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Each step must be carefully justified. If you use some lemma or theorem do not forget to check
that all assumptions are satisfied.

Given name and family name:

Question 1 2 Score

Maximum points 100 100 200

Points

1.[100] Formulate and prove the Gagliardo-Nirenberg inequality. Formulate and prove the Sobolev
embedding W 1,p(Ω) ↪→ Lq(Ω) for p ∈ [1, d), where Ω ⊂ Rd. What embedding holds in case
Ω = Rd?

Solution:

See lecture.
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2.[100] Let Ω ⊂ Rd be a Lipschitz set and let aij ∈ L∞(Ω) for i, j = 1, . . . , d. Moreover assume that
there exists α > 0 such that for all z ∈ Rd and almost all x ∈ Ω

d∑
i,j=1

aij(x)zizj ≥ α|z|2.

Define the x-dependent norm in Rd as

|z|2a(x) :=

d∑
i,j=1

aij(x)zizj .

Next, let p ∈ (1,∞) and f : Ω→ Rd be given such that f ∈ Lp(Ω;Rd) and consider a set

S :=

{
g = (g1, . . . , gd) ∈ Lp(Ω;Rd);

∫
Ω

(g + f) · ∇u dx = 0 for all u ∈W 1,p′

0 (Ω)

}
.

40% Show that there exists a unique g ∈ S such that∫
Ω

|g(x)|pa(x) dx ≤
∫

Ω

|h(x)|pa(x) dx for all h ∈ S. (Min)

10% What is the Euler-Lagrange equation of the above problem?

50% Find an elliptic PDE to which (Min) is a dual problem. Show the relation between g
from (Min) and the solution to that PDE.

Solution:

First of all, denoting

as :=
1

2
(a+ aT ), i.e., asij :=

1

2
(aij + aji)

we see that
|z|2a(x) = |z|2as(x).

Consequently, we consider in what follows only symmetric matrix a, otherwise we take
only its symmetric part. Next, we recall some basics facts from linear algebra. Since, a
is elliptic and symmetric, we see that

(u, v)a :=

d∑
i,j=1

aijuivj

is a scalar product on Rd. Consequently, we have

|(u, v)a| ≤ |u|a|v|a. (1)

Moreover, we from ellipticity it follows that there exists the inverse elliptic matrix a−1 ∈
L∞(Ω;Rd×d). Finally, we derive an auxiliary inequality (replacing so the argument based



NMMA 405, WS 2013-2014 Written exam March 5, 2014

on the convexity later)

|u|pa − |v|pa =

∫ 1

0

d

dt
|v − t(v − u)|pa dt = p

∫ 1

0

|v − t(v − u)|p−2
a (v − t(v − u), u− v)a dt

= p

∫ 1

0

(
d

dt
(t− 1)

)
|v − t(v − u)|p−2

a (v − t(v − u), u− v)a dt.

Using integration by parts we continue

= p|v|p−2
a (v, u− v)a + p

∫ 1

0

(1− t)
(
d

dt
|v − t(v − u)|p−2

a (v − t(v − u), u− v)a

)
dt

= p|v|p−2
a (v, u− v)a + p

∫ 1

0

1− t
|v − t(v − u)|2−pa

(
(p− 2)(v − t(v − u), u− v)2

a

|v − t(v − u)|2a
+ |u− v|2a

)
dt.

Hence, using (1), we see that

|u|pa−|v|pa ≥ p|v|p−2
a (v, u−v)a+


∫ 1

0

(1− t)|u− v|2a
|v − t(v − u)|2−pa

dt if p ≥ 2∫ 1

0

(1− t)(p− 1)|u− v|2a
|v − t(v − u)|2−pa

dt if p ∈ (1, 2).

(Convex)

Next, we focus on the existence of a minimizer. Denoting

I := inf
h∈S

∫
Ω

|h(x)|pa(x) dx,

we deduce from the definition of infima that there exists a sequence gn ∈ S such that

I = lim
n→∞

∫
Ω

|gn(x)|pa(x) dx.

On the other hand since −f ∈ S we see that

I ≤
∫

Ω

|f(x)|pa(x) dx ≤ C‖f‖
p
p

and therefore there exists n0 such that for all n ≥ n0 we have

α‖gn‖pp ≤
∫

Ω

|gn(x)|pa(x) dx ≤ I + 1 ≤ C(f).

Thus, due to the reflexivity, we see that we can extract a subsequence that we do not
relabel such that

gn ⇀ g weakly in Lp(Ω;Rd). (2)

Moreover, it is evident from the definition of S and the above convergence result that

g ∈ S.
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Thus, to finish the proof of the existence it is sufficient to show (weak-lower semiconti-
nuity) that

lim
n→∞

∫
Ω

|gn(x)|pa(x) − |g(x)|pa(x) dx ≥ 0. (WLS)

Using (Convex) with u := gn and v := g, we gain

lim
n→∞

∫
Ω

|gn(x)|pa(x) − |g(x)|pa(x) dx ≥ p lim
n→∞

∫
Ω

|g(x)|p−2
a(x) (g(x), gn(x)− g(x))a(x) dx

= p lim
n→∞

d∑
i,j=1

∫
Ω

|g(x)|p−2
a(x)aij(x)gi(x)︸ ︷︷ ︸
∈Lp′

(gnj (x)− gj(x))︸ ︷︷ ︸
⇀0 in Lp

dx

= 0,

where the last equality follows from (2). Thus, the proof of the existence is complete.

Next, we derive the Euler-Lagrange equations. Thus, for arbitrary w ∈ Lp(Ω;Rd) such
that ∫

Ω

w · ∇u dx = 0 for all u ∈W 1,p′

0 (Ω) (3)

we see that for arbitrary t > 0, we have h := g+ tw ∈ S. Thus, using such an h in (Min)
we get ∫

Ω

|g(x)|pa(x) dx ≤
∫

Ω

|g(x) + tw(x)|pa(x) dx.

Hence, dividing by t and letting t→ 0+ we deduce

0 ≤ lim
t→0+

∫
Ω

|g(x) + tw(x)|pa(x) − |g(x)|pa(x)

t
dx = p

∫
Ω

|g(x)|p−2
a(x)(g(x), w(x))a(x) dx.

Since −w is also a possible setting, we see that the Euler-Lagrange equatins is of the
form

0 =

∫
Ω

|g(x)|p−2
a(x)(g(x), w(x))a(x) dx (E-L)

for all w ∈ Lp(Ω;Rd) fulfilling∫
Ω

w · ∇u dx = 0 for all u ∈W 1,p′

0 (Ω).

Concerning uniqueness, let g1 6= g2 be two minimizers. Then, it follows from (Convex)
that∫

Ω

|g1(x)|pa(x) − |g
2(x)|pa(x) dx > p

∫
Ω

|g2(x)|p−2
a(x)(g

2(x), g1(x)− g2(x))a(x) dx, (4)

where the strict inequality follows from the fact that the second term on the right hand
side of (Convex) is surely positive on a set of nonzero measure due to the assumption
g1 6= g2. Since g1, g2 are minimizers, we know that

I =

∫
Ω

|g1(x)|pa(x) dx =

∫
Ω

|g2(x)|pa(x) dx
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and consequently the left hand side of (4) is zero. On the other hand, since g1, g2 ∈ S
we get ∫

Ω

(g1 − g2) · ∇u dx = 0 for all u ∈W 1,p
0 (Ω).

Hence, using (E-L) with g := g1 and w := g1− g2, we see that the right hand side of (4)
is also zero, which is a contradiction.

For the second part, we follow the lecture and the only reasonable chance for some u
being a solution (which up to now we do not know exists) to the primary problem is
that it is given by

|g(x)|p−2
a(x)

d∑
j=1

aij(x)gj(x) =
∂u

∂xi
(5)

Our first goal is to invert (5). Thus, taking the scalar product with g we have

|g(x)|pa(x) = (∇u(x), g(x)). (6)

Next, multiplying (5) by a−1
ik and summing with respect to i we get

|g(x)|p−2
a(x)gk(x) =

d∑
i=1

a−1
ik (x)

∂u(x)

∂xi
(7)

Thus, taking the scalar product with ∇u we see that

|g(x)|p−2
a(x)(g(x),∇u(x)) = |∇u(x)|2a−1(x). (8)

Hence, comparing (6) and (8) we deduce

|g(x)|a(x) = |∇u(x)|
1

p−1

a−1(x), (9)

which substituting into (7) leads to

gk(x) =

d∑
i=1

a−1
ik (x)|∇u(x)|p

′−2
a−1(x)

∂u(x)

∂xi
(10)

Hence, taking the scalar product with ∇v, where v ∈W 1,p′

0 (Ω), we get∫
Ω

|∇u(x)|p
′−2

a−1(x)(∇u(x),∇v)a−1(x) dx =

∫
Ω

g(x) · ∇v(x) dx
g∈S
=

∫
Ω

f · ∇v dx, (11)

which is nothing else than the weak formulation of the problem:

d∑
i,j=1

∂

∂xi

(
|∇u(x)|p

′−2
a−1(x)a

−1
ij (x)

∂u(x)

∂xj

)
=

d∑
i=1

∂f(x)

∂xi
, in Ω,

u = ud on ∂Ω,

where ud is given Dirichlet boundary condition, e.g., ud = 0. Hence, it remains to prove

the existence of u ∈ W 1,p′

0 (Ω) solving (11) for all v ∈ W 1,p′

0 (Ω). We can proceed by
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using the monotone operator theory, however, since we have already proved the weak
lower semicontinuity for certain functional, we proceed differently. In fact we show that

to solve (11) is equivalent to find u ∈W 1,p′

0 (Ω) solving for all v ∈W 1,p′

0 (Ω)

∫
Ω

|∇u(x)|p
′

a−1(x)

p′
− f(x) · ∇u(x) dx ≤

∫
Ω

|∇v(x)|p
′

a−1(x)

p′
− f(x) · ∇v(x) dx. (P-F)

But we have already use the weak lower semicontinuity and therefore the minimum
surely exists and in addition is unique. It only remains to show that (P-F) implies (in
fact is equivalent to) (11). To do so, we again derive the Euler-Lagrange equation, i.e.,

we set v := u+ tw in (P-F) with arbitrary w ∈W 1,p′

0 (Ω), divide by t and let t→ 0+ to
gain

∫
Ω

f(x) · ∇w(x) dx ≤ lim
t→0+

1

p′

∫
Ω

|∇(u+ tw(x)|p
′

a−1(x) − |∇u(x)|p
′

a−1(x)

t
dx

=

∫
Ω

|∇u|p
′−2

a−1(x)(∇u(x),∇w(x))a−1(x) dx,

(P-F)

which directly implies (11).


