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Each step must be carefully justified. If you use some lemma or theorem do not forget to check
that all assumptions are satisfied.

Given name and family name:

Question 1 2 Score

Maximum points 100 100 200

Points

1.[100] Formulate and prove the Aubin–Lions.

Solution:

See lecture.
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2.[100] Let Ω ⊂ Rd be a Lipschitz set. Consider the problem: for given p, q ∈ (1,∞) and given
f = (f1, . . . , fL) : Ω → RL, where L ∈ N, find u = (u1, . . . , uL) : Ω → RL solving for all
ν = 1, . . . , L

−
d∑
i=1

∂

∂xi

(
|∇u|p−2 ∂uν

∂xi

)
+ |u|q−2uν = fν in Ω,

uν = 0 on ∂Ω,

where

|∇u|2 :=

d∑
i=1

L∑
ν=1

∣∣∣∣∂uν∂xi

∣∣∣∣2 ,
|u|2 :=

L∑
ν=1

(uν)2.

For f ∈ Lq′(Ω;RL) define the notion of a weak solution. Check that for given data such a
definition is meaningful. Prove the existence and uniqueness of the weak solution. (Help: As
a leading function space consider V := W 1,p

0 (Ω;RL) ∩ Lq(Ω;RL)

Solution:

First, we recall some facts proved in the lectures. The mapping A : Rd×L → Rd×L
defined as

A(η) := |η|p−2η,

is strictly monotone p-coercive and has (p − 1)-growth. Moreover, the mapping F1 :
Rd×L → R defined as

F1(η) :=
|η|p

p
,

is strictly convex, p-coercive and has p-growth and fulfills

∂F1(η)

∂η
= A(η).

Similarly, the mapping B : RL → RL defined as

B(u) := |u|q−2u,

is strictly monotone, q-coercive and has (q − 1)-growth. Moreover, the mapping F2 :
RL → R defined as

F2(u) :=
|u|q

q
,

is strictly convex, q-coercive, has q-growth and fulfills

∂F2(u)

∂u
= B(u).

The problem can be written in the form

− div A(∇u) +B(u) = f in Ω,

u = 0 on ∂Ω.
(*)
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Formal derivation of the notion of weak solution: Let v ∈ V be arbitrary and
take the scalar product of (*) and v, i.e., multiply the ν-the equation in (*) by vν and
sum the result over ν = 1, . . . , L. Finally integrate over Ω to get

−
∫

Ω

div A(∇u) · v dx+

∫
Ω

B(u) · v dx =

∫
Ω

f · v dx.

For the first integral use integration by parts and the fact that v = 0 on ∂Ω (so the
boundary term formally vanishes) to get the weak formulation∫

Ω

A(∇u) · ∇v dx+

∫
Ω

B(u) · v dx =

∫
Ω

f · v dx for all v ∈ V. (**)

We check that all integrals are well defined for u,v ∈ V . Using the Hölder inequality we
have∣∣∣∣∫

Ω

A(∇u) · ∇v dx
∣∣∣∣ ≤ ∫

Ω

|A(∇u)||∇v| dx ≤
∫

Ω

|∇u|p−1|∇v| dx ≤ ‖u‖p−1
p ‖∇v‖p <∞,∣∣∣∣∫

Ω

B(u) · v dx
∣∣∣∣ ≤ ∫

Ω

|B(u)||v| dx ≤
∫

Ω

|u|q−1|v| dx ≤ ‖u‖q−1
q ‖v‖q <∞,∣∣∣∣∫

Ω

f · v dx
∣∣∣∣ ≤ ∫

Ω

|f ||v| dx ≤ ‖f‖q′‖v‖q <∞

so (**) is meaningful.

Uniqueness of the weak solution: Let u1,u2 ∈ V be two weak solutions to (**).
Subtracting the weak formulation for u2 from that one for u1 we deduce that∫

Ω

(A(∇u1)−A(∇u2)) · ∇v dx+

∫
Ω

(B(u1)−B(u2)) · v dx = 0 for all v ∈ V.

Hence, setting v := u1 − u2 (which is a possible choice since u1 − u2 ∈ V ), we have∫
Ω

(A(∇u1)−A(∇u2)) · (∇u1 −∇u2) dx+

∫
Ω

(B(u1)−B(u2)) · (u1 − u2) dx = 0.

Using the monotonicity of A and of B, it directly follows that

(A(∇u1)−A(∇u2)) · (∇u1 −∇u2) ≡ 0 a.e. in Ω,

(B(u1)−B(u2)) · (u1 − u2) ≡ 0 a.e. in Ω.

Consequently, using the strict monotonicity of B we get that u1 = u2 almost everywhere
in Ω.

Existence of a weak solution via variational approach: Look for u ∈ V solving∫
Ω

F1(∇u) + F2(u)− f · u dx ≤
∫

Ω

F1(∇w) + F2(w)− f ·w, for all w ∈ V. (***)

First, assume that such u exists. Then setting w := u + tw with t > 0 we have

0 ≤
∫

Ω

F1(∇u + t∇v)− F1(∇u)

t
+
F2(u + tv)− F2(u)

t
− f · v dx, for all v ∈ V.
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Thus, letting t → 0+, using the properties of F1, F2, A and B and using the results
proved in the lectures we get

0 ≤
∫

Ω

A(∇u) · ∇v +B(u) · v − f · v dx, for all v ∈ V.

Since we can set also −v above, we directly have (**).

To prove the existence of u solving (***), we first define

I := inf
w∈V

∫
Ω

F1(∇w) + F2(w)− f ·w dx ≤ 0,

where the last inequality follows from the fact that 0 ∈ V . From the definition of inf
there must exist a sequence {un}∞n=1 such that

I = lim
n→∞

∫
Ω

F1(∇un) + F2(un)− f · un dx ≤ 0.

Consequently, there must exist n0 such that for all n ≥ n0∫
Ω

F1(∇un) + F2(un)− f · un dx ≤ 1,

from which it follows that

‖∇un‖pp
p

+
‖∇un‖qq

q
≤ 1 +

∫
Ω

f · un dx ≤ 1 + ‖f‖q′‖un‖q ≤
‖un‖qq

2q
+ 1 + 2q

′
‖f‖q

′

q′ .

Finally, using the Poincaré inequality (note that u has zero trace) we get that

‖u‖V ≤ C(Ω, f).

Due to the reflexivity, we can extract a non-relabeled subsequence and find u ∈ V such
that

un ⇀ u weakly in V.

In particular, we have that

∇un ⇀ ∇u weakly in Lp(Ω;Rd×L),

u⇀ u weakly in Lq(Ω;RL).

Finally, we use the weak-lower semicontinuity of convex functionals (proved in the lectu-
res and here applied to F1 since it has p-growth and A has (p − 1)-growth and to F2

since it has q growth and B has (q − 1) growth) to get

I = lim
n→∞

∫
Ω

F1(∇un) + F2(un)− f · un dx ≥
∫

Ω

F1(∇u) + F2(u)− f · u dx ≥ I,

where the last inequality follows from the definition of I. Hence, we see that u satisfies
(***).
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Existence via monotone operator theory: Since V is a separable space there exists
a countable set {wi}∞i=1 which is dense in V . We look for the Galerkin approximation
un being of the form

un :=

n∑
i=1

cni wi

and solving∫
Ω

A(∇un) · ∇wi dx+

∫
Ω

B(un) ·wi dx =

∫
Ω

f ·wi dx for all i = 1. . . . , n. (**n)

Due to the continuity of A and B and their coercivity, such un exists (see the lecture).
Then multiplying the i-th equation in (**n) by cni and summing the result over i =
1, . . . , n we get ∫

Ω

A(∇un) · ∇un dx+

∫
Ω

B(un) · un dx =

∫
Ω

f · un dx. (En)

From this we get
‖un‖V ≤ C

and consequently, using the (p− 1)-growth of A and (q − 1)-growth of B also that

‖A(∇un)‖Lp′ (Ω;Rd×L) + ‖B(un)‖Lq′ (Ω;RL) ≤ C

and due to the reflexivity of leading spaces (here we use that p, q ∈ (1,∞)) we have

un ⇀ u weakly in V,

A(∇un) ⇀ A weakly in Lp
′
(Ω;Rd×L),

B(un) ⇀ B weakly in Lq
′
(Ω;RL).

Then for fix i it is easy to let n→∞ in (**n) to observe∫
Ω

A · ∇wi dx+

∫
Ω

B ·wi dx =

∫
Ω

f ·wi dx for all i = 1. . . . ,∞.

and due tot he density of {wi} in V also that∫
Ω

A · ∇w dx+

∫
Ω

B ·w dx =

∫
Ω

f ·w dx for all w ∈ V. (****)

Hence to prove (**) it remains to show that the left hand side of (****) is equal to the
left hand side of (**). To prove it, we first set w := u in (****) to get∫

Ω

A · ∇u dx+

∫
Ω

B · u dx =

∫
Ω

f · u dx. (E)

Then taking the limit in (En) and using (E) we have

lim
n→∞

∫
Ω

A(∇un) · ∇un dx+

∫
Ω

B(un) · un dx = lim
n→∞

∫
Ω

f · un dx

=

∫
Ω

f · u dx =

∫
Ω

A · ∇u dx+

∫
Ω

B · u dx.
(EE)
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Finally, for any w ∈ V , we can use the monotonicity of the operators, (EE) and weak
convergence results established above so that we have

0 ≤ lim
n→∞

∫
Ω

(A(∇un)−A(∇w)) · (∇un −∇w) + (B(un)−B(w)) · (un −w) dx

= lim
n→∞

∫
Ω

A(∇un) · ∇un dx+

∫
Ω

B(un) · un dx

− lim
n→∞

∫
Ω

A(∇w) · (∇un −∇w) +B(w) · (un −w) dx

− lim
n→∞

∫
Ω

A(∇un) · ∇w +B(un)w dx

=

∫
Ω

A · ∇u dx+

∫
Ω

B · u dx

−
∫

Ω

A(∇w) · (∇u−∇w) +B(w) · (u−w) dx

−
∫

Ω

A(∇u) · ∇w +B(u)w dx

=

∫
Ω

(A−A(∇w)) · (∇u−∇w) + (B −B(w)) · (u−w) dx.

The Minty trick then finishes the proof.


