
A maximally tractable fragment of temporal reasoning plus

successor

Antoine Mottet

Laboratoire d’Informatique de l’École Polytechnique

August 21, 2014

1. Introduction

A constraint satisfaction problem (CSP) is a decision problem that consists in deciding for a given
set of variables and constraints over these variables whether there exists a mapping of the variables
to a fixed domain such that the image of the variables satisfies the given constraints. The example
that illustrates the basic definitions of this introduction is the graph 3-colourability problem. Even
without a formal definition, it is easily seen to be a constraint satisfaction problem: the variables
are the vertices of the graph and have to be assigned to the domain {0, 1, 2}, and the constraints
say that two adjacent vertices have to be assigned to different values.

Definitions

We can formalize the notion of constraints using signatures and structures:

Definition 1. A relational signature σ is a set of relation symbols where each symbol is given an
arity k ≥ 1.

A relational σ-structure A consists of a set A, called the domain of the structure, and for each
k-ary relation symbol R of σ the structure provides an interpretation RA ⊆ Ak. We assume in the
following that σ always has the binary relation symbol = whose interpretation in any σ-structure
A is the equality relation {(x, x) | x ∈ A}.

When the meaning is clear, we denote by R both a symbol in a signature and its interpretation
in a structure. Furthermore if A is a set and R1, . . . , Rn are relations on A, we denote by A =
(A,R1, . . . , Rn) the structure with signature σ = {R1, . . . , Rn} such that RA

i = Ri. If A is a σ-
structure and R is a relation on A, we denote by (A, R) the (σ∪{R})-structure obtained by letting
RA = R.

Let us go back to our example, with the signature σ = {E}, E being a relation symbol of arity
2. Let V = {0, 1, 2}, and let EK3 be V 2\{(0, 0), (1, 1), (2, 2)}. Then K3 = (V,EK3) is a σ-structure,
and the problem of assigning vertices of a graph to K3 so that if v and w are adjacent then the
image of (v, w) is in EK3 is exactly the 3-colourability problem.

Structures can be seen as databases: they express facts about points of the domain, and they
can be queried using various languages. To know if the 5-cycle is three colourable, we query K3

with the formula

Φ := ∃x1, . . . , x5.
4∧

i=1

E(xi, xi+1) ∧ E(x5, x1).

If K3 satisfies this formula, which we denote by the relation K3 |= Φ, then the 5-cycle is 3-colourable,
otherwise it is not.

Using this database point of view, we can already grasp what the heart of the problem is:
given a query (a sentence) to be evaluated on a database (a structure) A, what is the complexity
of evaluating this query on A? In the study of constraint satisfaction problems, we restrict our
attention to evaluating queries that have a particular form. A formula in the signature σ is said
to be primitive positive (pp) if it consists of existential quantifiers, conjunctions, variables and
symbols from the signature σ. In the following, the symbols x, y, z, u, v stand for variables that
are supposed to be different, unless otherwise stated. A pp-sentence is a primitive positive formula
where all variables are bound by a quantifier. The constraint satisfaction problem of a structure
(in a finite signature) can be defined as:

Definition 2. Let A be a relational σ-structure, where σ is finite. The problem CSP(A) is the
following decision problem:
Input: A primitive positive sentence Φ over the signature σ
Output: Does A |= Φ?

As we have seen before, CSP(K3) is the 3-colourability problem: a graph G = (V,E) has a canonical
query ΦG that can be used as input to CSP(K3). The variables of ΦG are the vertices of G, and for
each edge (v, w) ∈ E, one adds the conjunct E(v, w) to ΦG. It is clear that G is 3-colourable if and
only if K3 |= ΦG. Conversely, a pp-sentence Φ yields a graph GΦ whose vertices are the variables
of Φ and there is an edge (v, w) in G if E(v, w) or E(w, v) appears in Φ. Again, we have that GΦ

is 3-colourable if and only if K3 |= Φ, so that CSP(K3) is indeed the 3-colourability problem.

Algorithmic results

We study here the complexity of the CSP over the set of the rational numbers where the relations
in the signature are defined by:

1. y = x+ 1,

2. x = y → u = v, and

3. x > y ∨ x > z ∨ x = y = z.

The corresponding structure is denoted by L, and +1 is the relation symbol that we use to represent
the first relation. It was shown in [?] that when the language consists of the last two relations, the
corresponding satisfaction problem is solvable in polynomial time. However, it is not clear how to
adapt the algorithm presented there so that it can deal with constraints of the form y = x+ 1.

We first use the technique of sampling presented in [?] to establish that a particular class of
CSPs are polynomial-time tractable — namely the class of CSPs that arise from structures over the
rational numbers that are min-closed. Using this result, we provide a polynomial-time algorithm
for CSP(L). The algorithmic results are presented in Sections 2, 4, and 5.

Reducts and maximality result

Given a σ-structure A (that we call the ground structure), one can define new relations on the
domain of A using first-order formulas. For example, in the structure (Q, <) one can define the
ternary relation Betw = {(a, b, c) ∈ Q3 | a < b < c ∨ c < b < a} ⊂ Q3. More rigorously:

2

Definition 3. Let A be a structure with domain A, and let R ⊆ An be an n-ary relation. We say
that R is first-order (resp. pp) definable in A if there exists a first-order (resp. primitive positive)
formula Φ(x1, . . . , xn) such that for all (a1, . . . , an) ∈ An,

(a1, . . . , an) ∈ R⇔ A |= Φ(a1, . . . , an).

Let A,B be structures. If all the relations of B have a first-order definition in A we say that
B is a first-order reduct of A (or simply reduct). For example, (Q, Betw) and (Q,=) are both
first-order reducts of (Q, <). If the structure B is a reduct of A and is so that all the relations of
A are also in B, we say that B is an expansion of A.

All these reducts give rise to new CSPs, and the classification project for the ground structure
A is the task of determining for each finite-signature first-order reduct B of A the complexity of
CSP(B).

A very basic, yet important, fact about primitive positive definitions is the following:

Lemma 1. Let A,B be finite-signature structures over the same domain such that all the relations
of A are pp-definable in B. Then CSP(A) ≤p CSP(B).

Proof. Let Φ be an input to CSP(A). Since all relations of A are pp-definable in B, we can replace
each atom Ri(y) (where y is a tuple of variables extracted from {x1, . . . , xn}) in Φ by a pp-definition
Ψi of Ri in B. Let us write Ψi as ∃z.

∧
Tj(y, z), where each Tj is a symbol from the signature of B.

Putting the resulting formula in prenex form (with all the quantifiers at the front of the formula),
we obtain an input Ψ to CSP(B). We now have

A |= Φ⇔ A |= ∃x1, . . . , xn.
∧
Ri(y)

⇔ B |= ∃x1, . . . , xn.
∧

Ψi(y, z)

⇔ B |= ∃x1, . . . , xn, z1, . . . , zl.
∧
Ti(y, z)

⇔ B |= Ψ.

This reduction is easily seen to be polynomial-time.

This lemma implies that if all relations of A are pp-definable in B and vice versa, CSP(A) and
CSP(B) are polynomial-time equivalent. Thus, it makes sense from a complexity point of view
to study first-order reducts of some ground structure up to primitive positive inter-definability. If
we order the class of first-order reducts of some given ground structure so that A ≤ B if all the
relations of A are pp-definable in B, we obtain an infinite lattice where we can draw a border
between reducts:

• if all finite-signature structures B such that B ≤ A are so that CSP(B) is in P, we say that
A is tractable,

• otherwise we say that A is hard.

Establishing the complexity of reducts of the ground structure is then the task of investigating this
lattice and finding those structures A that are tractable, but so that for every B such that A < B,
B is hard. In this case, A is said to be maximally tractable among the class of reducts of the

3

ground structure. We prove in Section 6 that the structure L and the structure that consists of all
min-closed relations are indeed maximal in the class of reducts of Q = (Q, <,+1).

This result is a first step in the project of classifying the complexity of the CSP of the first-
order reducts of Q. Since L and min-closed relations are maximal, any attempt to this classification
project has to deal with this case.

2. Syntactic description

In this section, we give a description of the relations that have a primitive positive definition over
the initial set of constraints. Let us first recall the structure that we are working on:

Definition 4. Let L be the structure over the domain Q whose relations are:

1. {(a, b) | b = a+ 1},

2. {(a, b, c, d) | a = b→ c = d}, and

3. {(a, b, c) | a > b ∨ a > c ∨ a = b = c}.

As stated in Lemma 1, a structure that is obtained by adding finitely many relations that have
a pp-definition over L to the ones of L has a polynomial-time equivalent CSP. Furthermore, having
a description of these relations allows us to apprehend the closure properties of L, as shown in
Section 3.

First, note that the relations {(a, b) | b = a + p} and {(a, b) | b > a + p} are definable over Q
for all p ∈ Z, so that in the following we will use abbreviations like z = y + p and z > y + p, where
those abbreviations are to be understood as formulas over the language of Q. Since these relations
are even pp-definable over Q, using the abbreviations in pp-formulas gives pp-formulas.

Definition 5. Let Φ be a formula over the language of Q. We say that Φ is ll-Horn if it is a
conjunction of clauses of the form

(x1 = y1 + p1 ∧ · · · ∧ xk = yk + pk)→ (z > u1 + q1 ∨ · · · ∨ z > ul + ql)

or

(x1 = y1 + p1 ∧ · · · ∧ xk = yk + pk)→ (z > u1 + q1 ∨ · · · ∨ z > ul + ql

∨ z = u1 + q1 = · · · = ul + ql)

for k, l ≥ 0, pi, qi ∈ Z and where xi, yi, z, ui are not necessarily distinct variables. A relation R ⊆ Qn

is said to be ll-Horn if there exists an ll-Horn formula that defines R over Q.

Note that the set of ll-Horn relations contains the relations defined by x ≥ y, x > y, and x 6= y.
We first prove that the set of ll-Horn relations is a subset of the set of relations that are pp-definable
over L:

Lemma 2. Let R ⊆ Qn be an ll-Horn relation. Then R has a primitive positive definition over L.

4

Proof. It is enough to prove that every formula of the above form is pp-definable in L if pi = 0
and qi = 0 for all i. Through pp-definition and with the relation +1, it is then easy to express the
formulas where pi and qi are not necessarily 0.

We first show how to pp-define over L the relation defined by (x1 = y1∧ . . .∧xk = yk)→ u = v
for all k ≥ 1. For k = 1, the relation is in the language of L, so there is nothing to prove. For
larger k, the following formula is a pp-definition of the relation over L, assuming that the relation
with k − 1 is already defined:

∃d.
[
((x1 = y1 ∧ · · · ∧ xk−1 = yk−1)→ u = d)∧

(xk = yk → v = d)
]
.

It is straightforward to show that this indeed defines the desired relation.
Secondly, the relation defined by (z > u1 ∨ · · · ∨ z > ul ∨ z = x1 = · · · = xl) has a pp-definition

over L for all l ≥ 1. For l ≤ 2 this is obvious, and for larger l, we have the following definition over
L:

∃d.
[
(z > u1 ∨ · · · ∨ z > ul−2 ∨ z > d ∨ (z = u1 = · · · = d))∧
(d > xl−1 ∨ d > xl ∨ d = xl−1 = xl)

]
.

Finally, the relation defined by (z > u1 ∨ · · · ∨ z > ul) has a pp-definition over L for all l ≥ 1.
For l = 2, we first note that the relation defined by (x = y → u 6= v) is pp-definable over L
by ∃d.(x = y → u = d) ∧ (v = d → d = d + 1). Then (z > u1 ∨ z > u2) is equivalent to
(z > u1 ∨ z > u2 ∨ z = u1 = u2) ∧ (z = u1 → z 6= u2). For larger l, the following pp-defines the
relation over L:

∃d. [(z > u1 ∨ · · · ∨ z > ul−2 ∨ z > d) ∧ (d > ul−1 ∨ d > ul)] .

Then the formula of the first type in the statement of the theorem is equivalent to ∃d.((x1 =
y1 ∧ · · · ∧ xk = yk) → z = d) ∧ (d > u1 ∨ · · · ∨ d > ul) while the formula of the second type is
equivalent to ∃d.((x1 = y1 ∧ · · · ∧ xk = yk)→ z = d)∧ (d > u1 ∨ · · · ∨ d > ul ∨ (d = u1 = · · · = ul)),
which shows that these formulas are pp-definable over the relations of L.

Given a relation R ⊆ Qn that is defined by Φ(x1, . . . , xn) over Q, it may be hard to decide
whether R is ll-Horn. Consider the following example:

Example 1. The 4-ary relation R defined by (x > y ∨ u > v) ∧ u ≥ y ∧ x ≥ v is ll-Horn. Indeed, R
is also defined by the formula (x = y → u > v)∧ (u = v → x > y)∧u ≥ y∧x ≥ v, which is ll-Horn.

We will see in Section 3 how to characterize ll-Horn relations as the set of relations that are
closed under a certain operation, which will allow us to prove that the set of ll-Horn relations is
precisely the set of relations that are pp-definable over L (thus proving the converse of Lemma 2).

3. Closure properties

We investigate here some properties of ll-Horn relations by means of polymorphisms.

Definition 6. Let f : Qk → Q be a k-ary function, and let R ⊆ Qn be an n-ary relation. We
say that f preserves R, that f is a polymorphism of R, or that R is f -closed, if for all n-tuples
a1, . . . ,ak in R, we have that the tuple f(a1, . . . ,ak) is in R, where f is applied component-wise.

5

If Φ(x1, . . . , xn) is a formula that definesR over Q, and if s1, . . . , sk are functions from {x1, . . . , xn}
to Q that satisfy Φ (i.e. such that Q |= Φ(si(x1), . . . , si(xn))), we also write f(s1, . . . , sk) for the
function (x1, . . . , xn) 7→ (f(s1(x1), . . . , sk(x1)), . . . , f(s1(xn), . . . , sk(xn))). In the following, we shall
make no difference between a tuple a ∈ R and an assignment s that satisfies some formula Φ defining
R over Q.

When all the relations of a structure A are preserved by some operation f , we say that f is a
polymorphism of A, and we denote by Pol(A) the set of polymorphisms of A. Conversely, for a set
of operations F , we denote by Inv(F) the set of relations R ⊆ Qn that are f -closed for all f ∈ F .
Polymorphisms behave nicely with primitive positive definitions:

Lemma 3. Let A be a structure, and let R be a relation with a pp-definition in A. If f : Qk → Q
is a polymorphism of A, then f preserves R. In symbols,

R ∈ Inv(Pol(A)).

Remark 1. When A is finite, or when A is ω-categorical (see [?]), the converse is true: a relation
has a pp-definition over A if, and only if, it is preserved by all polymorphisms of A. Even though
the structure L we study here is not ω-categorical, we will see that R is pp-definable in L iff
R ∈ Inv(Pol(L)).

The first closure property we present in this section is the following:

Lemma 4. Let R ⊆ Qn be ll-Horn, and suppose that there exists a definition Φ(x1, . . . , xn) of R
over Q such that in the clauses of Φ, the premises are empty (i.e. k is 0 in Definition 5). Then R
is min-closed.

Proof. It follows immediately from the definition that min-closed relations are closed under inter-
section. Thus, it suffices to prove the lemma only for relations whose ll-Horn definition has only
one clause. Hence let Φ(x1, . . . , xn) be a definition of R, of the form (z > u1 +q1∨· · ·∨z > ul +ql),
and let s, t be tuples in R that we consider as functions from {x1, . . . , xn} to Q. Let 1 ≤ i, j ≤ l be
such that s(z) > s(ui) + qi and t(z) > t(uj) + qj . Suppose that s(z) ≥ t(z) (the other case being
similar). Then min(s(z), t(z)) = t(z) > t(uj) + qj ≥ min(s(uj), t(uj)) + qj , i.e. min(s, t) is in R.

Suppose now that R is defined by (z > u1 + q1 ∨ · · · ∨ z > ul + ql ∨ z = u1 + q1 = · · · = ul + ql).
If s and t satisfy literals in the first part, then we prove as in the paragraph before that min(s, t) is
still in R. If both s and t satisfy the chain of equalities, it is immediate that min(s, t) also satisfies
it. Hence let s and t be such that s satisfies s(z) > s(ui) + qi for some i and t satisfies the chain of
equalities.

Suppose first that s(z) ≥ t(z), and that there is an i ≤ l such that s(ui) < t(ui). Then for this
i, min(s(z), t(z)) = t(z) = t(ui) + qi > min(s(ui), t(ui)) + qi and min(s, t) is in R. If for all i ≤ l we
have s(ui) ≥ t(ui) then min(s(z), t(z)) = t(z) = t(ui) + qi = min(s(ui), t(ui)) + qi is true for all i,
and min(s, t) is in R.

If s(z) < t(z), then min(s(z), t(z)) = s(z) > s(ui) + qi = min(s(ui), t(ui)) + qi, as required.

The fact that min preserves some relations of L will be used in the algorithm together with the
sampling method presented in the next section.

We now prove that a particular binary injective operation is in Pol(L) through the next lemmas.
For this, we first have to introduce some new terminology.

6

Definition 7. Let A,B be σ-structures. Let A × B be the σ-structure whose domain is A × B
and for each symbol R ∈ σ of arity n, the interpretation of R in A×B satisfies

((a1, b1), . . . , (an, bn)) ∈ RA×B ⇔ a ∈ RA and b ∈ RB.

For k ≥ 1, we write Ak for the k-fold product A× · · · ×A.

Definition 8. Let A,B be two σ-structures. A homomorphism from A to B is a function f : A→ B
such that for each symbol R ∈ σ and every tuple a ∈ RA, we have f(a) ∈ RB. An automorphism
of A is a bijective function f : A→ A such that both f and f−1 are homomorphisms from A to A.

With these definitions, we see that polymorphisms f : Ak → A of A are simply homomorphisms
from Ak to A. In the next lemma, we focus on particular homomorphisms from Q2 to Q. Note
that the interpretation of +1 in Q2 is {((a, b), (a + 1, b + 1)) | a, b ∈ Q} and that in Q2 we have
(a, b) < (c, d)⇔ a < c ∧ b < d, so that the order is not linear.

Lemma 5. Let <l be a linear order on Q2 such that:

1. for all a, b ∈ Q2, if a < b then a <l b, and

2. for all a, b ∈ Q2 and p ∈ Z, if a <l b then a+ p <l b+ p.

Then there exists a homomorphism f : Q2 → Q that is so f(a) < f(b) whenever a <l b.

Proof. Note that the property 1 implies the following property:

3. for all a, b ∈ Q2, if a 6= b+ p for all p ∈ Z, there exists p ∈ Z such that b+ p <l a <l b+ p+ 1.

Enumerate Q2 as (an)n∈N. For all n ∈ N, define inductively an increasing chain (fn)n∈N of injective
functions where the domain of fn contains {a0, . . . , an}, the range of fn is included in Q2 and for
all n ∈ N, fn satisfies:

a) ∀a, b ∈ {a0, . . . , an}, b− a ∈ Z⇒ fn(b) = fn(a) + b− a, and

b) ∀a, b ∈ {a0, . . . , an}, p ∈ Z, a <l b+ p⇒ fn(a) < fn(b) + p.

Let f0 be a function that maps a0 to any point b0 in Q: this clearly satisfies the properties a)
and b).

Assume that fn is defined. If an+1 = ai + p for some i ≤ n and p ∈ Z, extend fn by bn+1 =
fn+1(an+1) := bi + p. If we have aj = an+1 + p′, then we also have aj = ai + (p + p′) and since
fn satisfies a), bj = bi + (p + p′), i.e. bj = bn+1 + p′. Similarly, if aj 6= an+1 + p′, we obtain
bj 6= bn+1 + p′, so that fn+1 satisfies a). If an+1 >l aj + p′, then ai >l aj + p′ − p by property 2 of
<l and bi > bj + p′ − p since fn satisfies b), which means bn+1 > bi + p′. If aj >l an+1 + p′, then
aj >l ai + p+ p′ and bj > bi + p+ p′, i.e. bj > bn+1 + p′. Hence fn+1 satisfies b).

Otherwise an+1 6= ai + p for all i ≤ n and p ∈ Z, and by the property 3 on <l there are pi ∈ Z
such that ai + pi <l an+1 <l ai + pi + 1. Let L = maxi ai + pi and U = minj aj + pj + 1, and in the
following let i and j denote respectively the index of the maximum and of the minimum. We then
have ai +pi <l aj +pj + 1, and bi +pi < bj +pj + 1 by hypothesis on fn and property 2 of <l. Since
< is dense in Q, there exists bn+1 ∈ (bi + pi, bj + pj + 1). Extend f by setting fn+1(an+1) = bn+1.
Since an+1 − ak 6∈ Z and bn+1 − bk 6∈ Z for all k ≤ n, fn+1 satisfies a). If an+1 >l ak + p, we have

7

p ≤ pk, hence since bn+1 > bk + pk, bn+1 > bk + p. If ak + p >l an+1, we have p ≥ pk + 1, hence
bk + p ≥ bk + pk + 1 > bn+1, so that fn+1 satisfies b).

Put f =
⋃
fn. By properties a) and b), f is a homomorphism from (Q2,+1, <l) to (Q,+1, <),

and since <l is a completion of the partial order <, f is a homomorphism from (Q,+1, <)2 to
(Q,+1, <), i.e. it is a polymorphism of (Q,+1, <).

Let <lex be the lexicographic ordering on Q2: it is a linear expansion of the order < and
it satisfies the property 2 in the statement of Lemma 5. Thus, there exists a binary operation
lex : Q2 → Q such that lex(a+ 1, b+ 1) = lex(a, b) + 1 and a <lex b⇒ lex(a) < lex(b). In fact, lex
preserves all the relations of L:

Lemma 6. lex ∈ Pol(L).

Proof. That the relations +1 is preserved by lex comes from the statement of Lemma 5. That
the relation defined by (x = y → u = v) is preserved is also clear, since lex is injective: if
s, t are assignments that satisfy the formula (x = y → u = v), either one of s or t satisfies
x 6= y and by injectivity lex(s(x), t(x)) 6= lex(s(y), t(y)), either s and t both satisfy u = v and
lex(s(u), t(u)) = lex(s(v), t(v)).

Let s, t be assignments of {x, y, z} that satisfy x > y∨x > z∨x = y = z. Suppose that s satisfies
x > y (if s satisfies x > z the proof is similar). We then have that (s(y), t(y)) <lex (s(x), t(x)) so
that lex(s, t) satisfies the formula x > y. If s satisfies x = y = z and t satisfies x > y, we are also
done as previously, noting that (s(y), t(y)) <lex (s(x), t(x)), and similarly if t satisfies x > z. If s
and t both satisfy x = y = z, then so does lex(s, t).

Hence all the relations of L are preserved by lex.

Unfortunately, Inv(lex) properly contains the set of pp-definable relations over L. Indeed, the
relation Betw = {(a, b, c) ∈ Q3 | a < b < c ∨ c < b < a} is preserved by lex, but this relation is
not ll-Horn, hence it is not pp-definable over L by Theorem 1 below. It is also worth noting that
CSP(Q, Betw) is NP-complete, hence lex does not provide information about the tractability of a
CSP. The rest of this section is devoted to the description of another binary operation ll that is
such that Inv(ll) is precisely the set of ll-Horn relations.

We first focus on the characterization of relations that are ll-Horn and definable over (Q, <)
(i.e. definable without using +1). Let <f be the linear order on Q2 defined by the following rules:

• if a, c ≤ 0, then (a, b) <f (c, d) iff (a, b) <lex (c, d),

• if a, c > 0 then (a, b) <f (c, d) iff (b, a) <lex (d, c), and

• if a ≤ 0 and c > 0 then (a, b) <f (c, d) for all b, d ∈ Q.

This linear order on Q2 is depicted in Figure 1. Using a similar proof than that of Lemma 5, we
show that there exists a binary polymorphism f of (Q, <) that is so that a <f b implies f(a) < f(b).

Lemma 7. Let R ⊆ Qn be first-order definable over (Q, <). If R is preserved by f , then R is
ll-Horn.

Proof. It is known that the structure (Q, <) admits quantifier elimination [?], that is, every first-
order formula is equivalent in (Q, <) to a formula without quantifiers. Thus, we may consider a
quantifier-free definition Φ of R that is in conjunctive normal form, and let V be the set of variables

8

of Φ. We first describe three rewriting rules that yield a formula Ψ that also defines R, and such
that R is preserved by f iff Ψ is ll-Horn. If Φ,Ψ are sets of formulas, let us write Φ |= Ψ if for every
assignment s of the variables from Φ and Ψ, if s satisfies all the formulas in Φ then s satisfies one
of the formulas in Ψ.

a. If C is a clause of Φ of the type x > y ∨ u > v ∨ C ′ and such that both

Φ \ C ∧ ¬C ′ ∧ x > y |= u ≥ v ∨ u ≥ y

and
Φ \ C ∧ ¬C ′ ∧ u > v |= x ≥ y ∨ x ≥ v

are true, replace C by

(x ≥ y ∨ x ≥ v ∨ C ′) ∧ (x = y → Cx,y)

∧(u ≥ v ∨ u ≥ y ∨ C ′) ∧ (u = v → Cu,v)

where Cx,y (resp. Cu,v) is C where the literal x > y (resp. u > v) is removed. Let Ψ be the formula
that we obtain, and denote by Di (1 ≤ i ≤ 4) the four clauses that we added to replace C, in
the order they are written above. We claim that Ψ is equivalent to Φ. Suppose that s is a valid
assignment to Φ. If s satisfies C ′, s satisfies D1 and D3. Since all the literals of C ′ are in Cx,y and
Cu,v, s also satisfies D2 and D4 so that s is a satisfying assignment to Ψ. If s doesn’t satisfy C ′,
s must satisfy x > y or u > v. Suppose that we are in the first case. The clause D1 is true, and
since Φ \C ∧ ¬C ′ ∧ x > y entails u ≥ v ∨ u ≥ y, we have that D3 is also true. Moreover x > y is a
literal in Cu,v so D4 is true, and s satisfies x 6= y so that the premise in D2 is false, and D2 is true.
The second case is treated in exactly the same way. Conversely, if s is a valid assignment for Ψ:
if s satisfies C ′ then C is true. If s satisfies Cx,y or Cu,v then C is true. Otherwise since D2 and
D4 are true we have that x 6= y and u 6= v. Since C ′ is false and x ≤ y and u ≤ v, we have x ≥ v
and u ≥ y. This is a contradiction, since this yields x < y ≤ u < v ≤ x. Hence we have that if s
satisfies Ψ, s satisfies C.

b. If C is a clause of Φ of the type x > y ∨ u > v ∨ C ′ and such that Φ \ C ∧ ¬C ′ ∧ x > y |= u ≥ v,
replace C by (u ≥ v ∨ C ′) ∧ (u = v → Cu,v). The formula we obtain is of course equivalent to Φ.

c. Finally, suppose that C is a clause of Φ of the form x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ z0 > u1 ∨ · · · ∨ z0 >
ul ∨ u = v. Let Cu,v be C where u = v is removed. If Φ \ C ∧ ¬Cu,v ∧ u = v |= z0 = u1 = . . . = ul,
replace C by (Cu,v∨(z0 = u1 = · · · = ul))∧(x1 = y1∧· · ·∧xk = yk∧z0 = u1 = · · · = ul → u = v) and
call Ψ the formula that we obtain. This new formula Ψ is equivalent to Φ: if s is a valid assignment
of Φ and s satisfies a literal of Cu,v, the corresponding literal exists in Ψ and the premise of the
second clause that we added is false, thus s is an assignment of Ψ. If s satisfies u = v and none
of the literals of Cu,v, we have by hypothesis that s satisfies z0 = u1 = · · · = ul, thus the two new
clauses of Ψ are true. Conversely, if s is an assignment of Ψ, either s satisfies Cu,v and Φ is true,
or s satisfies all the literals in the premise of the second clause, hence s satisfies u = v and is a
satisfying assignment of Φ.

Let Ψ be the formula obtained after performing every possible replacement. Suppose moreover that
Ψ is reduced (that is, any formula obtained by removing a literal or a clause is not equivalent to
Ψ).

9

Suppose that Ψ has a bad clause C of the form x > y ∨ u > v ∨ C ′ with x and u distinct
variables. Since the rewriting rule a. is not applicable, we have

Φ \ C ∧ ¬C ′ ∧ x > y 6|= u ≥ v ∨ u ≥ y

or
Φ \ C ∧ ¬C ′ ∧ u > v 6|= x ≥ y ∨ x ≥ v

and suppose that we are in the first case. There exists a satisfying assignment t1 of Φ such that t1
satisfies x > y, t1 doesn’t satisfy any other literal in C and t1 satisfies u < y. Furthermore since
the rewriting rule b. is not applicable, we have that Φ \C ∧¬C ′ ∧ u > v+ q2 6|= x ≥ y+ q1, so that
there exists t2 that satisfies Φ, u > v + q2 and x < y + q1 and that doesn’t satisfy any other literal
in C. Finally, there exists an automorphism γ of (Q, <) such that f(γt1, t2) doesn’t satisfy any
literal in C. This automorphism sends t1(u) to 0 and t1(x), t1(y), t1(v) to positive values. Hence,
the relation is not preserved by f , a contradiction. The second case is treated similarly.

If Ψ has a clause which contains x = y ∨ u = v, we immediately see that Ψ isn’t preserved by
f , using the fact that Ψ is reduced and that f is injective.

We have established that if a clause of Ψ contains x > y and u > v, we have x = u, and that
a clause contains at most one literal x = y. Suppose now that Ψ has a clause C which contains
u = v. This clause is of the form x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ z0 > u1 ∨ · · · ∨ z0 > ul ∨ u = v by
what we have proved so far. Since the rewriting rule c. is not applicable, we have Ψ \ C ∧ u =
v ∧¬Cu,v 6|= z0 = u1 = · · · = ul, hence there exists s a valid assignment of Ψ such that s(u) = s(v),
s(z0) < s(uj) for some 1 ≤ j ≤ l and s(xi) = s(yi) for all 1 ≤ i ≤ k. Since Ψ is reduced, there are
(ti)i≤l that are valid assignments of Ψ and such that ti(z0) > ti(ui) for i ≤ l, and such that all the
other literals of C are false. But then there exists an automorphism α of (Q, <) such that f(αtj , s)
doesn’t valid any literal in C, i.e. R is not f -closed, a contradiction.

The link between ll-Horn relations that are definable over Q and those that are definable over
(Q, <) is detailed in the next lemma:

Lemma 8. Let R ⊆ Qn be a relation that is first-order definable over Q. There exists T ⊆ Qn that
is first-order definable over (Q, <), pp-definable over (Q, R,+1), and that is not ll-Horn.

Proof. Let Φ(x) be a definition of R over Q. There exist two formulas Φ<(x,y) and Φ+1(x,y) in
respectively the signature {<} and the signature {+1} such that

Q |= ∀x(Φ(x)⇔ ∃y.Φ<(x,y) ∧ Φ+1(x,y)).

These formulas are built in the following manner: for each xj = xi + pi appearing in Φ, replace
xi + pi by a new variable ypii and put in Φ+1 the atom ypii = xi + pi. The equivalence displayed
above is easily seen to hold, and Φ+1 is a primitive positive formula in the signature {+1}.

Note that the formula (∃y.Φ<(x,y) ∧ Φ+1(x,y))) ∧ Φ+1(x, z) is equivalent (in Q) to Φ<(x, z),
so that the relation T defined by Φ<(x, z) over (Q, <) is pp-definable over (Q, R,+1).

It remains to show that T is not ll-Horn if R is not. Suppose that T has a ll-Horn definition
Ψ(x, z). Since Φ+1(x, z) is ll-Horn, we have that Φ(x) is equivalent to a ll-Horn formula, namely
the formula ∃y.Ψ(x,y) ∧ Φ+1(x,y). As a consequence, R is ll-Horn, a contradiction.

Let S be a dense codense subset of Q, that is closed under integer translations: if a ∈ S, then
a+ p ∈ S for all p ∈ Z. Let <ll be the linear extension of < on Q2 defined as follows:

10

0

Figure 1: The order <f

• if a ∈ S, then (a, b) <ll (c, a) for all b, c > a,

• if a 6∈ S, then (b, a) <ll (a, c) for all b, c > a, and

• (a, a) <ll (a, b) and (a, a) <ll (b, a) for all b > a.

By Lemma 5, there exists a binary polymorphism ll of Q that is so that if a <ll b, then ll(a) < ll(b).

Lemma 9. Let A be a structure. Let f : Ak → A, and let R ⊆ An be first-order definable over A.
Suppose that for any finite subset A′ of Ak, f |A′ can be expressed as a composition of polymorphisms
of (A, R). Then f is a polymorphism of (A, R).

Proof. Let a1, . . . ,ak be tuples from the relation R. Consider the finite subset A′ of Ak that
consists of the elements (a1

1, . . . , a
1
k), . . . , (an1 , . . . , a

n
k). By assumption, on A′ the function f can be

expressed as a composition of polymorphisms of (A, R). Since these polymorphisms preserve R, f
also preserves R.

Lemma 10. Let R ⊆ Qn be first-order definable over (Q, <). If R is preserved by ll, R is preserved
by f .

Proof. It suffices to prove that on every finite subset A of Q2, f can be expressed as the composition
of ll and polymorphisms of (Q, <), as per Lemma 9.

Let A = {(a1, b1), . . . , (ak, bk)} be such a subset. Suppose that ai ≤ 0 for i ≤ l and ai > 0
otherwise. Since S is dense in Q, there are points ci (i ≤ l) arbitrarily close to each ai so that
ci ∈ S. Similarly, since Q \ S is dense in Q, there are points ci (l < i ≤ k) arbitrarily close to each
ai so that ci 6∈ S. Choosing the points ci sufficiently close to the ai, the partial function that maps
ai to ci can be extended to an automorphism β of (Q, <). It suffices now to note that we have
ll(β(ai), bi) < ll(β(aj), bj) if, and only if, (ai, bi) <f (aj , bj), so that there exists an automorphism
α such that (α ◦ ll)(β(ai), bi) = f(ai, bi), which concludes the proof.

The following theorem is the conclusion of Sections 2 and 3.

Theorem 1. Let R ⊆ Qn be a relation that is first-order definable over Q. The following are
equivalent:

11

1. R is ll-Horn,

2. R is pp-definable over L,

3. R is preserved by ll.

Proof. (1)⇒ (2). This is proved in Lemma 2.
(2) ⇒ (3). It suffices to show that ll preserves the three relations of L, by Lemma 3. The
relation +1 is preserved by construction of ll, as stated in Lemma 5. The relation defined by
(x = y → u = v) is preserved since ll is injective. Finally, let s, t be valid assignments of the
formula (x > y ∨ x > z ∨ x = y = z). If both s and t satisfy the same literal, we are done since ll
preserves <. Otherwise, one of (s(y), t(y)) and (s(z), t(z)) is less than (s(x), t(x)) with respect to
the <ll order, so that ll(s, t) indeed satisfies (x > y ∨ x > z ∨ x = y = z).
(3) ⇒ (1). By contraposition, suppose that R is not ll-Horn. By Lemma 8, there exists a non-
ll-Horn relation R′ that is pp-definable over (Q, R,+1) and first-order definable over (Q, <). By
Lemma 7, R′ is not preserved by f . By Lemma 10, we have that R′ is not preserved by ll, and
finally by Lemma 3, R is not preserved by ll, which concludes the proof.

4. Sampling

Definition 9. Let A be a structure. We say that an algorithm samples from A, if given n ∈ N it
returns a substructure B of A so that for every pp-sentence Φ with at most n quantified variable,
we have A |= Φ ⇔ B |= Φ. In other words, CSP(A) and CSP(B) are the same problems when
restricted to inputs with at most n variables.

In this section, we prove the following:

Theorem 2. Let A be a first-order reduct of Q with a finite signature. There is a polynomial-time
sampling algorithm for A.

Let +n denote the relation {(a, a + n) : a ∈ Q} ⊂ Q2 and >n denote the relation {(a, b) : a >
b+ n} ⊂ Q2. We begin by giving an algorithm that samples from the structure

Qm = (Q,+0, . . . ,+m, >−m, . . . , >m)

and then we prove that the structure Q∞ =
⋃

m≥0 Qm admits positive quantifier-elimination, i.e.
that for every first-order formula Φ(x), there exists a positive quantifier-free Ψ(x) that is equivalent
to it. Using this we finally provide a sampling algorithm for any first-order reduct A of Q.

The algorithm Sample-Qm takes as input n ∈ N and outputs the substructure B of Qm induced
by B = { i

n : 0 ≤ i ≤ n2(m+ 1)}, that is, the structure with domain B and where there is a relation
between two points of B if and only if this relation exists in Qm.

Lemma 11. Sample-Qm is an efficient sampling algorithm for Qm.

Proof. It is clear that the algorithm runs in time a polynomial in n. Moreover, since B is induced
in Qm, it is clear that if B |= Φ then Qm |= Φ, since an assignment of the variables of Φ to B can
be seen as an assignment of the variables to Q.

Suppose that Qm |= Φ, and let Φ = ∃x1, . . . , xn.ϕ(x). By assumption, there is a valid assign-
ment s : {x1, . . . , xn} → Q that satisfies ϕ. Let m = min s(x). If m 6= 0, we may replace s by

12

the assignment that maps x to s(x) − m so that the minimum of the new assignment is 0. We
order the variables x1, . . . , xn as follows: if s(x) − bs(x)c < s(y) − bs(y)c, we pose x < y. This
order defines an equivalence relation x ≡ y that is such that x ≡ y ⇔ s(x) − s(y) ∈ Z. Let us
denote by x the ≡-equivalence class of x. Finally, let y1, . . . , yr enumerate the representatives of
each equivalence class in such a way that yi < yj when i < j and each yi is so that s(yi) ≤ s(z) for
z ∈ yi. Let t : {x1, . . . , xn} → Q be defined for z ∈ yi by t(z) = bs(z)c + i

n . We claim that t is a
valid assignment of ϕ.

• if x, y are so that x = y, then s(x)− s(y) = t(x)− t(y), so that the relations +n and <n are
preserved;

• if x ∈ yi and y ∈ yj for i 6= j, we have that s(x)− s(y) 6∈ Z, and t(x)− t(y) 6∈ Z, so that the
relation +n is preserved for all n ≤ m;

• finally, suppose that x ∈ yi and y ∈ yj for i < j. If the constraint y >k x is in ϕ for
k ∈ Z, we have t(y) = bs(y)c + j

n > bs(x) + kc + j
n > bs(x)c + k + i

n = t(x) + k, so
that the constraint y >k x is still satisfied by t. If the constraint x >k y is in ϕ, we have
s(x) ≥ bs(y)c + k + 1: indeed, if bs(y)c + k < s(x) < bs(y)c + k + 1, bs(x)c = bs(y)c + k
and s(x) − bs(x)c > s(y) + k − bs(y)c − k = s(y) − bs(y)c, a contradiction with i < j. Now

it follows that t(x) = bs(x)c+
i

n
≥ bs(y)c+ k + 1 +

i

n
> bs(y)c+

j

n
+ k = t(y) + k, so that

x >k y is still satisfied by t.

The image of t is included in the subset { i
n : i ∈ N} ⊂ Q, but it may go beyond n(m + 1).

Suppose it does: then there exist x, y so that t(y) − t(x) > m + 1 and such that for all the
variables z, either t(z) ≤ t(x) or t(z) ≥ t(y) (i.e. x and y are “consecutive” in the order induced
by t). Let X = {z : t(z) ≤ t(x)} and Y = {z : t(z) ≥ t(y)}, and define a new t′ as follows. If
z ∈ X, set t′(z) = t(z), and if z ∈ Y , set t′(z) = t(z) − t(y) + t(x) + m + 1. This t′ is still a
valid assignment to ϕ: since the distance between variables of X or between variables of Y have
not changed, the clauses in ϕ that involve these pairs of variables are still satisfied. Moreover,
ϕ cannot have a clause z1 = z2 + n (with n ≤ m) where z1 ∈ X and z2 ∈ Y , since we have
s(z2) − s(z1) > s(y) − s(x) > m + 1 > n, so that s could not satisfy such a clause. Hence, all
the clauses that can relate z1 and z2 in ϕ are of the form z1 > z2 + n and z2 > z1 + n. In
the former case, we have t′(z1) = t(z1) > t(z2) + n > t′(z2) + n, and in the latter case, we have
t′(z2) = t(z2)−t(y)+t(x)+m+1 ≥ t(y)−t(y)+t(x)+m+1 = t(x)+m+1 ≥ t′(z1)+m+1 > t′(z1)+n
since n ≤ m.

Finally, note that t′ has one less pair (x, y) of consecutive variables (as defined above) that
are so that t′(y) − t′(x) > m + 1. Repeating this process, we find an assignment such that all
consecutive variables are at distance ≤ m + 1, so that the image of this assignment is bounded
above by n(m+ 1).

Lemma 12. Q∞ has positive quantifier elimination, that is, for every first-order formula Φ(x)
over the language of Q∞, there exists a quantifier-free formula Ψ(x), in which negation does not
appear and so that

Q∞ |= ∀x(Φ(x)⇔ Ψ(x)).

Proof. We prove that for any two ω-saturated models A,B of T = Th(Q∞) that have a common
substructure C, the set I of all partial isomorphisms with finite domain between A and B have the

13

back-and-forth property. The fact that this implies quantifier elimination is a corollary of Theorem
3.2.5 in [?]:

Theorem 3. For a theory T the following are equivalent:

1. T has quantifier elimination,

2. For all models A,B of T with a common substructure C we have AC ≡ BC .

If A,B are as in the theorem, we let A′ (resp. B′) be an ω-saturated elementary extension of
A (resp. B). If the set I of all partial isomorphisms with finite domain between A′ and B′ has the
back-and-forth property, partial isomorphisms are elementary. In particular, we’d have that idC is
elementary between A′ and B′, hence it is also elementary between A and B, so that AC ≡ BC .

That I is non-empty is clear, since idC is a partial isomorphism.
Let f : {a1, . . . , an} → {b1, . . . , bn} ∈ I and let an+1 ∈ A. If there exists i ≤ n such that

an+1 = ai + k for k ∈ Z, take bn+1 = bi + k and extend f by f(an+1) = bn+1. This is still a partial
isomorphism: it preserves +n since if A |= aj = an+1 + k′, we have A |= aj = ai + k + k′ hence
B |= bj = bi + k + k′ and B |= bj = bn+1 + k′. If an+1 > aj + k′, A |= ai > aj + k′ − k, hence
B |= bi > bj + k′ − k and bn+1 > bj + k′. The case an+1 < aj + k′ is treated similarly.

Otherwise, let τ be
⋃

A|=an+1>ai+k{x > bi +k}∪
⋃

A|=an+1<ai−k{x < bi−k}. Every finite subset
of τ is realized in B: if ρ is a finite subset of τ , for each i ≤ n there are li, ui maximal such that
the formulas x > bi + li and x < bi − ui are in ρ. Letting L = max bi + l and U = min bi − u, we
know that the interval (L,U) in B is not empty, for if it were, we would have bi + li ≥ bj − uj ,
hence ai + li ≥ aj − uj , which is a contradiction. Hence there is an element in (L,U) and ρ is
satisfiable. As a consequence, τ is a partial type over a finite number of parameters, hence it is
realized in B by saturation. Let bn+1 in B be an element that realizes τ , and we can extend f by
setting f(an+1) = bn+1.

Checking that I has the “back” property is done in a similar way.
We conclude that Qm has quantifier elimination. To prove that the quantifier elimination

process indeed yields positive formulas, simply note that the negation of an atom y = x + k is
equivalent modulo T to y > x+ k ∨ x > y − k, which is in the language and that the negation of
y > x + k is equivalent modulo T to x > y − k ∨ y = x+ k. Every quantifier-free formula is then
equivalent to a positive quantifier-free formula, which concludes the proof.

We finally provide the desired sampling algorithm for reducts A of (Q,+1, <) that have a finite
signature. Since A is first-order definable over (Q,+1, <), it is positively quantifier-free definable
over Q∞ by Lemma 12, and since A has finite signature there exists m ∈ N such that A is positively
quantifier-free definable over Qm. The sampling algorithm for A simply samples B′ from Qm, and
returns B, the structure with the same signature as A where relations are built according to their
positive quantifier-free definition on B′. That this is efficient is clear, since the running time of the
sampling algorithm of Qm is polynomial in n, and the time taken to build B is Θ(|B′|k), where k
is the maximal arity of relations of A.

Lemma 13. Let Φ be an instance of CSP(A) with n variables. Then A |= Φ⇔ B |= Φ.

Proof. Let Ψ be the formula obtained by replacing relation symbols in Φ by their positive quantifier-
free definition over Qm. Ψ is equivalent to a disjunction of primitive positive formula over the
language of Qm, and it has n variables. Hence, Qm |= Ψ ⇔ B′ |= Ψ by Lemma 11. Now by
construction, we have A |= Φ⇔ Qm |= Ψ and B |= Φ⇔ B′ |= Ψ, which proves the lemma.

14

Remark 2. Using the same techniques, one can also sample from finite-signature reducts of (Z, succ, <
). It is even easier (from a complexity point of view) to do so: the sample here is the substructure
of (Z, succ, <) induced by the set {0, . . . , n(m + 1)}, which is n times smaller than the sample for
(Q, succ, <).

5. Algorithm

Let A be the structure over Q with the three relations defined by y = x + 1, x > y, and x >
y ∨ x > z ∨ (x = y = z). Our algorithm for CSP(L) relies on two points: L has an injective
binary polymorphism, and there is a polynomial-time algorithm for CSP(A). While the first point
is proved in Lemma 6, the second item is a consequence of a theorem of [?] and of Lemmas 4 and 13:

Theorem 4 (Theorem 2.4 in [?]). Let A be a structure over a finite relational signature with a
semi-lattice polymorphism. If there exists an efficient sampling algorithm for A, then CSP(A) is
in P.

A semi-lattice operation is a binary operation f that is:

• idempotent, i.e. ∀x, f(x, x) = x,

• associative, i.e. ∀x, y, z, f(x, f(y, z)) = f(f(x, y), z), and

• commutative, i.e. ∀x, y, f(x, y) = f(y, x).

It is straightfoward to verify that the binary function min: Q2 → Q is indeed a semi-lattice opera-
tion. As per Lemma 4, min is a polymorphism of the structure A described above, since A consists
of ll-Horn relations that are definable using clauses that have no premises, and Lemma 13 asserts
that there is an efficient sampling algorithm for A. As a consequence, there exists a polynomial-time
algorithm for CSP(A), which we denote by SolveCSP(A).

For a finite set of formulas ψ, let us denote by
∧
ψ the formula obtained by taking the conjunc-

tion of all the formulas in ψ. Our algorithm for CSP(L) is presented below.
It is obvious that the algorithm terminates: at each execution of the repeat loop except the last

one, the size of Φ strictly decreases. In the worst case, the algorithm complexity is O(|Φ|2T (|Φ|)),
where T (n) is the worst-case complexity of the algorithm SolveCSP(A). We now prove that
SolveCSP(L) is sound and complete for CSP(L).

Lemma 14. If Solve(Φ) rejects, L 6|= Φ.

Proof. Let m be the number of iterations of the repeat loop, and let us denote by Ψi the set Ψ at the
beginning of the ith iteration. We prove by induction that for all 1 ≤ i ≤ m, L |= Φ⇒ ∃x.

∧
Ψi.

Since Ψ1 is a subset of the initial set Φ, we obviously have L |= Φ ⇒ ∃x.
∧

Ψ1. For each
i < m, the set Ψi+1 is obtained from Ψi by renaming variables. Let C be a clause of Ψi+1. If
this clause is already in Ψi, there is nothing to prove. Otherwise there is in Ψi a clause C ′, where
C and C ′ differ by a replacement of variables, say that v has been replaced by u and that this
is the only replacement that occurred, for the sake of conciseness —the proof generalizes when
several replacements occurred. Since v has been renamed to u, there is in Φi a clause of the form
x = y → u = v, such that both A 6|= ∃x.

∧
Ψi ∧ x > y and A 6|= ∃x.

∧
Ψi ∧ y > x, but since

the algorithm hasn’t rejected at this point, we also have A |= ∃x.
∧

Ψi. Those three statements

15

Algorithm: SolveCSP(L)

Data: a pp-sentence Φ = ∃x.ϕ in the language of L
Result: accepts if L |= Φ, rejects otherwise
Ψ := ∅;
repeat

Ψ := {C ∈ Φ | C is in the language of A};
if SolveCSP(A)(∃x.

∧
Ψ) rejects then

reject ;
end
forall clauses of Φ of the type x = y → u = v do

if SolveCSP(A)(∃x.
∧

Ψ∧ y > x) rejects and SolveCSP(A)(∃x.
∧

Ψ∧ x > y) rejects
then

Delete the clause x = y → u = v from Φ;
Replace all occurrences of v in Φ by u;

end

end

until Φ doesn’t change;
accept ;

together imply that Ψi |= x = y, and since L |= Φ ⇒ ∃x.
∧

Ψi by the induction hypothesis and
Φ contains x = y → x = u, we have that L |= Φ ⇒ ∃x.

∧
Ψi ∧ u = v. It remains to note

that
∧

Ψi ∧ u = v is equivalent to
∧

(Ψi \ {C ′} ∪ {C}) ∧ u = v, so that Φ indeed implies C and
L |= Φ→ ∃x.

∧
Ψi+1.

Since SolveCSP(A)(Ψi) fails at some point, it must be that A 6|= ∃x.
∧

Ψi so L 6|= ∃x.
∧

Ψi and
L 6|= Φ, as required.

Lemma 15. If SolveCSP(L)(Φ) accepts, L |= Φ.

Proof. Let Φ′ be the resulting formula after the repeat loop, Ψ′ be the set of clauses of Φ′ that
are in the language of A, V (Φ′) be the set of variables of Φ′, and V (Ψ′) be the set of variables
of Ψ′. Note that we have Φ′ ⇒ Φ (the proof is the same as in the previous lemma, noting that
L |= Φi ⇒ Φ for all the executions i of the repeat loop). We have that SolveCSP(A)(Ψ′) accepts,
so that A |= ∃x.

∧
Ψ′. Let x = y → u = v be a clause not in Ψ′. Since this clause is still present

in Φ′, it must be that either SolveCSP(A)(∃x.
∧

Ψ′ ∧ y > x) or SolveCSP(A)(∃x.
∧

Ψ′ ∧ x > y)
accepts, so that there exists a valid assignment s to the variables of

∧
Ψ′ where s(x) 6= s(y).

Let us enumerate all the clauses of the form xi = yi → ui = vi (0 ≤ i ≤ r) and for each of them,
let si be an assignment such that si(xi) 6= si(yi), which exists by the argument above. By Lemma 6,
L has lex as a polymorphism, so that the assignment t = lex(s1, lex(s2, . . . , lex(sr−1, sr)) . . .) is a
valid assignment of Ψ′. Moreover, since lex is injective t simultaneously breaks all the equalities
in the premise of the constraints that don’t belong to Ψ′, hence those constraints are satisfied. If
some variables of Φ are not in the domain of t (that is, if V (Ψ′) (V (Φ′)), we may assign them
to values that will break the equalities in the premises of the clauses, since the domain is infinite.
The assignment that we obtained is a solution to Φ′, hence to Φ, so that L |= Φ.

16

6. Maximality

We prove in this section that CSP(L) is maximally tractable. In order to do this, we again use
Lemma 8 together with the maximality results from [?]:

Theorem 5. Let L− be the structure over the rational numbers whose relations are defined by
x 6= y, x > y ∨ x > z ∨ (x = y = z), and (x = y → u = v). Then L− is maximally tractable
within the class of reducts of (Q, <). Moreover, the reduct M− that consists of min-closed relations
fo-definable over (Q, <) is maximally tractable within the same class.

The proofs of maximality in our case is straightforward:

Corollary 1. The structure L is maximal within the class of reducts of (Q, <,+1).

Proof. Let A be such that L < A, i.e. every relation of L is pp-definable in A and A contains a
relation R that is not pp-definable over L. By Lemma 1, we may assume that A already contains
the relations of L, since this doesn’t change the complexity of its CSP. Since R is not pp-definable
over L, it is by Lemma 2 not ll-Horn, so that by Lemma 8 there exists a non-ll-Horn relation R′

that is pp-definable over A and first-order definable over (Q, <). Let us consider the structure
B = (L−, R′). Since R′ is not ll-Horn, we have L− < B, and B is a first-order reduct of (Q, <). By
Theorem 5, CSP(B) is NP-hard. Moreover, since all the relations of B are pp-definable over A, we
have B ≤ A, thus CSP(A) is NP-hard, which concludes the proof.

Corollary 2. The structure M that consists of min-closed relations fo-definable over (Q, <,+1) is
maximally tractable within the class of reducts of (Q, <,+1).

Proof. Let A be a reduct of (Q, <,+1) such that M < A, and let R be a relation of A that is
not min-closed. Looking at the proof of Lemma 8, we see that the relation R′ that we build is
so that (Q, R,+1) and (Q, R′,+1) are pp-interdefinable, i.e., that (Q, R,+1) is pp-definable over
(Q, R′,+1) and vice-versa. As a consequence, any operation that preserves +1 and R′ preserves
R, and since R is not min-closed and min preserves +1, we have that R′ is not min-closed either.
Let B be the structure (M−, R′). We have that B < A. By Theorem 5, B is not tractable, in the
sense that there exists a B′, obtained from B by keeping finitely many relations, so that CSP(B′)
is NP-hard. Since we also have B′ < A, we have that A is not tractable and that M is maximally
tractable.

7. Conclusion

A way to rephrase the results presented here is as follows:

Corollary 3. Let A be a first-order reduct of (Q,+1, <) with a finite signature. If min or ll is
a polymorphism of A, then CSP(A) is in P. Moreover, if L < A or M < A then CSP(A) is
NP-hard.

The statement of Corollary 3 is visually represented in Figure 2. For all the first-order formula
Φ defining a relation R over (Q, <,+1), define the dual of R as the relation defined by Φ, where
all the symbols < are replaced by >. For an operation f : Q2 → Q, define the dual of f by
f : (x, y) 7→ −f(−x,−y). It is not hard to prove that an operation f preserves a relation R if, and
only if, f preserves the dual relation of R. Using this fact, we obtain two more maximally tractable

17

Structure with all fo-definable relations
•

(Q,=)
•

in P

M• L
•

in P

NP-hardNP-hard

Figure 2: Visual summary of the results.

reducts, namely the structure that consists of max-closed relations and the structures that consists
of ll-closed relations.

The statement of Corollary 3 naturally leads to the following question: A being a reduct of
(Q,+1, <), for which operations g : Qn → Q do we have that CSP(A) is polynomial-time tractable
whenever g is a polymorphism of A? This question has been answered for the class of reducts of
(Q, <) and of (V, E), the Rado graph. Moreover, in the two previous cases one may even come
up with a finite list of polymorphisms. Thus, the second question one may ask is: does there
exist a finite family F of operations such that CSP(A) is tractable whenever A admits one of the
operations of F as a polymorphism?

Some concrete examples of structures for which the complexity of the corresponding CSP is
unknown are

• (Q, {(a, b) | |a− b| = 1}, {(a, b, c) | a > b ∨ a > c}), and

• (Q, {(a, b, c, d) | a = b→ c = d}, {(a, a+ 1) | a ∈ Q}, {(a, b, c) | a > b ∨ a ≥ c}).

For both these structures, removing the first relation yields a structure that admits min as a
polymorphism, so that by the Corollary above we know that the corresponding CSP is polynomial-
time tractable.

Moreover, as we said in the preamble, the classification project for (Q,+1, <) is a part of a
bigger classification project, that of (Q,+, <, 1). In [?], Bodirsky et al. described a dichotomy
result for the class of first-order expansions of (Q,+), and for the class of first-order expansions of
(Q, {(a, b, c, d) | a+b = c+d}). Thus, the classification project for (Q,+, <, 1) has been approached
from two angles. Using our partial knowledge of the complexity of reducts of (Q, <,+1) and (Q,+),
one might be able to describe maximally tractable reducts of (Q,+, <).

18

Finally, another classification project of interest is that of (Z,+, <). This classification project
has been started in [1], and the full complexity classification for reducts of (Z,+1) is done in a
forthcoming article [2]. Interestingly, this work uses connections between the constraint satisfaction
problems of structures over the domain Z and corresponding structures over the domain Q. It may
be fruitful to investigate this connection for reducts of (Z,+1, <) and (Q,+1, <).

References

[1] Bodirsky, M., Dalmau, V., Martin, B., and Pinsker, M. Distance constraint satisfaction
problems. In Proceedings of Mathematical Foundations of Computer Science (August 2010),
P. Hlinený and A. Kucera, Eds., Lecture Notes in Computer Science, Springer Verlag, pp. 162–
173.

[2] Bodirsky, M., Martin, B., and Mottet, A. Constraint satisfaction problems over the
integers with successor. In Proceedings of ICALP (2015), pp. 256–267. ArXiv:1503.08572.

19

