraint languages
that are definable over (Z; +, 1) and that contain +.

We note that the important Max-Atom problem [8] can be formulated as the CSP
for a first-order reduct of (Z;<) whose signature is infinite. In order to define the com-
putational problem CSP(B) for a structure with an infinite relational signature we have
to discuss how the relation symbols of B are represented in the input. As explained in
Chapter 2, the classical CSP is only defined for finite relational signatures; moving to
infinite signatures requires specifying an encoding for the constraints of the input. For
example, if we represent a relation symbol R in a first-order reduct B of (Z;<) by the
first-order formula that defines RB, we can no longer expect polynomial-time algorithms
for CSP(B) since already the problem to decide whether a single constraint in the input
is satisfiable becomes PSPACE-complete. However, for first-order reducts of (Z;<) with
infinite signature there is a natural candidate for an input encoding of the relation symbols
of B that still allows for polynomial-time algorithms for CSP(B), which we describe in the
following. Each constraint R(x1, . . . , xk) is represented by a quantifier-free definition of R
over (Z;<) in reduced disjunctive normal form, where a literal xi ≤ xj + k is encoded by
giving k in binary representation. When the input is represented in this way, CSP(B) is
still in NP, by the same argument as in Proposition 6.1.

The Max-Atom problem is the CSP for the first-order reduct of (Z;<) that contains
all the relations of the form

{(x, y, z) ∈ Z3 | x ≤ y + p ∨ x ≤ z + p}.

Many decision problems reduce in polynomial time to Max-Atom: this is for example the
case of mean-payoff games [50] (which are in fact polynomial-time equivalent to Max-
Atom [80]), parity games, and the model-checking problem for the modal µ-calculus [69].
The precise complexity of the Max-Atom problem is still unknown: it is known to be
in NP ∩ coNP, but not known to be in P. Note that if the constants p in the Max-
Atom constraints are encoded in unary, then there is a simple reduction of the Max-Atom
problem to a discrete temporal CSP (which is max-closed and with finite signature; also
see Example 11, (6)): the max-atom constraint x ≤ max(y, z) + p is equivalent to

∃x1, . . . , xp
(
x1 = succ(x) ∧ · · · ∧ xp = succ(xp−1) ∧ xp ≤ max(y, z)

)
.

133



6.7. Conclusion

The hardness proofs in this chapter can be used even for infinite-signature reducts B of
(Z;<): for any structure B′ obtained by keeping finitely many relations from B, there is a
trivial polynomial-time reduction from CSP(B′) to CSP(B). Hence, Theorem 6.5 implies
that if B contains the successor relation, and if maxd,mind, and si are not polymorphisms
of B or Q.B, then CSP(B) is NP-hard. In particular, if B contains additionally the
relation <, then CSP(B) is NP-hard unless B is preserved by max or min.
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Chapter 7

Disjunctive Linear Diophantine Constraints

In this chapter, we continue investigating CSPs in the Jonsson-Lööw programme. The
templates of interest here are structures that are first-order definable in (Z; +, 1) and that
have + in their signature. The CSP of (Z; +, 1) itself is the problem of solving linear
Diophantine equations. This problem is in P, and the class that we propose to study
here is the class of all extensions of linear Diophantine satisfiability. Note that although
(Z; succ) is first-order definable in (Z; +, 1), and so is every countable unary structure with
finite signature, the class of structures studied in this chapter has an empty intersection
with the classes studied in Chapter 4 and Chapter 6, because the structures considered
here have to contain + in their signature.

In a related work [19], the authors studied the problem of classifying the complexity of
the CSP of semi-algebraic constraint languages, that is, constraint languages whose rela-
tions are first-order definable in (Q; +,×, <, 1). They obtained a complete classification in
the case that the constraint language contains +, ≤, and 1. Moving from semi-algebraic to
semi-linear constraint languages, whose relations are first-order definable over the struc-
ture (Q; +, <, 1), Jonsson and Thapper classified the complexity of constraint languages
containing + in their signature [65]. The complexity of first-order reducts of (Q; +, 1)
containing + has also been classified [18].

In these works, the class of relations quantifier-free definable in Horn conjunctive nor-
mal form plays a key role. In this context, the atomic relations are inequalities and
equalities, and each clause may have no more than one equality or inequality. That is,
additional disjuncts in clauses must be disequalities. For first-order expansions of (Q; +),
the tractable constraint languages are precisely those that are quantifier-free Horn defin-
able on (Q; +) [18]. However, the integers behave very differently from the rationals or
reals and even simple types of Horn definitions engender intractable constraint languages,
as documented in [64]. In this chapter, we show that the tractability border for first-order
reducts of (Z; +, 1) containing + coincides with that for first-order expansions of (Q; +).

Theorem 7.1. Let A be an expansion of (Z; +) by relations with a first-order definition
in (Z; +, 1). Then CSP(A) is in P or NP-complete. Moreover, if A is a core, then CSP(A)
is in P if the relations of A are Horn-definable, and CSP(A) is NP-complete otherwise.



7.1. Preliminaries

7.1 Preliminaries

A linear equation is a formula of the form
∑n

i=1 κixi = c with κ1, . . . , κn, c ∈ Z, whose
free variables are {x1, . . . , xn}. A modular linear equation is a formula of the form∑n

i=1 κixi = c mod d with κ1, . . . , κn, c, d ∈ Z. Let L(Z;+,1) be the infinite relational
language containing the linear equations and modular linear equations. More formally, for
every linear equation or modular linear equation L(Z;+,1) contains a corresponding rela-
tional symbol. For convenience, we consider first-order logic to have native symbols for >
(true) and ⊥ (false). It is well-known that (Z; +, 1) admits quantifier elimination in the
language L(Z;+,1) (see [83], or [77, Corollary 3.1.21] for a more modern treatment). Call
an L(Z;+,1)-formula standardized if it does not contain a negated modular linear equation.
Every L(Z;+,1)-formula is equivalent over Z to a standardized L(Z;+,1)-formula, since a
negated modular linear equation is equivalent to a disjunction of modular linear equations
(i.e., k 6= b mod c ⇔

∨
0≤a<c,a6=b k = a mod c). We say that an equation appears in a

formula if it is a positive or negative literal in this formula.

Any subgroup Γ of Zk can be given by a finite set of generators, i.e., k-tuples g1, . . . , gm,
such that for every g ∈ Γ, there are λ1, . . . , λm ∈ Z such that g =

∑
i κig

i, where we
write λ · g for (λg1, . . . , λgk). A coset of a subgroup Γ of Zk is any set of the form
a+ Γ := {a+ g | g ∈ Γ}, where a ∈ Zk. By moving to a standardized formula, we are in a
position to deduce the following.

Proposition 7.2. Suppose R is a unary relation first-order definable in (Z; +, 1). Then
R has the form (R′ ∪ A) \ B, where R′ is a finite union of cosets of nontrivial subgroups
of Z, and A and B are finite disjoint sets of integers.

Proof. Consider a disjunction φ of equations (possibly negated and modular equations). If
this disjunction contains a negated equation ax 6= c, then φ defines a relation that contains
Z \ {c/a} and is therefore as in the statement. Otherwise, φ contains only positive linear
equation and modular equations, and the relation that φ defines is clearly of the form
R′ ∪A for some finite set A and some union R′ of nontrivial subgroups of Z.

Consider a quantifier-free formula φ in conjunctive normal form defining R. Each
conjunct defines a relation of the right form, per the previous paragraph. It is easily
checked that a conjunction of relations of this form is again a relation of the form (R′∪A)\
B, so that we have proved that every quantifier-free formula with one free variables defines
a relation of the right form. The proposition then follows from quantifier-elimination.

If A is first-order definable in (Z;<,+, 1), then CSP(A) is in NP. This follows from
quantifier elimination and is noted, inter alia, in [64].

Definition 7.1. Let φ be an L(Z;+,1)-formula. We say that φ is Horn if it is a conjunction
of clauses of the form

n∨
i=1

¬φi ∨ φ0

where φ1, . . . , φn are linear equations and φ0 is a linear or a modular linear equation.

Example 16. Singletons, cofinite unary relations, and cosets of subgroups of Zn are all
examples of relations definable over L(Z;+,1) that are Horn-definable.
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7.2 Cores

If A is a first-order reduct of (Z; +, 1) containing +, note that its endomorphisms are
precisely of the form x 7→ λx for some λ ∈ Z. Therefore, we view in the following End(A)
as a subset of Z, where the monoid structure on End(A) implies that as a subset of Z, it
is closed under multiplication and contains 1. Remember that a core is a structure whose
endomorphisms are self-embeddings. Under the identification of End(A) with a subset of
Z, we obtain that A is a core if, and only if, whenever λ, λµ ∈ End(A) then µ ∈ End(A).
We say that B is a core of A if A and B are homomorphically equivalent and B is a core.

Lemma 7.3. Let A be first-order definable in (Z; +, 1), and suppose that A contains +.
There exists a structure which is a core of A, and which is either a 1-element structure or
first-order definable in (Z; +, 1) and containing +.

Proof. If 0 ∈ End(A) then the lemma is clearly true (A being homomorphically equivalent
to the substructure of A induced by {0}), so let us assume that 0 6∈ End(A). Similarly we
can assume that End(A) 6⊆ {−1, 1}, otherwise A is already a core. For a quantifier-free
formula ψ and an integer λ, define ψ/λ by induction on ψ as follows:

• if ψ is
∑
κixi = c and λ divides c, then ψ/λ is

∑
κixi = c/λ,

• if ψ is
∑
κixi = c and λ does not divide c, then ψ/λ is ⊥,

• if ψ is
∑
κixi = c mod d and ` := gcd(λ, d) divides c, ψ/λ is

∑
κixi = ec/` mod d/`

where e is the inverse of λ/` modulo d/`,

• if ψ is
∑
κixi = c mod d and ` := gcd(λ, d) does not divide c, ψ/λ is ⊥,

• extend to boolean combinations in the obvious fashion.

Note that for every tuple a, we have that a satisfies ψ/λ iff λ · a satisfies ψ. Indeed, if
ψ is a linear equation then this is clear. Similarly, it is clear if ψ is a modular equation
and ` := gcd(λ, d) does not divide c. Suppose that ψ is a modular equation and ` :=
gcd(λ, d) divides c. If

∑
λκixi = c mod d then λ/` · (

∑
κixi) = qd/` + c/` so that

eλ/` · (
∑
κixi) = (eq) · d/` + ec/`, where e is the inverse of λ/` modulo d/` and q ∈ Z.

We therefore obtain
∑
κixi = ec/` mod d/`. Conversely if

∑
κixi = ec/` mod d/` then∑

λκixi = (λe)c/`+ (λ` q)d = c mod d.

Let ψ be any quantifier-free L(Z;+,1)-formula and suppose that |λ| > 1. The only cases
where some magnitudes of the integers on the right-hand sides of terms in the formula
ψ do not decrease by forming ψ/λ is when ψ only contains literals either of the form∑
κixi = 0 or of the form

∑
κixi = c mod d with λ and d coprime. Therefore, the

sequence ψ0, ψ1, ψ2, . . . where ψ0 is ψ and where ψi+1 is ψi/λ for some λ ∈ End(A) with
|λ| > 1 reaches in a finite number of steps a fixpoint where all the literals are either of
the form

∑
κixi = 0 or are modular equations whose modulus d is such that λ and d are

coprime. Let n ≥ 1 be such that for every ψ defining a relation of A, the formula ψn is
a fixpoint. Let B be the structure whose domain is Z and whose relations are + and the
relations defined by ψn for each ψ defining a relation of A.

We claim that B is homomorphically equivalent to A and is a core. The first claim is
clear, since B is isomorphic to the structure obtained from A by successive applications
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of endomorphisms x 7→ λ · x (in particular B embeds into A). Let now x 7→ λ · x be an
endomorphism of B, and suppose that a is a tuple in a relation R of B. Then we have that
λ · a in R since x 7→ λ · x is an endomorphism. Conversely, note that λ is coprime to d or
else we would not have reached a fixed point in the previous stage. Thus, λφ(d) = 1 mod d,
where φ(d) here is the totient of d. It follows then that λφ(d)a = a mod d. Suppose λa ∈ R,
then by applying φ(d)− 1 times an endomorphism, we derive λφ(d)a ∈ R. It follows that
a ∈ R, for both the cases that atoms are of the form

∑
κixi = 0 or are modular equations

whose modulus d is such that λ and d are coprime. Hence, x 7→ λ · x is an embedding of
A.

Define an order on standardized formulas using the lexicographic ordering on:

1. number of non-Horn clauses,

2. number of literals,

3. sum of the absolute value of all numbers appearing in an equation.

A formula is minimal if no smaller formula is equivalent. The following properties follow
from the construction of a core in the previous proof.

Proposition 7.4. Let A be first-order definable in (Z; +, 1), and suppose that A contains
+ and is a core. Let λ ∈ End(A). Let R be a relation of A and let φ be a standardized
minimal formula defining R.

• If
∑
κixi = c is a linear equation appearing in φ, then either c = 0 or |λ| = 1.

• If
∑
κixi = c mod d is a modular linear equation in φ, then λ and d are coprime.

Moreover, if End(A) = 1 + dZ for some d ≥ 2, then every relation of A can be expressed
with a minimal formula in which all modular linear equations are divisors of d.

Proof. The two items are clear from the proof of Lemma 7.3, as the syntactic manipulations
in the proof decrease the size of the formula. For the last statement, let d′ be a modulus
appearing in a minimal definition of a relation of A. By the second item, we have that d′

and 1 + kd are coprime, for all k ∈ Z. Let ` be such that `d = −1 mod d′

gcd(d,d′) . If d′ and

1+ `d are coprime, there exist u, v ∈ Z such that ud′+v(1+ `d) = 1. Taking this equation
modulo d′

gcd(d,d′) , we obtain that 0 = 1 mod d′

gcd(d,d′) , so that gcd(d, d′) = d′ and d′ divides
d.

7.3 Hardness

Our sources of hardness come from one-dimensional pp-interpretations, that we define
now. A structure B is said to be one-dimensional pp-interpretable in A if there exists a
partial map h : A → B such that the inverse image of every relation of B (including the
equality relation and the unary relation B) under h has a pp-definition in A. Formally,
we require that for every k-ary relation R of B, there exists a pp-formula φR(x1, . . . , xk)
in the language of A such that

A |= φR(a1, . . . , ak)⇔ B |= R(h(a1), · · · , h(ak))
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holds for all a1, . . . , ak ∈ A. The constraint on the equality relation of B and the unary
relation B force that the kernel of h and its domain have a pp-definition in A. One sees
that one-dimensional pp-interpretations are a particular case of pp-constructions, so that
from Lemma 2.3 we obtain that if B is pp-interpretable in A, then CSP(B) reduces in
polynomial time to CSP(A).

7.3.1 The fully modular case

One of the sources of hardness for our problems are expansions of the general subgroup
problem from [52]. The general subgroup problem of a finite abelian group Γ is the CSP
of (Γ; +) expanded with a k-ary relation for every coset a+ ∆, where ∆ is a subgroup of
Γk. It is known that this problem is solvable in polynomial time (under some reasonable
encoding of the input); in modern parlance, this follows from the fact that the operation
(x, y, z) 7→ x − y + z is a Maltsev polymorphism of the template. Feder and Vardi [52,
Theorem 34] proved that the problem becomes NP-hard if the template is further expanded
by any other relation.

The general subgroup problem of Z/dZ can be viewed as a CSP of a first-order reduct
of (Z; +, 1) whose relations are defined by quantifier-free formulas only containing modular
linear equations. This motivates the following definition.

Definition 7.2. A relation R ⊆ Zk is called fully modular if it is definable by a conjunction
of disjunctions of modular linear equations, in which case we can even assume that all the
modular linear equations involved in such a definition of R have the same modulus d ≥ 1.

Proposition 7.5. Let A be finite-signature first-order definable in (Z; +, 1) and containing
+. Suppose that A has a fully modular relation that is not Horn-definable. Then CSP(A)
is NP-complete.

Proof. Let R be a relation of A that is not Horn-definable and fully modular, and let
d ≥ 1 be such that R can be defined with only linear equalities modulo d. Let A/dA be
the structure A/dA with domain Z/dZ and with relations + as well as for every relation
S of arity k of A, a relation S′ defined by

S′ = {(a1, . . . , ak) | ∃q ∈ Z : (qd+ a1, . . . , qd+ ak) ∈ S′}.

Note that A/dA is pp-interpretable in A: the map h is the canonical projection x 7→
x mod d, whose kernel is pp-definable by the formula φ=(x, y) := ∃z(x − y = dz). As
a consequence, CSP(A/dA) reduces in logarithmic space to CSP(A). Moreover, if A is
a core then A/dA is also a core. It follows from Proposition 2.20 that CSP(A/dA, 1)
reduces to CSP(A/dA) and so to CSP(A). Note that every coset of a subgroup of Z/dZk
is pp-definable in (A/dA, 1) and that if R is not Horn-definable then R′ is not a coset of a
subgroup. It follows from Theorem 34 in the bible [52] that CSP(A) is NP-complete.

7.3.2 The unary case

In order to prove Theorem 7.1, we now focus on the case of parametrised unary relations.
For a unary relation R ⊆ Z that is definable in (Z; +, 1), we write R◦ for the unique union
of cosets of nontrivial subgroups of Z such that R can be decomposed as R = (R◦∪A)\B
where A,B are finite and disjoint, A ∩R◦ = ∅ and B ⊂ R◦.
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Definition 7.3. Let A be a first-order reduct of (Z; +, 1) and Λ ⊆ Z be a set containing
1 and such that 0 6∈ Λ. Let {Sλ}λ∈Λ be a set of unary relations Sλ ⊆ Z. We say that
the unary relations are compatible if there exist disjoint finite sets A,B ⊆ Z such that
Sλ = (S◦λ ∪ λ · A) \ λ · B for all λ ∈ Λ and such that for all d ≥ 1 and c ∈ {0, · · · , d− 1},
we have c+ dZ ⊆ S◦1 ⇔ λc+ dZ ⊆ S◦λ. We say that {Sλ}λ∈Λ is uniformly pp-definable in
A if there exists a pp-formula θ(x, y) such that a ∈ Sλ if, and only if, A |= θ(λ, a).

Note that the definition of being uniformly pp-definable implies that Λ has a pp-
definition in A, for ∃y(θ(x, y)) is a pp-definition. Given a binary relation S ⊆ Z2 that is
pp-definable in A, we write Sλ for the set {a ∈ Z | (λ, a) ∈ S}, and the family {Sλ}λ∈Λ

with Λ = Z \ {0} is uniformly pp-definable in A (but does not necessarily satisfy the
compatibility condition). For example, let S = {(a, b) ∈ Z2 | a = b ∨ a = 2b}. Then
we have Sλ = {λ} for λ = 1 mod 2 and Sλ = {λ, λ2} for λ = 0 mod 2. Therefore, the
compatibility condition is not satisfied by {Sλ}λ∈Z\{0}.

Lemma 7.6. Let A be a first-order reduct of (Z; +, 1) containing +. If {Sλ}λ∈Λ is a
compatible set of unary relations that is uniformly pp-definable in A and such that 1 <
|Sλ| <∞ for all λ ∈ Λ, then CSP(A) is NP-hard.

Proof. Since every Sλ is finite, one sees that Sλ = λ · A for the finite set A coming from
the compatibility condition. Let m1 := min(A) and m2 := min(A \ {m1}). The formula

∃λ(x+ y + z = (m2 −m1)λ ∧ x+m1λ ∈ Sλ ∧ y +m1λ ∈ Sλ ∧ z +m1λ ∈ Sλ ∧ λ ∈ Λ)

defines the ternary relation consisting of (a, b, c) ∈ Z3 such that a, b, c ∈ {0,m2−m1} and
exactly one of a, b, c is equal to m2 −m1. This gives an interpretation of 1-in-3-Sat in
A, using the map h : {0,m2 − m1} → {0, 1} such that h(0) = 0 and h(m2 − m1) = 1.
Therefore CSP(A) is NP-hard.

Proposition 7.7. Let A be a core that is first-order definable in (Z; +, 1) and contains
+. Let {Sλ}λ∈Λ be a compatible family of unary relations that is uniformly pp-definable
in A. If Sλ is not Horn-definable for all λ ∈ Λ, then CSP(A) is NP-hard.

Proof. Let A,B ⊂ Z be finite and such that Sλ = (S◦λ ∪ λ · A) \ (λ ·B). If Sλ is finite for
all λ ∈ Λ, then CSP(A) is NP-hard by Lemma 7.6. Therefore, we can assume that S◦λ 6= ∅
for all λ ∈ Λ, and let d ≥ 1 be such that S◦λ is a union of cosets of dZ for all λ ∈ Λ. Write
S◦1 =

⋃n
i=1 ci + dZ, with ci ∈ {0, . . . , d− 1}.

If n ∈ {2, . . . , d − 1}, we claim that we can define a fully modular relation that is
not Horn-definable. Indeed, let θ(x, y) be a formula that defines {Sλ}λ∈Λ. Note that
χ(x, y) := θ(x, y)∧ θ(x, y+ dx)∧ · · · ∧ θ(x, y+ max(A∪B)dx) holds precisely on the pairs
(λ, a) such that a ∈ S◦λ: since x is forced to be in Λ by θ, a satisfying assignment gives a
nonzero value λto x. Thus, if all of y, y+dλ, · · · , y+max(A∪B)dλ are in Sλ, then they all
must be in the modular part S◦λ. The relation T that χ defines is fully modular and is such
that Tλ = S◦λ and in particular T is not Horn-definable. It follows from Proposition 7.5
that CSP(A) is NP-hard.

Otherwise, the set S◦λ consists of a single coset of dZ for all λ ∈ Λ, and this coset
is λc1 + dZ by the compatibility condition on {Sλ}λ∈Λ. Since S◦λ is assumed to not be
Horn-definable, then A 6= ∅. Let a ∈ A. We claim that we can define another family of

140



Chapter 7. Disjunctive Linear Diophantine Constraints

unary relations, where the unary relations are finite and not singletons. Indeed, consider
the formula

ψ(x, y) := ∃z (θ(x, y) ∧ θ(x, z) ∧ y + z = (c1 + a)x)

and let T ⊆ Z2 be the relation that it defines. First, note that ψ(λ, c1) and ψ(λ, a) hold
for all λ ∈ Λ, so that |Tλ| > 1. We claim that Tλ is finite. Since A ∩ S◦1 = ∅, one
has a 6= c1 mod d. Consequently, c1 + a 6= 2c1 mod d and (c1 + a)λ 6= 2c1λ mod d. The
equation y + z = (c1 + a)λ therefore forces that one of y and z is in λ · A. Since A
is finite, there are only finitely many pairs satisfying this condition, thus showing that
1 < |Tλ| <∞. It follows from Lemma 7.6 that CSP(A) is NP-hard.

A nice corollary of the hardness result for unary relations is the necessary condition
on End(A) for CSP(A) to not be NP-hard that we give in the sequel (Corollary 7.10).

Lemma 7.8. Let A be a finite-signature structure first-order definable in (Z; +, 1) that
contains +. The set End(A) is pp-definable in A.

Proof. Let E be the set of all the formulas R(a1 · x, . . . , ar · x) for R in the language of A
and (a1, . . . , ar) ∈ R. We then have that A |= E(λ) iff λ ∈ End(A). We now show that
there exists a finite subset F ⊆ E that defines the same set of integers.

For each relation R of A, fix a standardized definition φR in conjunctive normal form of
R in (Z; +, 1). Let M be the largest absolute value of a constant appearing in φR. Consider
the finite family F of equations

∑
µixi = m, where

∑
µixi = m′ is some equation in φR

and |m| ≤M , together with all the equations
∑
µixi = c mod d where

∑
µixi = c′ mod d

is a modular equation in φR and c ∈ {0, . . . , d−1}. For each subset of F that is satisfiable
by a tuple in R, pick a tuple b ∈ R satisfying the formulas in this subset and add this
tuple to a set S. Repeat this operation for every relation of A, and let S be the finite set
of tuples (of possibly different arities) that we obtain. Finally, let F be the subset of E
where only the formulas associated with tuples from S are kept.

We claim that F defines End(A). Since F ⊆ E, it suffices to show that every λ
satisfying F is an endomorphism of End(A). Let λ ∈ Z satisfy F , and let a ∈ R be a tuple
in some relation of A. Let b ∈ S be such that b satisfies exactly the same equations in
F as a. By construction, λb ∈ R so that in each clause of φR, some equation is satisfied
by λb. We show that λa satisfies the same equations, so that λa ∈ R. If λ = 0, then
λb = λa so that λa ∈ R. Suppose now that λ 6= 0. Let

∑
µixi = c be a linear equation

that is satisfied by λb. Then necessarily λ divides c, so that b satisfies
∑
µixi = c

λ and
| cλ | ≤ |c| ≤M , so that

∑
µixi = c

λ is an equation in F . Consequently, a also satisfies this
equation and λa satisfies

∑
µixi = c. The proof for modular linear equations is similar.

This proves that λ is an endomorphism of A and concludes the proof.

Lemma 7.9. Suppose that (Z; +, R) is a core, with R ⊆ Z being definable over (Z; +, 1).
Write R = (R′ ∪A) \B with R′ being a union of cosets of a nontrivial subgroup of Z and
A,B being disjoint minimal finite subsets of Z.

• Suppose that A 6= ∅. Then {1} or {1,−1} is pp-definable in (Z; +, R).

• If A = ∅, we have B = ∅ or R = Z \ {0}.
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Proof. Let n be such that R′ is a union of n cosets of dZ, i.e.,

R′ =

n⋃
i=1

ci + dZ.

Let us prove the first item. By Lemma 7.8, it suffices to prove that the only possible
endomorphisms of the structure (Z; +, R) are x 7→ λ · x with λ ∈ {1,−1}. Suppose that
x 7→ λ · x is an endomorphism. Then λ 6= 0 since the structure is a core, so suppose that
|λ| > 1. Let a be the maximal element of A, and note that in particular a+d 6∈ R (it cannot
be in A because of the maximality assumption, and cannot be equal to any ci modulo d).
Then a ∈ R, so λqa ∈ R for all q ∈ N. In particular, if q is such that λq > max(A ∪ B)
we obtain λqa ∈ R′. This means that λqa = ci mod d for some i ∈ {1, . . . , n}. Finally,
λq(a+ d) = λqa+ λqd = ci mod d, so that λq(a+ d) ∈ R. This implies that x 7→ λq · x is
not an embedding, contradicting the core assumption on (Z; +, R).

Let us now prove the second item. Let b be some element of B. We must have
b = ci mod d for some i ∈ {1, . . . , n}, by the minimality assumption on B (otherwise
B \ {b} could be used to define the same relation). Note that the map x 7→ (d+ 1)x is an
endomorphism of (Z; +, R), so it has to be an embedding. It follows that (d+ 1)m · b 6∈ R
for any m. Suppose that b is not 0. Choose m so that (d+ 1)m · |b| > maxe∈B |e| so that
(d + 1)m · b 6∈ B. But (d + 1)mb = ci mod d, a contradiction. It follows that B ⊆ {0},
which concludes the proof.

Corollary 7.10. Let A be finite-signature first-order definable in (Z; +, 1) and contain
+. Suppose that A is a core. If End(A) is not Horn-definable, then CSP(A) is NP-hard.
Moreover, if End(A) is Horn-definable, then it is either {1}, Z \ {0}, or 1 + dZ for some
d ≥ 2.

Proof. One simply has to note that (Z; +,End(A)) is a core. Indeed, let λ be an endomor-
phism of (Z; +,End(A)). Since 1 ∈ End(A)), we obtain that λ ∈ End(A), so that x 7→ λx
is a self-embedding of A by the fact that A is a core. Since End(A) is definable over A
without quantifiers, it follows that x 7→ λx is also a self-embedding of (Z; +,End(A)). Te
first part of the result then follows from Lemma 7.8 and Proposition 7.7. The second part
follows from Lemma 7.9.

7.3.3 Arbitrary arities

We finally present here the proof of hardness in the general case. The strategy is to cut
from a non-Horn relation R a uniformly definable family {Sλ}λ∈Λ of lines for which each
Sλ is not Horn-definable. In a second step, we ensure that we get a family satisfying
the compatibility condition, and we conclude using Proposition 7.7. Call a formula φ in
conjunctive normal form reduced if removing any literal or clause from φ yields a formula
that is not equivalent to φ. Note that minimal formulas are necessarily reduced.

Lemma 7.11. Let A be a reduct of (Z; +, 1) containing + and such that A is a core.
Suppose that A contains a relation that is not Horn-definable. Then CSP(A) is NP-hard,
or A pp-defines a relation that is not Horn-definable and that has a minimal definition
containing a non-Horn clause ψ such that:

• no negated linear equation is in ψ,
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• at least one linear equation is in ψ.

Proof. Let R be an n-ary relation of A that is not Horn-definable, let φ be a minimal
formula defining R in conjunctive normal form, and let ψ be a clause of φ that is not
Horn. From Corollary 7.10, we can suppose that End(A) is {1}, Z \ {0}, or 1 + dZ for
d ≥ 2. This implies that either {1} is pp-definable or, by Proposition 7.4, all the linear
equations appearing in φ are homogeneous. As a consequence, we can assume that ψ does
not contain any negative literal, per the assumption that φ is reduced: indeed, consider
the relation R′ defined by

φ ∧
∑

κixi = c (†)

where
∑
κixi 6= c is a negated equation in ψ; either c = 0, in which case (†) is in the

language of A, or {1} is pp-definable in A and (†) is also in the language of A. This new
relation R′ is not Horn-definable and is pp-definable in A, so it suffices to prove hardness
for this relation.

Suppose now that ψ only contains modular linear equations. By Proposition 7.4,
End(A) is not Z \ {0} (any modulus in a modular linear equation would have to be
coprime with every nonzero integer!). Therefore, End(A) is {1} or 1 + dZ for d ≥ 2. In
the latter case, we can assume by Proposition 7.4 that all the modular linear equations
in ψ are modulo a divisor of d. In the former case, let d be a common multiple of all
the moduli appearing in a modular linear equation in ψ. Consider the structure A/dA
defined in Proposition 7.5. The relation T obtained from R in this structure is not a
coset of a subgroup Z/d′Z of Z/dZ (otherwise one could replace ψ in φ by a Horn clause
defining the corresponding coset modulo d′Z and obtain a smaller formula defining R, a
contradiction to the minimality of φ). Moreover, (A/dA, 1) is pp-interpretable in A: in
the two cases that End(A) = {1} and End(A) = 1 + dZ, the preimage of {1} under the
canonical projection is pp-definable in A. We conclude as in Proposition 7.5 that CSP(A)
is NP-hard.

Therefore, in the remaining case, ψ contains at least one linear equation and no negated
linear equation, as required.

Theorem 7.12. Let A be a reduct of (Z; +, 1) containing + and such that A is a core.
Suppose that A contains a relation that is not Horn-definable. Then CSP(A) is NP-hard.

Proof. From Lemma 7.11, we can suppose that A pp-defines a relation R that is not Horn-
definable, that has a reduced standardized definition φ containing a non-Horn clause ψ
with at least one linear equation (L) and no negated linear equation. Since ψ is not Horn,
it contains at least another equation (L′), possibly modular. Let (a1, . . . , an) satisfy φ and
only (L) in ψ. Such a tuple exists by the assumption that φ is reduced. Similarly, let
(b1, . . . , bn) satisfy φ and only (L′) in ψ. Let S be the binary relation such that (λ, t) ∈ S
if, and only if, λ ∈ End(A) and t(a − b) + λb is in R. Note that a and b being fixed, S
is pp-definable over A. Therefore, we obtain a family {Sλ}λ∈Λ that is uniformly definable
in A, where Λ = End(A). It is clear that 0, λ ∈ Sλ. Moreover, note that

Sλ ∩ λ · Z = λ · S1 (‡)
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holds for all λ ∈ End(A). Indeed:

t ∈ S1 ⇔ t(a− b) + b ∈ R
⇔ λt(a− b) + λb ∈ R because A is a core

⇔ λt ∈ Sλ.

We prove that for all λ ∈ End(A), Sλ is not Horn-definable. Since 0, λ ∈ Sλ, it suffices
to prove that Sλ omits infinitely many multiples of λ, and by (‡) it suffices to prove that
` 6∈ S1 for infinitely many `. Let ` be such that ` = 1 mod d′, for every modulus d′

appearing in ψ. It is clear that `(a− b) + b does not satisfy any modular linear equation
in ψ. Indeed, let

∑
i σixi = c mod d′ be such a modular linear equation. Then we have∑

i

σi(`(ai − bi) + bi) = c mod d′ ⇔
∑
i

σiai = c mod d′,

which is a contradiction to the choice of a since a only satisfies (L) in ψ and (L) is assumed
to be non-modular. Consider now a linear equation

∑
σixi = c in ψ. This equation is

satisfied by `(a− b) + b if, and only if, the equation

` ·
∑

κi(ai − bi) = c−
∑

κibi (?)

holds. Suppose first that
∑
κi(ai − bi) = 0. Then (?) is satisfied if, and only if, we

have
∑
κibi = c =

∑
κiai. This implies that both a and b satisfy the equation; this is

a contradiction to our choice of the vectors a and b, so that `(a − b) + b does not satisfy
(?). Suppose now that

∑
κi(ai − bi) 6= 0. If ` > |c −

∑
κibi|, it is then clear that (?) is

not satisfied. Therefore, for infinitely many `, the tuple `(a − b) + b does not satisfy any
literal in ψ and ` 6∈ S1.

Let θ(x, y) be a reduced standardized definition of S of minimal size. By Proposi-
tion 7.2, one can decompose Sλ as (S◦λ ∪ Aλ) \ Bλ, where S◦λ is a union of cosets of a
subgroup of Z (the cosets and the subgroup depend on λ). By inspection of the formula
θ, one finds that Aλ and Bλ consist of points of the form −aλ

b , where ax + by = 0 is
an equation in θ. Note that since a and b are taken coprime by minimality of θ, if b
divides aλ then b divides λ. Let m := lcm{|b| : ax + by = 0 is an equation in θ}, and
note that mZ∩K is not empty by the previous remark. Let T 6= ∅ be the binary relation
defined by θ(m · x, y) and as above write Tλ ⊆ Z for the projections associated with T
(i.e., Tλ = Smλ for all λ ∈ End(A)). It is clear that Tλ is not Horn-definable and is of
the form (T ◦λ ∪ (λ · P )) \ (λ · Q), where P and Q are finite sets that are independent of
λ and T ◦λ = S◦mλ. For the family of relations {Tλ}λ∈End(A) to satisfy the compatibility
condition, it remains to prove that c + dZ ⊆ T ◦1 if, and only if, λc + dZ ⊆ T ◦λ , for all
d ≥ 1 and c ∈ {0, . . . , d − 1}. Suppose that c + dZ ⊆ T ◦1 for some d ≥ 1 and the cosets
of T ◦λ are cosets of d′Z. By Proposition 7.4, λ and d′ are coprime. Therefore, there exists
µ ∈ Z such that λµ = 1 mod d′. We have c + dµZ ⊆ T ◦1 , simply because d divides dµ.
It follows that λc + λdµZ ⊆ T ◦λ . Now, let x ∈ λc + dZ, say x = λc + qd. Then we have
x = λc+ qλµd mod d′. Note that λc+ qλµd ∈ λc+λdµZ ⊆ T ◦λ . Since the cosets in T ◦λ are
cosets of d′Z, we obtain that x ∈ T ◦λ and consequently that λc+ dZ ⊆ T ◦λ . Conversely, if
λc+ dZ ⊆ T ◦λ then λc+ dλZ ⊆ T ◦λ (because d divides dλ), and since A is a core we have
that x 7→ λ · x is a self-embedding of A, so that c+ dZ ⊆ T ◦1 .
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To conclude, the family of compatible relations {Tλ}λ∈End(A) is uniformly pp-definable
in A and consists of non-Horn relations. By Proposition 7.7, we obtain that CSP(A) is
NP-hard.

We illustrate our proofs in some examples below.

Example 17. Consider the binary relation

S = {(λ, t) | (λ = 1 mod 4 ∧ t = 1 mod 4) ∨ (λ = 3 mod 4 ∧ t = 3 mod 4) ∨ t = 0}.

One sees that the set of endomorphisms of A := (Z; +, S) is equal to End(A) := 1 + 2Z.
Moreover, S is not Horn-definable. For every λ ∈ End(A), one has Sλ = {0} ∪ (λ + 4Z).
When λ is fixed, one can define a finite set by ∃y(x ∈ Sλ∧y ∈ Sλ∧x+y = λ), which defines
{0, λ}. One then obtains a reduction from 1-in-3-Sat by ∃x, y, z ∈ {0, λ} : x + y + z ∈
{0, λ}. Finally, by existentially quantifying over λ ∈ End(A) we obtain a reduction from
1-in-3-Sat to CSP(Z; +, S).

Example 18. Let R := {0}∪(1+3Z)∪(2+3Z) and K = 1+3Z. Note that Proposition 7.7
does not apply to CSP(Z; +, R) since (Z; +, R) is not a core, nor does Corollary 7.10
applies to CSP(Z; +, R,K) since End(Z; +, R,K) is K, which is Horn-definable. One
obtains hardness of CSP(Z; +, R,K) by Theorem 7.12 as follows. Pick a = 0 (satisfying
the linear equation x = 0 in the definition of R) and b = 1 (satisfying the modular linear
equation x = 1 mod 3 in the definition of R), and define the relation S = {(λ, t) | λ ∈
K ∧ λ− t ∈ S}. Note that for all λ ∈ K, we have Sλ = {λ} ∪ 3Z ∪ (2 + 3Z). The formula
∃w(w ∈ K ∧ S(λ, t) ∧ S(λ, t + 3w)) defines the relation T = {(λ, t) | λ = 1 mod 3 ∧ (t =
0 mod 3 ∨ t = 2 mod 3)}, which is fully modular and not Horn-definable. Proposition 7.5
implies that CSP(Z; +, R, S) is NP-hard.

7.4 Tractability

In this section we show the following.

Proposition 7.13. Let A be a structure with finite relational signature, domain Z, and
whose relations have quantifier-free Horn definitions over (Z; +, 1). Then there is an
algorithm that solves CSP(A) in polynomial time.

This result follows from the following more general result.

Theorem 7.14. Let φ be a quantifier-free Horn formula over (Z; +), allowing parameters
from Z represented in binary. Then there exists a polynomial-time algorithm to decide
whether φ is satisfiable over (Z; +).

The proof of Theorem 7.14 can be found at the end of this section. We first show how
to derive Proposition 7.13.

Proof of Proposition 7.13. The input of CSP(A) consists of a primitive positive sentence
whose atomic formulas are of the form R(x1, . . . , xk) where R is quantifier-free Horn defin-
able over L(Z;+,1). Since

∑n
i=1 aixi = b mod c is equivalent to

∑n
i=1 aixi = b+ ck, where k

is a new integer variable, we can as well assume that the input to our problem consists of
a set of Horn clauses over (Z; +, 1). This is tacitly the process of quantifier introduction,
the converse of quantifier elimination. Then apply Theorem 7.14.
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Our algorithm for the proof of Theorem 7.14 uses two other well-known algorithms:

1. a polynomial-time algorithm for satisfiability of linear diophantine equations, i.e.,
the subproblem of the computational problem from Theorem 7.14 where the input
only contains atomic formulas (see, e.g., [85]).

2. a polynomial-time algorithm to compute the rank of a matrix over Q; this allows us in
particular to decide whether a given linear system of equalities implies another equal-
ity over the rationals (this is standard, using Gaussian elimination; again, see [85]
for a discussion of the complexity).

These two algorithms can be combined to obtain the following.

Lemma 7.15. There is a polynomial-time algorithm that decides whether a given system
Φ of linear diophantine equations implies another given diophantine equation ψ over Z.

Proof. First, use the first algorithm above to test whether Φ has a solution over Z. If
no, return yes (false implies everything). If yes, we claim that Φ implies ψ over Q (which
can be tested by the second algorithm above) if and only if Φ implies ψ over the integers.
Clearly, if every rational solution of Φ satisfies ψ, then so does every integer solution.
Suppose now that there exists a rational solution α to Φ which does not satisfy ψ. Also
take an integer solution β to Φ. Then on the line L between α and β there are infinitely
many integer points. If one of them does not satisfy ψ, then Φ does not imply ψ over the
integers. If all of them satisfy ψ, then all points of L must satisfy ψ, in particular α, a
contradiction.

Given the two mentioned algorithms, our procedure for the proof of Theorem 7.14 is
basically an implementation of positive unit clause resolution. It takes the same form as
the algorithm presented in [18] for satisfiability over the rationals.

// Input: a set of Horn-clauses C over (Z; +) with parameters.
// Output: satisfiable if C is satisfiable in (Z; +), unsatisfiable otherwise
Let U be clauses from C that only contain a single positive literal.
If U is unsatisfiable then return unsatisfiable.
Do

For all negative literals ¬φ in clauses from C
If U implies φ, then delete the negative literal ¬φ from all clauses in C.

If C contains an empty clause, then return unsatisfiable.
If C contains a clause with a single positive literal ψ, then add {ψ} to U .

Loop until no literal has been deleted
Return satisfiable.

Figure 7.1: An algorithm for satisfiability of Horn formulas with parameters over (Z; +).

Proof. We follow the proof of Proposition 3.1 from [18]. We first discuss the correctness
of the algorithm.

When U logically implies φ (which can be tested with the algorithm from Lemma 7.15)
then the negative literal ¬φ is never satisfied and can be deleted from all clauses without
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affecting the set of solutions. Since this is the only way in which literals can be deleted
from clauses, it is clear that if one clause becomes empty the instance is unsatisfiable.

If the algorithm terminates with satisfiable, then no negation of an inequality is implied
by U . If r is the rank of the linear equation system defined by U , we can use Gaussian
elimination to eliminate r of the variables from all literals in the remaining clauses. For
each of the remaining inequalities, consider the sum of absolute values of all coefficients.
Let S be one plus the maximum of the this sum over all the remaining inequalities. Then
setting the i-th variable to Si satisfies all clauses. To see this, take any inequality, and
assume that i is the highest variable index in this inequality. Order the inequality in such a
way that the variable with highest index is on one side and all other variables on the other
side of the 6= sign. The absolute value on the side with the i-th variable is at least Si. The
absolute value on the other side is less than Si−S, since all variables have absolute value
less than Si−1 and the sum of all coefficients is less than S − 1 in absolute value. Hence,
both sides of the inequality have different absolute value, and the inequality is satisfied.
Since all remaining clauses have at least one inequality, all constraints are satisfied.

Now let us address the complexity of the algorithm. With appropriate data structures,
the time needed for removing negated literals ¬φ from all clauses when φ is implied by U
is linearly bounded in the input size since each literal can be removed at most once.

7.5 Conclusion

We are finally in position to prove the main result.

Proof of Theorem 7.1. Let A be first-order definable in (Z; +, 1) and suppose that A con-
tains +. By Lemma 7.3 there exists a core B of A. If B has only one element then CSP(B)
and CSP(A) are trivially in P. Otherwise, B is itself first-order definable in (Z; +, 1) and
contains +, and the statement follows from Theorem 7.12 and Proposition 7.13.
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[57] Jan Hubička and Jaroslav Nešetřil. “Universal Structures with Forbidden Homo-
morphisms”. In: Logic Without Borders - Essays on Set Theory, Model Theory,
Philosophical Logic and Philosophy of Mathematics. arXiv:0907.4079. De Gruyter,
2015, pp. 241–264.
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[59] Jan Hubička and Jaroslav Nešetřil. “Homomorphism and Embedding Universal Struc-
tures for Restricted Classes”. In: Multiple-Valued Logic and Soft Computing 27.2-3
(2016). arXiv:0909.4939, pp. 229–253.

[60] Neil Immerman. Descriptive Complexity. Graduate Texts in Computer Science. Springer,
1999.

[61] Peter Jeavons, David Cohen, and Martin C. Cooper. “Constraints, Consistency and
Closure”. In: Artificial Intelligence 101.1-2 (1998), pp. 251–265.

[62] Peter Jeavons, David Cohen, and Marc Gyssens. “Closure Properties of Constraints”.
In: Journal of the ACM 44.4 (1997), pp. 527–548.

[63] Peter Jonsson and Thomas Drakengren. “A Complete Classification of Tractability
in RCC-5”. In: Journal of Artificial Intelligence Research 6 (1997), pp. 211–221.
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